1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkPathOpsCurve.h"
9 #include "SkPathOpsLine.h"
10 #include "SkPathOpsQuad.h"
11 
12 /*
13 Find the interection of a line and quadratic by solving for valid t values.
14 
15 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
16 
17 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
18 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
19 A, B and C are points and t goes from zero to one.
20 
21 This will give you two equations:
22 
23   x = a(1 - t)^2 + b(1 - t)t + ct^2
24   y = d(1 - t)^2 + e(1 - t)t + ft^2
25 
26 If you add for instance the line equation (y = kx + m) to that, you'll end up
27 with three equations and three unknowns (x, y and t)."
28 
29 Similar to above, the quadratic is represented as
30   x = a(1-t)^2 + 2b(1-t)t + ct^2
31   y = d(1-t)^2 + 2e(1-t)t + ft^2
32 and the line as
33   y = g*x + h
34 
35 Using Mathematica, solve for the values of t where the quadratic intersects the
36 line:
37 
38   (in)  t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
39                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - g*x - h, x]
40   (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
41          g  (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
42   (in)  Solve[t1 == 0, t]
43   (out) {
44     {t -> (-2 d + 2 e +   2 a g - 2 b g    -
45       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
46           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
47          (2 (-d + 2 e - f + a g - 2 b g    + c g))
48          },
49     {t -> (-2 d + 2 e +   2 a g - 2 b g    +
50       Sqrt[(2 d - 2 e -   2 a g + 2 b g)^2 -
51           4 (-d + 2 e - f + a g - 2 b g    + c g) (-d + a g + h)]) /
52          (2 (-d + 2 e - f + a g - 2 b g    + c g))
53          }
54         }
55 
56 Using the results above (when the line tends towards horizontal)
57        A =   (-(d - 2*e + f) + g*(a - 2*b + c)     )
58        B = 2*( (d -   e    ) - g*(a -   b    )     )
59        C =   (-(d          ) + g*(a          ) + h )
60 
61 If g goes to infinity, we can rewrite the line in terms of x.
62   x = g'*y + h'
63 
64 And solve accordingly in Mathematica:
65 
66   (in)  t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
67                        d*(1 - t)^2 + 2*e*(1 - t)*t  + f*t^2 - y, y]
68   (out)  a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
69          g'  (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
70   (in)  Solve[t2 == 0, t]
71   (out) {
72     {t -> (2 a - 2 b -   2 d g' + 2 e g'    -
73     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
74           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
75          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
76          },
77     {t -> (2 a - 2 b -   2 d g' + 2 e g'    +
78     Sqrt[(-2 a + 2 b +   2 d g' - 2 e g')^2 -
79           4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
80          (2 (a - 2 b + c - d g' + 2 e g' - f g'))
81          }
82         }
83 
84 Thus, if the slope of the line tends towards vertical, we use:
85        A =   ( (a - 2*b + c) - g'*(d  - 2*e + f)      )
86        B = 2*(-(a -   b    ) + g'*(d  -   e    )      )
87        C =   ( (a          ) - g'*(d           ) - h' )
88  */
89 
90 class LineQuadraticIntersections {
91 public:
92     enum PinTPoint {
93         kPointUninitialized,
94         kPointInitialized
95     };
96 
97     LineQuadraticIntersections(const SkDQuad& q, const SkDLine& l, SkIntersections* i)
98         : fQuad(q)
99         , fLine(&l)
100         , fIntersections(i)
101         , fAllowNear(true) {
102         i->setMax(5);  // allow short partial coincidence plus discrete intersections
103     }
104 
105     LineQuadraticIntersections(const SkDQuad& q)
106         : fQuad(q)
107         SkDEBUGPARAMS(fLine(nullptr))
108         SkDEBUGPARAMS(fIntersections(nullptr))
109         SkDEBUGPARAMS(fAllowNear(false)) {
110     }
111 
112     void allowNear(bool allow) {
113         fAllowNear = allow;
114     }
115 
116     void checkCoincident() {
117         int last = fIntersections->used() - 1;
118         for (int index = 0; index < last; ) {
119             double quadMidT = ((*fIntersections)[0][index] + (*fIntersections)[0][index + 1]) / 2;
120             SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
121             double t = fLine->nearPoint(quadMidPt, nullptr);
122             if (t < 0) {
123                 ++index;
124                 continue;
125             }
126             if (fIntersections->isCoincident(index)) {
