1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkPathOpsCubic.h"
8 
9 static bool rotate(const SkDCubic& cubic, int zero, int index, SkDCubic& rotPath) {
10     double dy = cubic[index].fY - cubic[zero].fY;
11     double dx = cubic[index].fX - cubic[zero].fX;
12     if (approximately_zero(dy)) {
13         if (approximately_zero(dx)) {
14             return false;
15         }
16         rotPath = cubic;
17         if (dy) {
18             rotPath[index].fY = cubic[zero].fY;
19             int mask = other_two(index, zero);
20             int side1 = index ^ mask;
21             int side2 = zero ^ mask;
22             if (approximately_equal(cubic[side1].fY, cubic[zero].fY)) {
23                 rotPath[side1].fY = cubic[zero].fY;
24             }
25             if (approximately_equal(cubic[side2].fY, cubic[zero].fY)) {
26                 rotPath[side2].fY = cubic[zero].fY;
27             }
28         }
29         return true;
30     }
31     for (int index = 0; index < 4; ++index) {
32         rotPath[index].fX = cubic[index].fX * dx + cubic[index].fY * dy;
33         rotPath[index].fY = cubic[index].fY * dx - cubic[index].fX * dy;
34     }
35     return true;
36 }
37 
38 
39 // Returns 0 if negative, 1 if zero, 2 if positive
40 static int side(double x) {
41     return (x > 0) + (x >= 0);
42 }
43 
44 /* Given a cubic, find the convex hull described by the end and control points.
45    The hull may have 3 or 4 points. Cubics that degenerate into a point or line
46    are not considered.
47 
48    The hull is computed by assuming that three points, if unique and non-linear,
49    form a triangle. The fourth point may replace one of the first three, may be
50    discarded if in the triangle or on an edge, or may be inserted between any of
51    the three to form a convex quadralateral.
52 
53    The indices returned in order describe the convex hull.
54 */
55 int SkDCubic::convexHull(char order[4]) const {
56     size_t index;
57     // find top point
58     size_t yMin = 0;
59     for (index = 1; index < 4; ++index) {
60         if (fPts[yMin].fY > fPts[index].fY || (fPts[yMin].fY == fPts[index].fY
61                 && fPts[yMin].fX > fPts[index].fX)) {
62             yMin = index;
63         }
64     }
65     order[0] = yMin;
66     int midX = -1;
67     int backupYMin = -1;
68     for (int pass = 0; pass < 2; ++pass) {
69         for (index = 0; index < 4; ++index) {
70             if (index == yMin) {
71                 continue;
72             }
73             // rotate line from (yMin, index) to axis
74             // see if remaining two points are both above or below
75             // use this to find mid
76             int mask = other_two(yMin, index);
77             int side1 = yMin ^ mask;
78             int side2 = index ^ mask;
79             SkDCubic rotPath;
80             if (!rotate(*this, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[idx]
81                 order[1] = side1;
82                 order[2] = side2;
83                 return 3;
84             }
85             int sides = side(rotPath[side1].fY - rotPath[yMin].fY);
86             sides ^= side(rotPath[side2].fY - rotPath[yMin].fY);
87             if (sides == 2) { // '2' means one remaining point <0, one >0
88                 if (midX >= 0) {
89                     // one of the control points is equal to an end point
90                     order[0] = 0;
91                     order[1] = 3;
92                     if (fPts[1] == fPts[0] || fPts[1] == fPts[3]) {
93                         order[2] = 2;
94                         return 3;
95                     }
96                     if (fPts[2] == fPts[0] || fPts[2] == fPts[3]) {
97                         order[2] = 1;
98                         return 3;
99                     }
100                     // one of the control points may be very nearly but not exactly equal --
101                     double dist1_0 = fPts[1].distanceSquared(fPts[0]);
102                     double dist1_3 = fPts[1].distanceSquared(fPts[3]);
103                     double dist2_0 = fPts[2].distanceSquared(fPts[0]);
104                     double dist2_3 = fPts[2].distanceSquared(fPts[3]);
105                     double smallest1distSq = SkTMin(dist1_0, dist1_3);
106                     double smallest2distSq = SkTMin(dist2_0, dist2_3);
107                     if (approximately_zero(SkTMin(smallest1distSq, smallest2distSq))) {
108                         order[2] = smallest1distSq < smallest2distSq ? 2 : 1;
109                         return 3;
110                     }
111                 }
112                 midX = index;
113             } else if (sides == 0) { // '0' means both to one side or the other
114                 backupYMin = index;
115             }
116         }
117         if (midX >= 0) {
118             break;
119         }
120         if (backupYMin < 0) {
121             break;
122         }
123         yMin = backupYMin;
124         backupYMin = -1;
125     }
126     if (midX < 0) {
127         midX = yMin ^ 3; // choose any other point
128     }
129     int mask = other_two(yMin, midX);
130     int least = yMin ^ mask;
131     int most = midX ^ mask;
132     order[0] = yMin;
133     order[1] = least;
134 
135     // see if mid value is on same side of line (least, most) as yMin
136     SkDCubic midPath;
137     if (!rotate(*this, least, most, midPath)) { // ! if cbc[least]==cbc[most]
138         order[2] = midX;
139         return 3;
140     }
141     int midSides = side(midPath[yMin].fY - midPath[least].fY);
142     midSides ^= side(midPath[midX].fY - midPath[least].fY);
143     if (midSides != 2) {  // if mid point is not between
144         order[2] = most;
145         return 3; // result is a triangle
146     }
147     order[2] = midX;
148     order[3] = most;
149     return 4; // result is a quadralateral
150 }
151