1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "NFAtoDFA.h"
9 #include "RegexParser.h"
10 
11 #include <fstream>
12 #include <sstream>
13 #include <string>
14 
15 /**
16  * Processes a .lex file and produces .h and .cpp files which implement a lexical analyzer. The .lex
17  * file is a text file with one token definition per line. Each line is of the form:
18  * <TOKEN_NAME> = <pattern>
19  * where <pattern> is either a regular expression (e.g [0-9]) or a double-quoted literal string.
20  */
21 
22 static constexpr const char* HEADER =
23     "/*\n"
24     " * Copyright 2017 Google Inc.\n"
25     " *\n"
26     " * Use of this source code is governed by a BSD-style license that can be\n"
27     " * found in the LICENSE file.\n"
28     " */\n"
29     "/*****************************************************************************************\n"
30     " ******************** This file was generated by sksllex. Do not edit. *******************\n"
31     " *****************************************************************************************/\n";
32 
33 void writeH(const DFA& dfa, const char* lexer, const char* token,
34             const std::vector<std::string>& tokens, const char* hPath) {
35     std::ofstream out(hPath);
36     SkASSERT(out.good());
37     out << HEADER;
38     out << "#ifndef SKSL_" << lexer << "\n";
39     out << "#define SKSL_" << lexer << "\n";
40     out << "#include <cstddef>\n";
41     out << "#include <cstdint>\n";
42     out << "namespace SkSL {\n";
43     out << "\n";
44     out << "struct " << token << " {\n";
45     out << "    enum Kind {\n";
46     for (const std::string& t : tokens) {
47         out << "        #undef " << t << "\n";
48         out << "        " << t << ",\n";
49     }
50     out << "    };\n";
51     out << "\n";
52     out << "    " << token << "()\n";
53     out << "    : fKind(Kind::INVALID)\n";
54     out << "    , fOffset(-1)\n";
55     out << "    , fLength(-1) {}\n";
56     out << "\n";
57     out << "    " << token << "(Kind kind, int32_t offset, int32_t length)\n";
58     out << "    : fKind(kind)\n";
59     out << "    , fOffset(offset)\n";
60     out << "    , fLength(length) {}\n";
61     out << "\n";
62     out << "    Kind fKind;\n";
63     out << "    int fOffset;\n";
64     out << "    int fLength;\n";
65     out << "};\n";
66     out << "\n";
67     out << "class " << lexer << " {\n";
68     out << "public:\n";
69     out << "    void start(const char* text, int32_t length) {\n";
70     out << "        fText = text;\n";
71     out << "        fLength = length;\n";
72     out << "        fOffset = 0;\n";
73     out << "    }\n";
74     out << "\n";
75     out << "    " << token << " next();\n";
76     out << "\n";
77     out << "private:\n";
78     out << "    const char* fText;\n";
79     out << "    int32_t fLength;\n";
80     out << "    int32_t fOffset;\n";
81     out << "};\n";
82     out << "\n";
83     out << "} // namespace\n";
84     out << "#endif\n";
85 }
86 
87 void writeCPP(const DFA& dfa, const char* lexer, const char* token, const char* include,
88               const char* cppPath) {
89     std::ofstream out(cppPath);
90     SkASSERT(out.good());
91     out << HEADER;
92     out << "#include \"" << include << "\"\n";
93     out << "\n";
94     out << "namespace SkSL {\n";
95     out << "\n";
96 
97     size_t states = 0;
98     for (const auto& row : dfa.fTransitions) {
99         states = std::max(states, row.size());
100     }
101     out << "static int8_t mappings[" << dfa.fCharMappings.size() << "] = {\n    ";
102     const char* separator = "";
103     for (int m : dfa.fCharMappings) {
104         out << separator << std::to_string(m);
105         separator = ", ";
106     }
107     out << "\n};\n";
108     out << "static int16_t transitions[" << dfa.fTransitions.size() << "][" << states << "] = {\n";
109     for (size_t c = 0; c < dfa.fTransitions.size(); ++c) {
110         out << "    {";
111         for (size_t j = 0; j < states; ++j) {
112             if ((size_t) c < dfa.fTransitions.size() && j < dfa.fTransitions[c].size()) {
