1 /* 2 * Simple XZ decoder command line tool 3 * 4 * Author: Lasse Collin <lasse.collin@tukaani.org> 5 * 6 * This file has been put into the public domain. 7 * You can do whatever you want with this file. 8 * Modified for toybox by Isaac Dunham 9 USE_XZCAT(NEWTOY(xzcat, NULL, TOYFLAG_USR|TOYFLAG_BIN)) 10 11 config XZCAT 12 bool "xzcat" 13 default n 14 help 15 usage: xzcat [filename...] 16 17 Decompress listed files to stdout. Use stdin if no files listed. 18 19 */ 20 #define FOR_xzcat 21 #include "toys.h" 22 23 // BEGIN xz.h 24 25 /** 26 * enum xz_ret - Return codes 27 * @XZ_OK: Everything is OK so far. More input or more 28 * output space is required to continue. 29 * @XZ_STREAM_END: Operation finished successfully. 30 * @XZ_UNSUPPORTED_CHECK: Integrity check type is not supported. Decoding 31 * is still possible in multi-call mode by simply 32 * calling xz_dec_run() again. 33 * Note that this return value is used only if 34 * XZ_DEC_ANY_CHECK was defined at build time, 35 * which is not used in the kernel. Unsupported 36 * check types return XZ_OPTIONS_ERROR if 37 * XZ_DEC_ANY_CHECK was not defined at build time. 38 * @XZ_MEM_ERROR: Allocating memory failed. The amount of memory 39 * that was tried to be allocated was no more than the 40 * dict_max argument given to xz_dec_init(). 41 * @XZ_MEMLIMIT_ERROR: A bigger LZMA2 dictionary would be needed than 42 * allowed by the dict_max argument given to 43 * xz_dec_init(). 44 * @XZ_FORMAT_ERROR: File format was not recognized (wrong magic 45 * bytes). 46 * @XZ_OPTIONS_ERROR: This implementation doesn't support the requested 47 * compression options. In the decoder this means 48 * that the header CRC32 matches, but the header 49 * itself specifies something that we don't support. 50 * @XZ_DATA_ERROR: Compressed data is corrupt. 51 * @XZ_BUF_ERROR: Cannot make any progress. Details are slightly 52 * different between multi-call and single-call 53 * mode; more information below. 54 * 55 * XZ_BUF_ERROR is returned when two consecutive calls to XZ code cannot 56 * consume any input and cannot produce any new output. This happens when 57 * there is no new input available, or the output buffer is full while at 58 * least one output byte is still pending. Assuming your code is not buggy, 59 * you can get this error only when decoding a compressed stream that is 60 * truncated or otherwise corrupt. 61 */ 62 enum xz_ret { 63 XZ_OK, 64 XZ_STREAM_END, 65 XZ_UNSUPPORTED_CHECK, 66 XZ_MEM_ERROR, 67 XZ_MEMLIMIT_ERROR, 68 XZ_FORMAT_ERROR, 69 XZ_OPTIONS_ERROR, 70 XZ_DATA_ERROR, 71 XZ_BUF_ERROR 72 }; 73 74 /** 75 * struct xz_buf - Passing input and output buffers to XZ code 76 * @in: Beginning of the input buffer. This may be NULL if and only 77 * if in_pos is equal to in_size. 78 * @in_pos: Current position in the input buffer. This must not exceed 79 * in_size. 80 * @in_size: Size of the input buffer 81 * @out: Beginning of the output buffer. This may be NULL if and only 82 * if out_pos is equal to out_size. 83 * @out_pos: Current position in the output buffer. This must not exceed 84 * out_size. 85 * @out_size: Size of the output buffer 86 * 87 * Only the contents of the output buffer from out[out_pos] onward, and 88 * the variables in_pos and out_pos are modified by the XZ code. 89 */ 90 struct xz_buf { 91 const uint8_t *in; 92 size_t in_pos; 93 size_t in_size; 94 95 uint8_t *out; 96 size_t out_pos; 97 size_t out_size; 98 }; 99 100 /** 101 * struct xz_dec - Opaque type to hold the XZ decoder state 102 */ 103 struct xz_dec; 104 105 /** 106 * xz_dec_init() - Allocate and initialize a XZ decoder state 107 * @mode: Operation mode 108 * @dict_max: Maximum size of the LZMA2 dictionary (history buffer) for 109 * multi-call decoding. LZMA2 dictionary is always 2^n bytes 110 * or 2^n + 2^(n-1) bytes (the latter sizes are less common 111 * in practice), so other values for dict_max don't make sense. 