1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkGeometry.h"
8 #include "SkReduceOrder.h"
9 
10 int SkReduceOrder::reduce(const SkDLine& line) {
11     fLine[0] = line[0];
12     int different = line[0] != line[1];
13     fLine[1] = line[different];
14     return 1 + different;
15 }
16 
17 static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) {
18     reduction[0] = reduction[1] = quad[0];
19     return 1;
20 }
21 
22 static int reductionLineCount(const SkDQuad& reduction) {
23     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
24 }
25 
26 static int vertical_line(const SkDQuad& quad, SkDQuad& reduction) {
27     reduction[0] = quad[0];
28     reduction[1] = quad[2];
29     return reductionLineCount(reduction);
30 }
31 
32 static int horizontal_line(const SkDQuad& quad, SkDQuad& reduction) {
33     reduction[0] = quad[0];
34     reduction[1] = quad[2];
35     return reductionLineCount(reduction);
36 }
37 
38 static int check_linear(const SkDQuad& quad,
39         int minX, int maxX, int minY, int maxY, SkDQuad& reduction) {
40     if (!quad.isLinear(0, 2)) {
41         return 0;
42     }
43     // four are colinear: return line formed by outside
44     reduction[0] = quad[0];
45     reduction[1] = quad[2];
46     return reductionLineCount(reduction);
47 }
48 
49 // reduce to a quadratic or smaller
50 // look for identical points
51 // look for all four points in a line
52     // note that three points in a line doesn't simplify a cubic
53 // look for approximation with single quadratic
54     // save approximation with multiple quadratics for later
55 int SkReduceOrder::reduce(const SkDQuad& quad) {
56     int index, minX, maxX, minY, maxY;
57     int minXSet, minYSet;
58     minX = maxX = minY = maxY = 0;
59     minXSet = minYSet = 0;
60     for (index = 1; index < 3; ++index) {
61         if (quad[minX].fX > quad[index].fX) {
62             minX = index;
63         }
64         if (quad[minY].fY > quad[index].fY) {
65             minY = index;
66         }
67         if (quad[maxX].fX < quad[index].fX) {
68             maxX = index;
69         }
70         if (quad[maxY].fY < quad[index].fY) {
71             maxY = index;
72         }
73     }
74     for (index = 0; index < 3; ++index) {
75         if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) {
76             minXSet |= 1 << index;
77         }
78         if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) {
79             minYSet |= 1 << index;
80         }
81     }
82     if ((minXSet & 0x05) == 0x5 && (minYSet & 0x05) == 0x5) { // test for degenerate
83         // this quad starts and ends at the same place, so never contributes
84         // to the fill
85         return coincident_line(quad, fQuad);
86     }
87     if (minXSet == 0x7) {  // test for vertical line
88         return vertical_line(quad, fQuad);
89     }
90     if (minYSet == 0x7) {  // test for horizontal line
91         return horizontal_line(quad, fQuad);
92     }
93     int result = check_linear(quad, minX, maxX, minY, maxY, fQuad);
94     if (result) {
95         return result;
96     }
97     fQuad = quad;
98     return 3;
99 }
100 
101 ////////////////////////////////////////////////////////////////////////////////////
102 
103 static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) {
104     reduction[0] = reduction[1] = cubic[0];
105     return 1;
106 }
107 
108 static int reductionLineCount(const SkDCubic& reduction) {
109     return 1 + !reduction[0].approximatelyEqual(reduction[1]);
110 }
111 
112 static int vertical_line(const SkDCubic& cubic, SkDCubic& reduction) {
113     reduction[0] = cubic[0];
114     reduction[1] = cubic[3];
115     return reductionLineCount(reduction);
116 }
117 
118 static int horizontal_line(const SkDCubic& cubic, SkDCubic& reduction) {
119     reduction[0] = cubic[0];
120     reduction[1] = cubic[3];
121     return reductionLineCount(reduction);
122 }
123 
124 // check to see if it is a quadratic or a line
125 static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) {
126     double dx10 = cubic[1].fX - cubic[0].fX;
127     double dx23 = cubic[2].fX - cubic[3].fX;
128     double midX = cubic[0].fX + dx10 * 3 / 2;
129     double sideAx = midX - cubic[3].fX;
130     double sideBx = dx23 * 3 / 2;
131     if (approximately_zero(sideAx) ? !approximately_equal(sideAx, sideBx)
132             : !AlmostEqualUlps_Pin(sideAx, sideBx)) {
133         return 0;
134     }
135     double dy10 = cubic[1].fY - cubic[0].fY;
136     double dy23 = cubic[2].fY - cubic[3].fY;
137     double midY = cubic[0].fY + dy10 * 3 / 2;
138     double sideAy = midY - cubic[3].fY;
139     double sideBy = dy23 * 3 / 2;
140     if (approximately_zero(sideAy) ? !approximately_equal(sideAy, sideBy)
141             : !AlmostEqualUlps_Pin(sideAy, sideBy)) {
142         return 0;
143     }
144     reduction[0] = cubic[0];
145     reduction[1].fX = midX;
146     reduction[1].fY = midY;
147     reduction[2] = cubic[3];
148     return 3;
149 }
150 
151 static int check_linear(const SkDCubic& cubic,
152         int minX, int maxX, int minY, int maxY, SkDCubic& reduction) {
153     if (!cubic.isLinear(0, 3)) {
154         return 0;
155     }
156     // four are colinear: return line formed by outside
157     reduction[0] = cubic[0];
158     reduction[1] = cubic[3];
159     return reductionLineCount(reduction);
160 }
161 
162 /* food for thought:
163 http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
164 
165 Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
166 corresponding quadratic Bezier are (given in convex combinations of
167 points):
168 
169 q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
170 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
171 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
172 
173 Of course, this curve does not interpolate the end-points, but it would
174 be interesting to see the behaviour of such a curve in an applet.
