1 /* bzcat.c - bzip2 decompression 2 * 3 * Copyright 2003, 2007 Rob Landley <rob@landley.net> 4 * 5 * Based on a close reading (but not the actual code) of the original bzip2 6 * decompression code by Julian R Seward (jseward@acm.org), which also 7 * acknowledges contributions by Mike Burrows, David Wheeler, Peter Fenwick, 8 * Alistair Moffat, Radford Neal, Ian H. Witten, Robert Sedgewick, and 9 * Jon L. Bentley. 10 * 11 * No standard. 12 13 14 USE_BZCAT(NEWTOY(bzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN)) 15 USE_BUNZIP2(NEWTOY(bunzip2, "cftkv", TOYFLAG_USR|TOYFLAG_BIN)) 16 17 config BUNZIP2 18 bool "bunzip2" 19 default y 20 help 21 usage: bunzip2 [-cftkv] [FILE...] 22 23 Decompress listed files (file.bz becomes file) deleting archive file(s). 24 Read from stdin if no files listed. 25 26 -c Force output to stdout 27 -f Force decompression (if FILE doesn't end in .bz, replace original) 28 -k Keep input files (-c and -t imply this) 29 -t Test integrity 30 -v Verbose 31 32 config BZCAT 33 bool "bzcat" 34 default y 35 help 36 usage: bzcat [FILE...] 37 38 Decompress listed files to stdout. Use stdin if no files listed. 39 */ 40 41 #define FOR_bunzip2 42 #include "toys.h" 43 44 #define THREADS 1 45 46 // Constants for huffman coding 47 #define MAX_GROUPS 6 48 #define GROUP_SIZE 50 /* 64 would have been more efficient */ 49 #define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */ 50 #define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */ 51 #define SYMBOL_RUNA 0 52 #define SYMBOL_RUNB 1 53 54 // Other housekeeping constants 55 #define IOBUF_SIZE 4096 56 57 // Status return values 58 #define RETVAL_LAST_BLOCK (-100) 59 #define RETVAL_NOT_BZIP_DATA (-1) 60 #define RETVAL_DATA_ERROR (-2) 61 #define RETVAL_OBSOLETE_INPUT (-3) 62 63 // This is what we know about each huffman coding group 64 struct group_data { 65 int limit[MAX_HUFCODE_BITS+1], base[MAX_HUFCODE_BITS], permute[MAX_SYMBOLS]; 66 char minLen, maxLen; 67 }; 68 69 // Data for burrows wheeler transform 70 71 struct bwdata { 72 unsigned int origPtr; 73 int byteCount[256]; 74 // State saved when interrupting output 75 int writePos, writeRun, writeCount, writeCurrent; 76 unsigned int dataCRC, headerCRC; 77 unsigned int *dbuf; 78 }; 79 80 // Structure holding all the housekeeping data, including IO buffers and 81 // memory that persists between calls to bunzip 82 struct bunzip_data { 83 // Input stream, input buffer, input bit buffer 84 int in_fd, inbufCount, inbufPos; 85 char *inbuf; 86 unsigned int inbufBitCount, inbufBits; 87 88 // Output buffer 89 char outbuf[IOBUF_SIZE]; 90 int outbufPos; 91 92 unsigned int totalCRC; 93 94 // First pass decompression data (Huffman and MTF decoding) 95 char selectors[32768]; // nSelectors=15 bits 96 struct group_data groups[MAX_GROUPS]; // huffman coding tables 97 int symTotal, groupCount, nSelectors; 98 unsigned char symToByte[256], mtfSymbol[256]; 99 100 // The CRC values stored in the block header and calculated from the data 101 unsigned int crc32Table[256]; 102 103 // Second pass decompression data (burrows-wheeler transform) 104 unsigned int dbufSize; 105 struct bwdata bwdata[THREADS]; 106 }; 107 108 // Return the next nnn bits of input. All reads from the compressed input 109 // are done through this function. All reads are big endian. 