112 * In the kernel, dictionary sizes of 64 KiB, 128 KiB, 256 KiB, 113 * 512 KiB, and 1 MiB are probably the only reasonable values, 114 * except for kernel and initramfs images where a bigger 115 * dictionary can be fine and useful. 116 * 117 * dict_max specifies the maximum allowed dictionary size that xz_dec_run() 118 * may allocate once it has parsed the dictionary size from the stream 119 * headers. This way excessive allocations can be avoided while still 120 * limiting the maximum memory usage to a sane value to prevent running the 121 * system out of memory when decompressing streams from untrusted sources. 122 * 123 * On success, xz_dec_init() returns a pointer to struct xz_dec, which is 124 * ready to be used with xz_dec_run(). If memory allocation fails, 125 * xz_dec_init() returns NULL. 126 */ 127 struct xz_dec *xz_dec_init(uint32_t dict_max); 128 129 /** 130 * xz_dec_run() - Run the XZ decoder 131 * @s: Decoder state allocated using xz_dec_init() 132 * @b: Input and output buffers 133 * 134 * The possible return values depend on build options and operation mode. 135 * See enum xz_ret for details. 136 * 137 * Note that if an error occurs in single-call mode (return value is not 138 * XZ_STREAM_END), b->in_pos and b->out_pos are not modified and the 139 * contents of the output buffer from b->out[b->out_pos] onward are 140 * undefined. This is true even after XZ_BUF_ERROR, because with some filter 141 * chains, there may be a second pass over the output buffer, and this pass 142 * cannot be properly done if the output buffer is truncated. Thus, you 143 * cannot give the single-call decoder a too small buffer and then expect to 144 * get that amount valid data from the beginning of the stream. You must use 145 * the multi-call decoder if you don't want to uncompress the whole stream. 146 */ 147 enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b); 148 149 /** 150 * xz_dec_reset() - Reset an already allocated decoder state 151 * @s: Decoder state allocated using xz_dec_init() 152 * 153 * This function can be used to reset the multi-call decoder state without 154 * freeing and reallocating memory with xz_dec_end() and xz_dec_init(). 155 * 156 * In single-call mode, xz_dec_reset() is always called in the beginning of 157 * xz_dec_run(). Thus, explicit call to xz_dec_reset() is useful only in 158 * multi-call mode. 159 */ 160 void xz_dec_reset(struct xz_dec *s); 161 162 /** 163 * xz_dec_end() - Free the memory allocated for the decoder state 164 * @s: Decoder state allocated using xz_dec_init(). If s is NULL, 165 * this function does nothing. 166 */ 167 void xz_dec_end(struct xz_dec *s); 168 169 /* 170 * Update CRC32 value using the polynomial from IEEE-802.3. To start a new 171 * calculation, the third argument must be zero. To continue the calculation, 172 * the previously returned value is passed as the third argument. 