127                 fIntersections->removeOne(index);
128                 --last;
129             } else if (fIntersections->isCoincident(index + 1)) {
130                 fIntersections->removeOne(index + 1);
131                 --last;
132             } else {
133                 fIntersections->setCoincident(index++);
134             }
135             fIntersections->setCoincident(index);
136         }
137     }
138 
139     int intersectRay(double roots[2]) {
140     /*
141         solve by rotating line+quad so line is horizontal, then finding the roots
142         set up matrix to rotate quad to x-axis
143         |cos(a) -sin(a)|
144         |sin(a)  cos(a)|
145         note that cos(a) = A(djacent) / Hypoteneuse
146                   sin(a) = O(pposite) / Hypoteneuse
147         since we are computing Ts, we can ignore hypoteneuse, the scale factor:
148         |  A     -O    |
149         |  O      A    |
150         A = line[1].fX - line[0].fX (adjacent side of the right triangle)
151         O = line[1].fY - line[0].fY (opposite side of the right triangle)
152         for each of the three points (e.g. n = 0 to 2)
153         quad[n].fY' = (quad[n].fY - line[0].fY) * A - (quad[n].fX - line[0].fX) * O
154     */
155         double adj = (*fLine)[1].fX - (*fLine)[0].fX;
156         double opp = (*fLine)[1].fY - (*fLine)[0].fY;
157         double r[3];
158         for (int n = 0; n < 3; ++n) {
159             r[n] = (fQuad[n].fY - (*fLine)[0].fY) * adj - (fQuad[n].fX - (*fLine)[0].fX) * opp;
160         }
161         double A = r[2];
162         double B = r[1];
163         double C = r[0];
164         A += C - 2 * B;  // A = a - 2*b + c
165         B -= C;  // B = -(b - c)
166         return SkDQuad::RootsValidT(A, 2 * B, C, roots);
167     }
168 
169     int intersect() {
170         addExactEndPoints();
171         if (fAllowNear) {
172             addNearEndPoints();
173         }
174         double rootVals[2];
175         int roots = intersectRay(rootVals);
176         for (int index = 0; index < roots; ++index) {
177             double quadT = rootVals[index];
178             double lineT = findLineT(quadT);
179             SkDPoint pt;
180             if (pinTs(&quadT, &lineT, &pt, kPointUninitialized) && uniqueAnswer(quadT, pt)) {
181                 fIntersections->insert(quadT, lineT, pt);
182             }
183         }
184         checkCoincident();
185         return fIntersections->used();
186     }
187 
188     int horizontalIntersect(double axisIntercept, double roots[2]) {
189         double D = fQuad[2].fY;  // f
190         double E = fQuad[1].fY;  // e
191         double F = fQuad[0].fY;  // d
192         D += F - 2 * E;         // D = d - 2*e + f
193         E -= F;                 // E = -(d - e)
194         F -= axisIntercept;
195         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
196     }
197 
198     int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
199         addExactHorizontalEndPoints(left, right, axisIntercept);
200         if (fAllowNear) {
201             addNearHorizontalEndPoints(left, right, axisIntercept);
202         }
203         double rootVals[2];
204         int roots = horizontalIntersect(axisIntercept, rootVals);
205         for (int index = 0; index < roots; ++index) {
206             double quadT = rootVals[index];
207             SkDPoint pt = fQuad.ptAtT(quadT);
208             double lineT = (pt.fX - left) / (right - left);
209             if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
210                 fIntersections->insert(quadT, lineT, pt);
211             }
212         }
213         if (flipped) {
214             fIntersections->flip();
215         }
216         checkCoincident();
217         return fIntersections->used();
218     }
219 
220     bool uniqueAnswer(double quadT, const SkDPoint& pt) {
221         for (int inner = 0; inner < fIntersections->used(); ++inner) {
222             if (fIntersections->pt(inner) != pt) {
223                 continue;
224             }
225             double existingQuadT = (*fIntersections)[0][inner];
226             if (quadT == existingQuadT) {
227                 return false;
228             }
229             // check if midway on quad is also same point. If so, discard this
230             double quadMidT = (existingQuadT + quadT) / 2;
231             SkDPoint quadMidPt = fQuad.ptAtT(quadMidT);
232             if (quadMidPt.approximatelyEqual(pt)) {
233                 return false;
234             }
235         }
236 #if ONE_OFF_DEBUG
237         SkDPoint qPt = fQuad.ptAtT(quadT);