110 static unsigned int get_bits(struct bunzip_data *bd, char bits_wanted) 111 { 112 unsigned int bits = 0; 113 114 // If we need to get more data from the byte buffer, do so. (Loop getting 115 // one byte at a time to enforce endianness and avoid unaligned access.) 116 while (bd->inbufBitCount < bits_wanted) { 117 118 // If we need to read more data from file into byte buffer, do so 119 if (bd->inbufPos == bd->inbufCount) { 120 if (0 >= (bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE))) 121 error_exit("input EOF"); 122 bd->inbufPos = 0; 123 } 124 125 // Avoid 32-bit overflow (dump bit buffer to top of output) 126 if (bd->inbufBitCount>=24) { 127 bits = bd->inbufBits&((1<<bd->inbufBitCount)-1); 128 bits_wanted -= bd->inbufBitCount; 129 bits <<= bits_wanted; 130 bd->inbufBitCount = 0; 131 } 132 133 // Grab next 8 bits of input from buffer. 134 bd->inbufBits = (bd->inbufBits<<8) | bd->inbuf[bd->inbufPos++]; 135 bd->inbufBitCount += 8; 136 } 137 138 // Calculate result 139 bd->inbufBitCount -= bits_wanted; 140 bits |= (bd->inbufBits>>bd->inbufBitCount) & ((1<<bits_wanted)-1); 141 142 return bits; 143 } 144 145 /* Read block header at start of a new compressed data block. Consists of: 146 * 147 * 48 bits : Block signature, either pi (data block) or e (EOF block). 148 * 32 bits : bw->headerCRC 149 * 1 bit : obsolete feature flag. 150 * 24 bits : origPtr (Burrows-wheeler unwind index, only 20 bits ever used) 151 * 16 bits : Mapping table index. 152 *[16 bits]: symToByte[symTotal] (Mapping table. For each bit set in mapping 153 * table index above, read another 16 bits of mapping table data. 154 * If correspondig bit is unset, all bits in that mapping table 155 * section are 0.) 156 * 3 bits : groupCount (how many huffman tables used to encode, anywhere 157 * from 2 to MAX_GROUPS) 158 * variable: hufGroup[groupCount] (MTF encoded huffman table data.) 159 */ 160 161 static int read_block_header(struct bunzip_data *bd, struct bwdata *bw) 162 { 163 struct group_data *hufGroup; 164 int hh, ii, jj, kk, symCount, *base, *limit; 165 unsigned char uc; 166 167 // Read in header signature and CRC (which is stored big endian) 168 ii = get_bits(bd, 24); 169 jj = get_bits(bd, 24); 170 bw->headerCRC = get_bits(bd,32); 171 172 // Is this the EOF block with CRC for whole file? (Constant is "e") 173 if (ii==0x177245 && jj==0x385090) return RETVAL_LAST_BLOCK; 174 175 // Is this a valid data block? (Constant is "pi".) 176 if (ii!=0x314159 || jj!=0x265359) return RETVAL_NOT_BZIP_DATA; 177 178 // We can add support for blockRandomised if anybody complains. 179 if (get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT; 180 if ((bw->origPtr = get_bits(bd,24)) > bd->dbufSize) return RETVAL_DATA_ERROR; 181 182 // mapping table: if some byte values are never used (encoding things 183 // like ascii text), the compression code removes the gaps to have fewer 184 // symbols to deal with, and writes a sparse bitfield indicating which 185 // values were present. We make a translation table to convert the symbols 186 // back to the corresponding bytes. 187 hh = get_bits(bd, 16); 188 bd->symTotal = 0; 189 for (ii=0; ii<16; ii++) { 190 if (hh & (1 << (15 - ii))) { 191 kk = get_bits(bd, 16); 192 for (jj=0; jj<16; jj++) 193 if (kk & (1 << (15 - jj))) 194 bd->symToByte[bd->symTotal++] = (16 * ii) + jj; 195 } 196 } 197 198 // How many different huffman coding groups does this block use? 199 bd->groupCount = get_bits(bd,3); 200 if (bd->groupCount<2 || bd->groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR; 201 202 // nSelectors: Every GROUP_SIZE many symbols we switch huffman coding 203 // tables. Each group has a selector, which is an index into the huffman 204 // coding table arrays. 