113                 out << " " << dfa.fTransitions[c][j] << ",";
114             } else {
115                 out << " 0,";
116             }
117         }
118         out << " },\n";
119     }
120     out << "};\n";
121     out << "\n";
122 
123     out << "static int8_t accepts[" << states << "] = {";
124     for (size_t i = 0; i < states; ++i) {
125         if (i < dfa.fAccepts.size()) {
126             out << " " << dfa.fAccepts[i] << ",";
127         } else {
128             out << " " << INVALID << ",";
129         }
130     }
131     out << " };\n";
132     out << "\n";
133 
134     out << token << " " << lexer << "::next() {\n";
135     out << "    // note that we cheat here: normally a lexer needs to worry about the case\n";
136     out << "    // where a token has a prefix which is not itself a valid token - for instance, \n";
137     out << "    // maybe we have a valid token 'while', but 'w', 'wh', etc. are not valid\n";
138     out << "    // tokens. Our grammar doesn't have this property, so we can simplify the logic\n";
139     out << "    // a bit.\n";
140     out << "    int32_t startOffset = fOffset;\n";
141     out << "    if (startOffset == fLength) {\n";
142     out << "        return " << token << "(" << token << "::END_OF_FILE, startOffset, 0);\n";
143     out << "    }\n";
144     out << "    int16_t state = 1;\n";
145     out << "    while (fOffset < fLength) {\n";
146     out << "        if ((uint8_t) fText[fOffset] >= " << dfa.fCharMappings.size() << ") {";
147     out << "            ++fOffset;\n";
148     out << "            break;";
149     out << "        }";
150     out << "        int16_t newState = transitions[mappings[(int) fText[fOffset]]][state];\n";
151     out << "        if (!newState) {\n";
152     out << "            break;\n";
153     out << "        }\n";
154     out << "        state = newState;";
155     out << "        ++fOffset;\n";
156     out << "    }\n";
157     out << "    Token::Kind kind = (" << token << "::Kind) accepts[state];\n";
158     out << "    return " << token << "(kind, startOffset, fOffset - startOffset);\n";
159     out << "}\n";
160     out << "\n";
161     out << "} // namespace\n";
162 }
163 
164 void process(const char* inPath, const char* lexer, const char* token, const char* hPath,
165              const char* cppPath) {
166     NFA nfa;
167     std::vector<std::string> tokens;
168     tokens.push_back("END_OF_FILE");
169     std::string line;
170     std::ifstream in(inPath);
171     while (std::getline(in, line)) {
172         std::istringstream split(line);
173         std::string name, delimiter, pattern;
174         if (split >> name >> delimiter >> pattern) {
175             SkASSERT(split.eof());
176             SkASSERT(name != "");
177             SkASSERT(delimiter == "=");
178             SkASSERT(pattern != "");
179             tokens.push_back(name);
180             if (pattern[0] == '"') {
181                 SkASSERT(pattern.size() > 2 && pattern[pattern.size() - 1] == '"');
182                 RegexNode node = RegexNode(RegexNode::kChar_Kind, pattern[1]);
183                 for (size_t i = 2; i < pattern.size() - 1; ++i) {
184                     node = RegexNode(RegexNode::kConcat_Kind, node,
185                                      RegexNode(RegexNode::kChar_Kind, pattern[i]));
186                 }
187                 nfa.addRegex(node);
188             }
189             else {
190                 nfa.addRegex(RegexParser().parse(pattern));
191             }
192         }
193     }
194     NFAtoDFA converter(&nfa);
195     DFA dfa = converter.convert();
196     writeH(dfa, lexer, token, tokens, hPath);
197     writeCPP(dfa, lexer, token, (std::string("SkSL") + lexer + ".h").c_str(), cppPath);
198 }
199 
200 int main(int argc, const char** argv) {
201     if (argc != 6) {
202         printf("usage: sksllex <input.lex> <lexername> <tokenname> <output.h> <output.cpp>\n");
203         exit(1);
204     }
205     process(argv[1], argv[2], argv[3], argv[4], argv[5]);
206     return 0;
207 }
208