173 */ 174 static uint32_t xz_crc32_table[256]; 175 176 uint32_t xz_crc32(const uint8_t *buf, size_t size, uint32_t crc) 177 { 178 crc = ~crc; 179 180 while (size != 0) { 181 crc = xz_crc32_table[*buf++ ^ (crc & 0xFF)] ^ (crc >> 8); 182 --size; 183 } 184 185 return ~crc; 186 } 187 188 static uint64_t xz_crc64_table[256]; 189 190 191 // END xz.h 192 193 static uint8_t in[BUFSIZ]; 194 static uint8_t out[BUFSIZ]; 195 196 void do_xzcat(int fd, char *name) 197 { 198 struct xz_buf b; 199 struct xz_dec *s; 200 enum xz_ret ret; 201 const char *msg; 202 203 crc_init(xz_crc32_table, 1); 204 const uint64_t poly = 0xC96C5795D7870F42ULL; 205 uint32_t i; 206 uint32_t j; 207 uint64_t r; 208 209 /* initialize CRC64 table*/ 210 for (i = 0; i < 256; ++i) { 211 r = i; 212 for (j = 0; j < 8; ++j) 213 r = (r >> 1) ^ (poly & ~((r & 1) - 1)); 214 215 xz_crc64_table[i] = r; 216 } 217 218 /* 219 * Support up to 64 MiB dictionary. The actually needed memory 220 * is allocated once the headers have been parsed. 221 */ 222 s = xz_dec_init(1 << 26); 223 if (s == NULL) { 224 msg = "Memory allocation failed\n"; 225 goto error; 226 } 227 228 b.in = in; 229 b.in_pos = 0; 230 b.in_size = 0; 231 b.out = out; 232 b.out_pos = 0; 233 b.out_size = BUFSIZ; 234 235 for (;;) { 236 if (b.in_pos == b.in_size) { 237 b.in_size = read(fd, in, sizeof(in)); 238 b.in_pos = 0; 239 } 240 241 ret = xz_dec_run(s, &b); 242 243 if (b.out_pos == sizeof(out)) { 244 if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) { 245 msg = "Write error\n"; 246 goto error; 247 } 248 249 b.out_pos = 0; 250 } 251 252 if (ret == XZ_OK) 253 continue; 254 255 if (ret == XZ_UNSUPPORTED_CHECK) 256 continue; 257 258 if (fwrite(out, 1, b.out_pos, stdout) != b.out_pos) { 259 msg = "Write error\n"; 260 goto error; 261 } 262 263 switch (ret) { 264 case XZ_STREAM_END: 265 xz_dec_end(s); 266 return; 267 268 case XZ_MEM_ERROR: 269 msg = "Memory allocation failed\n"; 270 goto error; 271 272 case XZ_MEMLIMIT_ERROR: 273 msg = "Memory usage limit reached\n"; 274 goto error; 275 276 case XZ_FORMAT_ERROR: 277 msg = "Not a .xz file\n"; 278 goto error; 279 280 case XZ_OPTIONS_ERROR: 281 msg = "Unsupported options in the .xz headers\n"; 282 goto error; 283 284 case XZ_DATA_ERROR: 285 case XZ_BUF_ERROR: 286 msg = "File is corrupt\n"; 287 goto error; 288 289 default: 290 msg = "Bug!\n"; 291 goto error; 292 } 293 } 294 295 error: 296 xz_dec_end(s); 297 error_exit("%s", msg); 298 } 299 300 void xzcat_main(void) 301 { 302 loopfiles(toys.optargs, do_xzcat); 303 } 304 305 // BEGIN xz_private.h 306 307 308 /* Uncomment as needed to enable BCJ filter decoders. 309 * These cost about 2.5 k when all are enabled; SPARC and IA64 make 0.7 k 310 * */ 311 312 #define XZ_DEC_X86 313 #define XZ_DEC_POWERPC 314 #define XZ_DEC_IA64 315 #define XZ_DEC_ARM 316 #define XZ_DEC_ARMTHUMB 317 #define XZ_DEC_SPARC 318 319 320 #define memeq(a, b, size) (memcmp(a, b, size) == 0) 321 322 /* Inline functions to access unaligned unsigned 32-bit integers */ 323 #ifndef get_unaligned_le32 324 static inline uint32_t get_unaligned_le32(const uint8_t *buf) 325 { 326 return (uint32_t)buf[0] 327 | ((uint32_t)buf[1] << 8) 328 | ((uint32_t)buf[2] << 16) 329 | ((uint32_t)buf[3] << 24); 330 } 331 #endif 332 333 #ifndef get_unaligned_be32 334 static inline uint32_t get_unaligned_be32(const uint8_t *buf) 335 { 336 return (uint32_t)(buf[0] << 24) 337 | ((uint32_t)buf[1] << 16) 338 | ((uint32_t)buf[2] << 8) 339 | (uint32_t)buf[3]; 340 } 341 #endif 342 343 #ifndef put_unaligned_le32 344 static inline void put_unaligned_le32(uint32_t val, uint8_t *buf) 345 { 346 buf[0] = (uint8_t)val; 347 buf[1] = (uint8_t)(val >> 8); 348 buf[2] = (uint8_t)(val >> 16); 349 buf[3] = (uint8_t)(val >> 24); 350 } 351 #endif 352 353 #ifndef put_unaligned_be32 354 static inline void put_unaligned_be32(uint32_t val, uint8_t *buf) 355 { 356 buf[0] = (uint8_t)(val >> 24); 357 buf[1] = (uint8_t)(val >> 16); 358 buf[2] = (uint8_t)(val >> 8); 359 buf[3] = (uint8_t)val; 360 } 361 #endif 362 363 /* 364 * Use get_unaligned_le32() also for aligned access for simplicity. On 365 * little endian systems, #define get_le32(ptr) (*(const uint32_t *)(ptr)) 366 * could save a few bytes in code size. 367 */ 368 #ifndef get_le32 369 # define get_le32 get_unaligned_le32 370 #endif 371 372 /* 373 * If any of the BCJ filter decoders are wanted, define XZ_DEC_BCJ. 374 * XZ_DEC_BCJ is used to enable generic support for BCJ decoders. 375 */ 376 #ifndef XZ_DEC_BCJ 377 # if defined(XZ_DEC_X86) || defined(XZ_DEC_POWERPC) \ 378 || defined(XZ_DEC_IA64) || defined(XZ_DEC_ARM) \ 379 || defined(XZ_DEC_ARM) || defined(XZ_DEC_ARMTHUMB) \ 380 || defined(XZ_DEC_SPARC) 381 # define XZ_DEC_BCJ 382 # endif 383 #endif 384 385 /* 386 * Allocate memory for LZMA2 decoder. xz_dec_lzma2_reset() must be used 387 * before calling xz_dec_lzma2_run(). 388 */ 389 struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max); 390 391 /* 392 * Decode the LZMA2 properties (one byte) and reset the decoder. Return 393 * XZ_OK on success, XZ_MEMLIMIT_ERROR if the preallocated dictionary is not 394 * big enough, and XZ_OPTIONS_ERROR if props indicates something that this 395 * decoder doesn't support. 396 */ 397 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, 398 uint8_t props); 399 400 /* Decode raw LZMA2 stream from b->in to b->out. */ 401 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, 402 struct xz_buf *b); 403 404 // END "xz_private.h" 405 406 407 408 409 /* 410 * Branch/Call/Jump (BCJ) filter decoders 411 * The rest of the code is inside this ifdef. It makes things a little more 412 * convenient when building without support for any BCJ filters. 413 */ 414 #ifdef XZ_DEC_BCJ 415 416 struct xz_dec_bcj { 417 /* Type of the BCJ filter being used */ 418 enum { 419 BCJ_X86 = 4, /* x86 or x86-64 */ 420 BCJ_POWERPC = 5, /* Big endian only */ 421 BCJ_IA64 = 6, /* Big or little endian */ 422 BCJ_ARM = 7, /* Little endian only */ 423 BCJ_ARMTHUMB = 8, /* Little endian only */ 424 BCJ_SPARC = 9 /* Big or little endian */ 425 } type; 426 427 /* 428 * Return value of the next filter in the chain. We need to preserve 429 * this information across calls, because we must not call the next 430 * filter anymore once it has returned XZ_STREAM_END. 431 */ 432 enum xz_ret ret; 433 434 /* 435 * Absolute position relative to the beginning of the uncompressed 436 * data (in a single .xz Block). We care only about the lowest 32 437 * bits so this doesn't need to be uint64_t even with big files. 438 */ 439 uint32_t pos; 440 441 /* x86 filter state */ 442 uint32_t x86_prev_mask; 443 444 /* Temporary space to hold the variables from struct xz_buf */ 445 uint8_t *out; 446 size_t out_pos; 447 size_t out_size; 448 449 struct { 450 /* Amount of already filtered data in the beginning of buf */ 451 size_t filtered; 452 453 /* Total amount of data currently stored in buf */ 454 size_t size; 455 456 /* 457 * Buffer to hold a mix of filtered and unfiltered data. This 458 * needs to be big enough to hold Alignment + 2 * Look-ahead: 459 * 460 * Type Alignment Look-ahead 461 * x86 1 4 462 * PowerPC 4 0 463 * IA-64 16 0 464 * ARM 4 0 465 * ARM-Thumb 2 2 466 * SPARC 4 0 467 */ 468 uint8_t buf[16]; 469 } temp; 470 }; 471 472 /* 473 * Decode the Filter ID of a BCJ filter. This implementation doesn't 474 * support custom start offsets, so no decoding of Filter Properties 475 * is needed. Returns XZ_OK if the given Filter ID is supported. 