205 // 206 // Read in the group selector array, which is stored as MTF encoded 207 // bit runs. (MTF = Move To Front. Every time a symbol occurs it's moved 208 // to the front of the table, so it has a shorter encoding next time.) 209 if (!(bd->nSelectors = get_bits(bd, 15))) return RETVAL_DATA_ERROR; 210 for (ii=0; ii<bd->groupCount; ii++) bd->mtfSymbol[ii] = ii; 211 for (ii=0; ii<bd->nSelectors; ii++) { 212 213 // Get next value 214 for(jj=0;get_bits(bd,1);jj++) 215 if (jj>=bd->groupCount) return RETVAL_DATA_ERROR; 216 217 // Decode MTF to get the next selector, and move it to the front. 218 uc = bd->mtfSymbol[jj]; 219 memmove(bd->mtfSymbol+1, bd->mtfSymbol, jj); 220 bd->mtfSymbol[0] = bd->selectors[ii] = uc; 221 } 222 223 // Read the huffman coding tables for each group, which code for symTotal 224 // literal symbols, plus two run symbols (RUNA, RUNB) 225 symCount = bd->symTotal+2; 226 for (jj=0; jj<bd->groupCount; jj++) { 227 unsigned char length[MAX_SYMBOLS]; 228 unsigned temp[MAX_HUFCODE_BITS+1]; 229 int minLen, maxLen, pp; 230 231 // Read lengths 232 hh = get_bits(bd, 5); 233 for (ii = 0; ii < symCount; ii++) { 234 for(;;) { 235 // !hh || hh > MAX_HUFCODE_BITS in one test. 236 if (MAX_HUFCODE_BITS-1 < (unsigned)hh-1) return RETVAL_DATA_ERROR; 237 // Grab 2 bits instead of 1 (slightly smaller/faster). Stop if 238 // first bit is 0, otherwise second bit says whether to 239 // increment or decrement. 240 kk = get_bits(bd, 2); 241 if (kk & 2) hh += 1 - ((kk&1)<<1); 242 else { 243 bd->inbufBitCount++; 244 break; 245 } 246 } 247 length[ii] = hh; 248 } 249 250 // Find largest and smallest lengths in this group 251 minLen = maxLen = length[0]; 252 for (ii = 1; ii < symCount; ii++) { 253 if(length[ii] > maxLen) maxLen = length[ii]; 254 else if(length[ii] < minLen) minLen = length[ii]; 255 } 256 257 /* Calculate permute[], base[], and limit[] tables from length[]. 258 * 259 * permute[] is the lookup table for converting huffman coded symbols 260 * into decoded symbols. It contains symbol values sorted by length. 261 * 262 * base[] is the amount to subtract from the value of a huffman symbol 263 * of a given length when using permute[]. 264 * 265 * limit[] indicates the largest numerical value a symbol with a given 266 * number of bits can have. It lets us know when to stop reading. 267 * 268 * To use these, keep reading bits until value <= limit[bitcount] or 269 * you've read over 20 bits (error). Then the decoded symbol 270 * equals permute[hufcode_value - base[hufcode_bitcount]]. 271 */ 272 hufGroup = bd->groups+jj; 273 hufGroup->minLen = minLen; 274 hufGroup->maxLen = maxLen; 275 276 // Note that minLen can't be smaller than 1, so we adjust the base 277 // and limit array pointers so we're not always wasting the first 278 // entry. We do this again when using them (during symbol decoding). 