238         SkDebugf("%s pt=(%1.9g,%1.9g) cPt=(%1.9g,%1.9g)\n", __FUNCTION__, pt.fX, pt.fY,
239                 qPt.fX, qPt.fY);
240 #endif
241         return true;
242     }
243 
244     int verticalIntersect(double axisIntercept, double roots[2]) {
245         double D = fQuad[2].fX;  // f
246         double E = fQuad[1].fX;  // e
247         double F = fQuad[0].fX;  // d
248         D += F - 2 * E;         // D = d - 2*e + f
249         E -= F;                 // E = -(d - e)
250         F -= axisIntercept;
251         return SkDQuad::RootsValidT(D, 2 * E, F, roots);
252     }
253 
254     int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
255         addExactVerticalEndPoints(top, bottom, axisIntercept);
256         if (fAllowNear) {
257             addNearVerticalEndPoints(top, bottom, axisIntercept);
258         }
259         double rootVals[2];
260         int roots = verticalIntersect(axisIntercept, rootVals);
261         for (int index = 0; index < roots; ++index) {
262             double quadT = rootVals[index];
263             SkDPoint pt = fQuad.ptAtT(quadT);
264             double lineT = (pt.fY - top) / (bottom - top);
265             if (pinTs(&quadT, &lineT, &pt, kPointInitialized) && uniqueAnswer(quadT, pt)) {
266                 fIntersections->insert(quadT, lineT, pt);
267             }
268         }
269         if (flipped) {
270             fIntersections->flip();
271         }
272         checkCoincident();
273         return fIntersections->used();
274     }
275 
276 protected:
277     // add endpoints first to get zero and one t values exactly
278     void addExactEndPoints() {
279         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
280             double lineT = fLine->exactPoint(fQuad[qIndex]);
281             if (lineT < 0) {
282                 continue;
283             }
284             double quadT = (double) (qIndex >> 1);
285             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
286         }
287     }
288 
289     void addNearEndPoints() {
290         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
291             double quadT = (double) (qIndex >> 1);
292             if (fIntersections->hasT(quadT)) {
293                 continue;
294             }
295             double lineT = fLine->nearPoint(fQuad[qIndex], nullptr);
296             if (lineT < 0) {
297                 continue;
298             }
299             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
300         }
301         this->addLineNearEndPoints();
302     }
303 
304     void addLineNearEndPoints() {
305         for (int lIndex = 0; lIndex < 2; ++lIndex) {
306             double lineT = (double) lIndex;
307             if (fIntersections->hasOppT(lineT)) {
308                 continue;
309             }
310             double quadT = ((SkDCurve*) &fQuad)->nearPoint(SkPath::kQuad_Verb,
311                     (*fLine)[lIndex], (*fLine)[!lIndex]);
312             if (quadT < 0) {
313                 continue;
314             }
315             fIntersections->insert(quadT, lineT, (*fLine)[lIndex]);
316         }
317     }
318 
319     void addExactHorizontalEndPoints(double left, double right, double y) {
320         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
321             double lineT = SkDLine::ExactPointH(fQuad[qIndex], left, right, y);
322             if (lineT < 0) {
323                 continue;
324             }
325             double quadT = (double) (qIndex >> 1);
326             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
327         }
328     }
329 
330     void addNearHorizontalEndPoints(double left, double right, double y) {
331         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
332             double quadT = (double) (qIndex >> 1);
333             if (fIntersections->hasT(quadT)) {
334                 continue;
335             }
336             double lineT = SkDLine::NearPointH(fQuad[qIndex], left, right, y);
337             if (lineT < 0) {
338                 continue;
339             }
340             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
341         }
342         this->addLineNearEndPoints();
343     }
344 
345     void addExactVerticalEndPoints(double top, double bottom, double x) {
346         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
347             double lineT = SkDLine::ExactPointV(fQuad[qIndex], top, bottom, x);
348             if (lineT < 0) {
349                 continue;
350             }
351             double quadT = (double) (qIndex >> 1);