175 
176 --
177 Kalle Rutanen
178 http://kaba.hilvi.org
179 
180 */
181 
182 // reduce to a quadratic or smaller
183 // look for identical points
184 // look for all four points in a line
185     // note that three points in a line doesn't simplify a cubic
186 // look for approximation with single quadratic
187     // save approximation with multiple quadratics for later
188 int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics) {
189     int index, minX, maxX, minY, maxY;
190     int minXSet, minYSet;
191     minX = maxX = minY = maxY = 0;
192     minXSet = minYSet = 0;
193     for (index = 1; index < 4; ++index) {
194         if (cubic[minX].fX > cubic[index].fX) {
195             minX = index;
196         }
197         if (cubic[minY].fY > cubic[index].fY) {
198             minY = index;
199         }
200         if (cubic[maxX].fX < cubic[index].fX) {
201             maxX = index;
202         }
203         if (cubic[maxY].fY < cubic[index].fY) {
204             maxY = index;
205         }
206     }
207     for (index = 0; index < 4; ++index) {
208         double cx = cubic[index].fX;
209         double cy = cubic[index].fY;
210         double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
211                 SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY))));
212         if (denom == 0) {
213             minXSet |= 1 << index;
214             minYSet |= 1 << index;
215             continue;
216         }
217         double inv = 1 / denom;
218         if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) {
219             minXSet |= 1 << index;
220         }
221         if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) {
222             minYSet |= 1 << index;
223         }
224     }
225     if (minXSet == 0xF) {  // test for vertical line
226         if (minYSet == 0xF) {  // return 1 if all four are coincident
227             return coincident_line(cubic, fCubic);
228         }
229         return vertical_line(cubic, fCubic);
230     }
231     if (minYSet == 0xF) {  // test for horizontal line
232         return horizontal_line(cubic, fCubic);
233     }
234     int result = check_linear(cubic, minX, maxX, minY, maxY, fCubic);
235     if (result) {
236         return result;
237     }
238     if (allowQuadratics == SkReduceOrder::kAllow_Quadratics
239             && (result = check_quadratic(cubic, fCubic))) {
240         return result;
241     }
242     fCubic = cubic;
243     return 4;
244 }
245 
246 SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkPoint* reducePts) {
247     SkDQuad quad;
248     quad.set(a);
249     SkReduceOrder reducer;
250     int order = reducer.reduce(quad);
251     if (order == 2) {  // quad became line
252         for (int index = 0; index < order; ++index) {
253             *reducePts++ = reducer.fLine[index].asSkPoint();
254         }
255     }
256     return SkPathOpsPointsToVerb(order - 1);
257 }
258 
259 SkPath::Verb SkReduceOrder::Conic(const SkConic& c, SkPoint* reducePts) {
260     SkPath::Verb verb = SkReduceOrder::Quad(c.fPts, reducePts);
261     if (verb > SkPath::kLine_Verb && c.fW == 1) {
262         return SkPath::kQuad_Verb;
263     }
264     return verb == SkPath::kQuad_Verb ? SkPath::kConic_Verb : verb;
265 }
266 
267 SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkPoint* reducePts) {
268     if (SkDPoint::ApproximatelyEqual(a[0], a[1]) && SkDPoint::ApproximatelyEqual(a[0], a[2])
269             && SkDPoint::ApproximatelyEqual(a[0], a[3])) {
270         reducePts[0] = a[0];
271         return SkPath::kMove_Verb;
272     }
273     SkDCubic cubic;
274     cubic.set(a);
275     SkReduceOrder reducer;
276     int order = reducer.reduce(cubic, kAllow_Quadratics);
277     if (order == 2 || order == 3) {  // cubic became line or quad
278         for (int index = 0; index < order; ++index) {
279             *reducePts++ = reducer.fQuad[index].asSkPoint();
280         }
281     }
282     return SkPathOpsPointsToVerb(order - 1);
283 }
284