279 base = hufGroup->base-1; 280 limit = hufGroup->limit-1; 281 282 // zero temp[] and limit[], and calculate permute[] 283 pp = 0; 284 for (ii = minLen; ii <= maxLen; ii++) { 285 temp[ii] = limit[ii] = 0; 286 for (hh = 0; hh < symCount; hh++) 287 if (length[hh] == ii) hufGroup->permute[pp++] = hh; 288 } 289 290 // Count symbols coded for at each bit length 291 for (ii = 0; ii < symCount; ii++) temp[length[ii]]++; 292 293 /* Calculate limit[] (the largest symbol-coding value at each bit 294 * length, which is (previous limit<<1)+symbols at this level), and 295 * base[] (number of symbols to ignore at each bit length, which is 296 * limit minus the cumulative count of symbols coded for already). */ 297 pp = hh = 0; 298 for (ii = minLen; ii < maxLen; ii++) { 299 pp += temp[ii]; 300 limit[ii] = pp-1; 301 pp <<= 1; 302 base[ii+1] = pp-(hh+=temp[ii]); 303 } 304 limit[maxLen] = pp+temp[maxLen]-1; 305 limit[maxLen+1] = INT_MAX; 306 base[minLen] = 0; 307 } 308 309 return 0; 310 } 311 312 /* First pass, read block's symbols into dbuf[dbufCount]. 313 * 314 * This undoes three types of compression: huffman coding, run length encoding, 315 * and move to front encoding. We have to undo all those to know when we've 316 * read enough input. 317 */ 318 319 static int read_huffman_data(struct bunzip_data *bd, struct bwdata *bw) 320 { 321 struct group_data *hufGroup; 322 int ii, jj, kk, runPos, dbufCount, symCount, selector, nextSym, 323 *byteCount, *base, *limit; 324 unsigned hh, *dbuf = bw->dbuf; 325 unsigned char uc; 326 327 // We've finished reading and digesting the block header. Now read this 328 // block's huffman coded symbols from the file and undo the huffman coding 329 // and run length encoding, saving the result into dbuf[dbufCount++] = uc 330 331 // Initialize symbol occurrence counters and symbol mtf table 332 byteCount = bw->byteCount; 333 for(ii=0; ii<256; ii++) { 334 byteCount[ii] = 0; 335 bd->mtfSymbol[ii] = ii; 336 } 337 338 // Loop through compressed symbols. This is the first "tight inner loop" 339 // that needs to be micro-optimized for speed. (This one fills out dbuf[] 340 // linearly, staying in cache more, so isn't as limited by DRAM access.) 341 runPos = dbufCount = symCount = selector = 0; 342 // Some unnecessary initializations to shut gcc up. 343 base = limit = 0; 344 hufGroup = 0; 345 hh = 0; 346 347 for (;;) { 348 // Have we reached the end of this huffman group? 349 if (!(symCount--)) { 350 // Determine which huffman coding group to use. 351 symCount = GROUP_SIZE-1; 352 if (selector >= bd->nSelectors) return RETVAL_DATA_ERROR; 353 hufGroup = bd->groups + bd->selectors[selector++]; 354 base = hufGroup->base-1; 355 limit = hufGroup->limit-1; 356 } 357 358 // Read next huffman-coded symbol (into jj). 359 ii = hufGroup->minLen; 360 jj = get_bits(bd, ii); 361 while (jj > limit[ii]) { 362 // if (ii > hufGroup->maxLen) return RETVAL_DATA_ERROR; 363 ii++; 364 365 // Unroll get_bits() to avoid a function call when the data's in 366 // the buffer already. 367 kk = bd->inbufBitCount 368 ? (bd->inbufBits >> --(bd->inbufBitCount)) & 1 : get_bits(bd, 1); 369 jj = (jj << 1) | kk; 370 } 371 // Huffman decode jj into nextSym (with bounds checking) 372 jj-=base[ii]; 373 374 if (ii > hufGroup->maxLen || (unsigned)jj >= MAX_SYMBOLS) 375 return RETVAL_DATA_ERROR; 376 nextSym = hufGroup->permute[jj]; 377 378 // If this is a repeated run, loop collecting data 379 if ((unsigned)nextSym <= SYMBOL_RUNB) { 380 // If this is the start of a new run, zero out counter 381 if(!runPos) { 382 runPos = 1; 383 hh = 0; 384 } 385 386 /* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at 387 each bit position, add 1 or 2 instead. For example, 388 1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2. 