352             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
353         }
354     }
355 
356     void addNearVerticalEndPoints(double top, double bottom, double x) {
357         for (int qIndex = 0; qIndex < 3; qIndex += 2) {
358             double quadT = (double) (qIndex >> 1);
359             if (fIntersections->hasT(quadT)) {
360                 continue;
361             }
362             double lineT = SkDLine::NearPointV(fQuad[qIndex], top, bottom, x);
363             if (lineT < 0) {
364                 continue;
365             }
366             fIntersections->insert(quadT, lineT, fQuad[qIndex]);
367         }
368         this->addLineNearEndPoints();
369     }
370 
371     double findLineT(double t) {
372         SkDPoint xy = fQuad.ptAtT(t);
373         double dx = (*fLine)[1].fX - (*fLine)[0].fX;
374         double dy = (*fLine)[1].fY - (*fLine)[0].fY;
375         if (fabs(dx) > fabs(dy)) {
376             return (xy.fX - (*fLine)[0].fX) / dx;
377         }
378         return (xy.fY - (*fLine)[0].fY) / dy;
379     }
380 
381     bool pinTs(double* quadT, double* lineT, SkDPoint* pt, PinTPoint ptSet) {
382         if (!approximately_one_or_less_double(*lineT)) {
383             return false;
384         }
385         if (!approximately_zero_or_more_double(*lineT)) {
386             return false;
387         }
388         double qT = *quadT = SkPinT(*quadT);
389         double lT = *lineT = SkPinT(*lineT);
390         if (lT == 0 || lT == 1 || (ptSet == kPointUninitialized && qT != 0 && qT != 1)) {
391             *pt = (*fLine).ptAtT(lT);
392         } else if (ptSet == kPointUninitialized) {
393             *pt = fQuad.ptAtT(qT);
394         }
395         SkPoint gridPt = pt->asSkPoint();
396         if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[0].asSkPoint())) {
397             *pt = (*fLine)[0];
398             *lineT = 0;
399         } else if (SkDPoint::ApproximatelyEqual(gridPt, (*fLine)[1].asSkPoint())) {
400             *pt = (*fLine)[1];
401             *lineT = 1;
402         }
403         if (fIntersections->used() > 0 && approximately_equal((*fIntersections)[1][0], *lineT)) {
404             return false;
405         }
406         if (gridPt == fQuad[0].asSkPoint()) {
407             *pt = fQuad[0];
408             *quadT = 0;
409         } else if (gridPt == fQuad[2].asSkPoint()) {
410             *pt = fQuad[2];
411             *quadT = 1;
412         }
413         return true;
414     }
415 
416 private:
417     const SkDQuad& fQuad;
418     const SkDLine* fLine;
419     SkIntersections* fIntersections;
420     bool fAllowNear;
421 };
422 
423 int SkIntersections::horizontal(const SkDQuad& quad, double left, double right, double y,
424                                 bool flipped) {
425     SkDLine line = {{{ left, y }, { right, y }}};
426     LineQuadraticIntersections q(quad, line, this);
427     return q.horizontalIntersect(y, left, right, flipped);
428 }
429 
430 int SkIntersections::vertical(const SkDQuad& quad, double top, double bottom, double x,
431                               bool flipped) {
432     SkDLine line = {{{ x, top }, { x, bottom }}};
433     LineQuadraticIntersections q(quad, line, this);
434     return q.verticalIntersect(x, top, bottom, flipped);
435 }
436 
437 int SkIntersections::intersect(const SkDQuad& quad, const SkDLine& line) {
438     LineQuadraticIntersections q(quad, line, this);
439     q.allowNear(fAllowNear);
440     return q.intersect();
441 }
442 
443 int SkIntersections::intersectRay(const SkDQuad& quad, const SkDLine& line) {
444     LineQuadraticIntersections q(quad, line, this);
445     fUsed = q.intersectRay(fT[0]);
446     for (int index = 0; index < fUsed; ++index) {
447         fPt[index] = quad.ptAtT(fT[0][index]);
448     }
449     return fUsed;
450 }
451 
452 int SkIntersections::HorizontalIntercept(const SkDQuad& quad, SkScalar y, double* roots) {
453     LineQuadraticIntersections q(quad);
454     return q.horizontalIntersect(y, roots);
455 }
456 
457 int SkIntersections::VerticalIntercept(const SkDQuad& quad, SkScalar x, double* roots) {
458     LineQuadraticIntersections q(quad);
459     return q.verticalIntersect(x, roots);
460 }
461 
462 // SkDQuad accessors to Intersection utilities
463 
464 int SkDQuad::horizontalIntersect(double yIntercept, double roots[2]) const {
465     return SkIntersections::HorizontalIntercept(*this, yIntercept, roots);
466 }
467 
468 int SkDQuad::verticalIntersect(double xIntercept, double roots[2]) const {
469     return SkIntersections::VerticalIntercept(*this, xIntercept, roots);
470 }
471