389 You can make any bit pattern that way using 1 less symbol than 390 the basic or 0/1 method (except all bits 0, which would use no 391 symbols, but a run of length 0 doesn't mean anything in this 392 context). Thus space is saved. */ 393 hh += (runPos << nextSym); // +runPos if RUNA; +2*runPos if RUNB 394 runPos <<= 1; 395 continue; 396 } 397 398 /* When we hit the first non-run symbol after a run, we now know 399 how many times to repeat the last literal, so append that many 400 copies to our buffer of decoded symbols (dbuf) now. (The last 401 literal used is the one at the head of the mtfSymbol array.) */ 402 if (runPos) { 403 runPos = 0; 404 // Check for integer overflow 405 if (hh>bd->dbufSize || dbufCount+hh>bd->dbufSize) 406 return RETVAL_DATA_ERROR; 407 408 uc = bd->symToByte[bd->mtfSymbol[0]]; 409 byteCount[uc] += hh; 410 while (hh--) dbuf[dbufCount++] = uc; 411 } 412 413 // Is this the terminating symbol? 414 if (nextSym>bd->symTotal) break; 415 416 /* At this point, the symbol we just decoded indicates a new literal 417 character. Subtract one to get the position in the MTF array 418 at which this literal is currently to be found. (Note that the 419 result can't be -1 or 0, because 0 and 1 are RUNA and RUNB. 420 Another instance of the first symbol in the mtf array, position 0, 421 would have been handled as part of a run.) */ 422 if (dbufCount>=bd->dbufSize) return RETVAL_DATA_ERROR; 423 ii = nextSym - 1; 424 uc = bd->mtfSymbol[ii]; 425 // On my laptop, unrolling this memmove() into a loop shaves 3.5% off 426 // the total running time. 427 while(ii--) bd->mtfSymbol[ii+1] = bd->mtfSymbol[ii]; 428 bd->mtfSymbol[0] = uc; 429 uc = bd->symToByte[uc]; 430 431 // We have our literal byte. Save it into dbuf. 432 byteCount[uc]++; 433 dbuf[dbufCount++] = (unsigned int)uc; 434 } 435 436 // Now we know what dbufCount is, do a better sanity check on origPtr. 437 if (bw->origPtr >= (bw->writeCount = dbufCount)) return RETVAL_DATA_ERROR; 438 439 return 0; 440 } 441 442 // Flush output buffer to disk 443 static void flush_bunzip_outbuf(struct bunzip_data *bd, int out_fd) 444 { 445 if (bd->outbufPos) { 446 if (write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos) 447 error_exit("output EOF"); 448 bd->outbufPos = 0; 449 } 450 } 451 452 static void burrows_wheeler_prep(struct bunzip_data *bd, struct bwdata *bw) 453 { 454 int ii, jj; 455 unsigned int *dbuf = bw->dbuf; 456 int *byteCount = bw->byteCount; 457 458 // Turn byteCount into cumulative occurrence counts of 0 to n-1. 459 jj = 0; 460 for (ii=0; ii<256; ii++) { 461 int kk = jj + byteCount[ii]; 462 byteCount[ii] = jj; 463 jj = kk; 464 } 465 466 // Use occurrence counts to quickly figure out what order dbuf would be in 467 // if we sorted it. 468 for (ii=0; ii < bw->writeCount; ii++) { 469 unsigned char uc = dbuf[ii]; 470 dbuf[byteCount[uc]] |= (ii << 8); 471 byteCount[uc]++; 472 } 473 474 // blockRandomised support would go here. 475 476 // Using ii as position, jj as previous character, hh as current character, 477 // and uc as run count. 478 bw->dataCRC = 0xffffffffL; 479 480 /* Decode first byte by hand to initialize "previous" byte. Note that it 481 doesn't get output, and if the first three characters are identical 482 it doesn't qualify as a run (hence uc=255, which will either wrap 483 to 1 or get reset). */ 484 if (bw->writeCount) { 485 bw->writePos = dbuf[bw->origPtr]; 486 bw->writeCurrent = (unsigned char)bw->writePos; 487 bw->writePos >>= 8; 488 bw->writeRun = -1; 489 } 490 } 491 492 // Decompress a block of text to intermediate buffer 493 static int read_bunzip_data(struct bunzip_data *bd) 494 { 495 int rc = read_block_header(bd, bd->bwdata); 496 if (!rc) rc=read_huffman_data(bd, bd->bwdata); 497 498 // First thing that can be done by a background thread. 499 burrows_wheeler_prep(bd, bd->bwdata); 500 501 return rc; 502 } 503 504 // Undo burrows-wheeler transform on intermediate buffer to produce output. 505 // If !len, write up to len bytes of data to buf. Otherwise write to out_fd. 506 // Returns len ? bytes written : 0. Notice all errors are negative #'s. 507 // 508 // Burrows-wheeler transform is described at: 509 // http://dogma.net/markn/articles/bwt/bwt.htm 510 // http://marknelson.us/1996/09/01/bwt/ 511 512 static int write_bunzip_data(struct bunzip_data *bd, struct bwdata *bw, 513 int out_fd, char *outbuf, int len) 514 { 515 unsigned int *dbuf = bw->dbuf; 516 int count, pos, current, run, copies, outbyte, previous, gotcount = 0; 517 518 for (;;) { 519 // If last read was short due to end of file, return last block now 520 if (bw->writeCount < 0) return bw->writeCount; 521 522 // If we need to refill dbuf, do it. 523 if (!bw->writeCount) { 524 int i = read_bunzip_data(bd); 525 if (i) { 526 if (i == RETVAL_LAST_BLOCK) { 527 bw->writeCount = i; 528 return gotcount; 529 } else return i; 530 } 531 } 532 533 // loop generating output 534 count = bw->writeCount; 535 pos = bw->writePos; 536 current = bw->writeCurrent; 537 run = bw->writeRun; 538 while (count) { 539 540 // If somebody (like tar) wants a certain number of bytes of 541 // data from memory instead of written to a file, humor them. 542 if (len && bd->outbufPos >= len) goto dataus_interruptus; 543 count--; 544 545 // Follow sequence vector to undo Burrows-Wheeler transform. 546 previous = current; 547 pos = dbuf[pos]; 548 current = pos&0xff; 549 pos >>= 8; 550 551 // Whenever we see 3 consecutive copies of the same byte, 552 // the 4th is a repeat count 553 if (run++ == 3) { 554 copies = current; 555 outbyte = previous; 556 current = -1; 557 } else { 558 copies = 1; 559 outbyte = current; 560 } 561 562 // Output bytes to buffer, flushing to file if necessary 563 while (copies--) { 564 if (bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd, out_fd); 565 bd->outbuf[bd->outbufPos++] = outbyte; 566 bw->dataCRC = (bw->dataCRC << 8) 567 ^ bd->crc32Table[(bw->dataCRC >> 24) ^ outbyte]; 568 } 569 if (current != previous) run=0; 570 } 571 572 // decompression of this block completed successfully 573 bw->dataCRC = ~(bw->dataCRC); 574 bd->totalCRC = ((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bw->dataCRC; 575 576 // if this block had a crc error, force file level crc error. 577 if (bw->dataCRC != bw->headerCRC) { 578 bd->totalCRC = bw->headerCRC+1; 579 580 return RETVAL_LAST_BLOCK; 581 } 582 dataus_interruptus: 583 bw->writeCount = count; 584 if (len) { 585 gotcount += bd->outbufPos; 586 memcpy(outbuf, bd->outbuf, len); 587 588 // If we got enough data, checkpoint loop state and return 589 if ((len -= bd->outbufPos)<1) { 590 bd->outbufPos -= len; 591 if (bd->outbufPos) memmove(bd->outbuf, bd->outbuf+len, bd->outbufPos); 592 bw->writePos = pos; 593 bw->writeCurrent = current; 594 bw->writeRun = run; 595 596 return gotcount; 597 } 598 } 599 } 600 } 601 602 // Allocate the structure, read file header. If !len, src_fd contains 603 // filehandle to read from. Else inbuf contains data. 604 static int start_bunzip(struct bunzip_data **bdp, int src_fd, char *inbuf, 605 int len) 606 { 607 struct bunzip_data *bd; 608 unsigned int i; 609 610 // Figure out how much data to allocate. 611 i = sizeof(struct bunzip_data); 612 if (!len) i += IOBUF_SIZE; 613 614 // Allocate bunzip_data. Most fields initialize to zero. 615 bd = *bdp = xzalloc(i); 616 if (len) { 617 bd->inbuf = inbuf; 618 bd->inbufCount = len; 619 bd->in_fd = -1; 620 } else { 621 bd->inbuf = (char *)(bd+1); 622 bd->in_fd = src_fd; 623 } 624 625 crc_init(bd->crc32Table, 0); 626 627 // Ensure that file starts with "BZh". 628 for (i=0;i<3;i++) if (get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA; 629 630 // Next byte ascii '1'-'9', indicates block size in units of 100k of 631 // uncompressed data. Allocate intermediate buffer for block. 632 i = get_bits(bd, 8); 633 if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA; 634 bd->dbufSize = 100000*(i-'0')*THREADS; 635 for (i=0; i<THREADS; i++) 636 bd->bwdata[i].dbuf = xmalloc(bd->dbufSize * sizeof(int)); 637 638 return 0; 639 } 640 641 // Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data, 642 // not end of file.) 643 static char *bunzipStream(int src_fd, int dst_fd) 644 { 645 struct bunzip_data *bd; 646 char *bunzip_errors[] = {0, "not bzip", "bad data", "old format"}; 647 int i, j; 648 649 if (!(i = start_bunzip(&bd,src_fd, 0, 0))) { 650 i = write_bunzip_data(bd,bd->bwdata, dst_fd, 0, 0); 651 if (i==RETVAL_LAST_BLOCK) { 652 if (bd->bwdata[0].headerCRC==bd->totalCRC) i = 0; 653 else i = RETVAL_DATA_ERROR; 654 } 655 } 656 flush_bunzip_outbuf(bd, dst_fd); 657 658 for (j=0; j<THREADS; j++) free(bd->bwdata[j].dbuf); 659 free(bd); 660 661 return bunzip_errors[-i]; 662 } 663 664 static void do_bzcat(int fd, char *name) 665 { 666 char *err = bunzipStream(fd, 1); 667 668 if (err) error_exit_raw(err); 669 } 670 671 void bzcat_main(void) 672 { 673 loopfiles(toys.optargs, do_bzcat); 674 } 675 676 static void do_bunzip2(int fd, char *name) 677 { 678 int outfd = 1, rename = 0, len = strlen(name); 679 char *tmp, *err, *dotbz = 0; 680 681 // Trim off .bz or .bz2 extension 682 dotbz = name+len-3; 683 if ((len>3 && !strcmp(dotbz, ".bz")) || (len>4 && !strcmp(--dotbz, ".bz2"))) 684 dotbz = 0; 685 686 // For - no replace 687 if (toys.optflags&FLAG_t) outfd = xopen("/dev/null", O_WRONLY); 688 else if ((fd || strcmp(name, "-")) && !(toys.optflags&FLAG_c)) { 689 if (toys.optflags&FLAG_k) { 690 if (!dotbz || !access(name, X_OK)) { 691 error_msg("%s exists", name); 692 693 return; 694 } 695 } 696 outfd = copy_tempfile(fd, name, &tmp); 697 rename++; 698 } 699 700 if (toys.optflags&FLAG_v) printf("%s:", name); 701 err = bunzipStream(fd, outfd); 702 if (toys.optflags&FLAG_v) { 703 printf("%s\n", err ? err : "ok"); 704 toys.exitval |= !!err; 705 } else if (err) error_msg_raw(err); 706 707 // can't test outfd==1 because may have been called with stdin+stdout closed 708 if (rename) { 709 if (toys.optflags&FLAG_k) { 710 free(tmp); 711 tmp = 0; 712 } else { 713 if (dotbz) *dotbz = '.'; 714 if (!unlink(name)) perror_msg_raw(name); 715 } 716 (err ? delete_tempfile : replace_tempfile)(-1, outfd, &tmp); 717 } 718 } 719 720 void bunzip2_main(void) 721 { 722 loopfiles(toys.optargs, do_bunzip2); 723 } 724