476 * Otherwise XZ_OPTIONS_ERROR is returned. 477 */ 478 enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id); 479 480 /* 481 * Decode raw BCJ + LZMA2 stream. This must be used only if there actually is 482 * a BCJ filter in the chain. If the chain has only LZMA2, xz_dec_lzma2_run() 483 * must be called directly. 484 */ 485 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, 486 struct xz_dec_lzma2 *lzma2, 487 struct xz_buf *b); 488 489 #ifdef XZ_DEC_X86 490 /* 491 * This is used to test the most significant byte of a memory address 492 * in an x86 instruction. 493 */ 494 static inline int bcj_x86_test_msbyte(uint8_t b) 495 { 496 return b == 0x00 || b == 0xFF; 497 } 498 499 static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 500 { 501 static const int mask_to_allowed_status[8] 502 = { 1,1,1,0,1,0,0,0 }; 503 504 static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 }; 505 506 size_t i; 507 size_t prev_pos = (size_t)-1; 508 uint32_t prev_mask = s->x86_prev_mask; 509 uint32_t src; 510 uint32_t dest; 511 uint32_t j; 512 uint8_t b; 513 514 if (size <= 4) 515 return 0; 516 517 size -= 4; 518 for (i = 0; i < size; ++i) { 519 if ((buf[i] & 0xFE) != 0xE8) 520 continue; 521 522 prev_pos = i - prev_pos; 523 if (prev_pos > 3) { 524 prev_mask = 0; 525 } else { 526 prev_mask = (prev_mask << (prev_pos - 1)) & 7; 527 if (prev_mask != 0) { 528 b = buf[i + 4 - mask_to_bit_num[prev_mask]]; 529 if (!mask_to_allowed_status[prev_mask] 530 || bcj_x86_test_msbyte(b)) { 531 prev_pos = i; 532 prev_mask = (prev_mask << 1) | 1; 533 continue; 534 } 535 } 536 } 537 538 prev_pos = i; 539 540 if (bcj_x86_test_msbyte(buf[i + 4])) { 541 src = get_unaligned_le32(buf + i + 1); 542 for (;;) { 543 dest = src - (s->pos + (uint32_t)i + 5); 544 if (prev_mask == 0) 545 break; 546 547 j = mask_to_bit_num[prev_mask] * 8; 548 b = (uint8_t)(dest >> (24 - j)); 549 if (!bcj_x86_test_msbyte(b)) 550 break; 551 552 src = dest ^ (((uint32_t)1 << (32 - j)) - 1); 553 } 554 555 dest &= 0x01FFFFFF; 556 dest |= (uint32_t)0 - (dest & 0x01000000); 557 put_unaligned_le32(dest, buf + i + 1); 558 i += 4; 559 } else { 560 prev_mask = (prev_mask << 1) | 1; 561 } 562 } 563 564 prev_pos = i - prev_pos; 565 s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1); 566 return i; 567 } 568 #endif 569 570 #ifdef XZ_DEC_POWERPC 571 static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 572 { 573 size_t i; 574 uint32_t instr; 575 576 for (i = 0; i + 4 <= size; i += 4) { 577 instr = get_unaligned_be32(buf + i); 578 if ((instr & 0xFC000003) == 0x48000001) { 579 instr &= 0x03FFFFFC; 580 instr -= s->pos + (uint32_t)i; 581 instr &= 0x03FFFFFC; 582 instr |= 0x48000001; 583 put_unaligned_be32(instr, buf + i); 584 } 585 } 586 587 return i; 588 } 589 #endif 590 591 #ifdef XZ_DEC_IA64 592 static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 593 { 594 static const uint8_t branch_table[32] = { 595 0, 0, 0, 0, 0, 0, 0, 0, 596 0, 0, 0, 0, 0, 0, 0, 0, 597 4, 4, 6, 6, 0, 0, 7, 7, 598 4, 4, 0, 0, 4, 4, 0, 0 599 }; 600 601 /* 602 * The local variables take a little bit stack space, but it's less 603 * than what LZMA2 decoder takes, so it doesn't make sense to reduce 604 * stack usage here without doing that for the LZMA2 decoder too. 605 */ 606 607 /* Loop counters */ 608 size_t i; 609 size_t j; 610 611 /* Instruction slot (0, 1, or 2) in the 128-bit instruction word */ 612 uint32_t slot; 613 614 /* Bitwise offset of the instruction indicated by slot */ 615 uint32_t bit_pos; 616 617 /* bit_pos split into byte and bit parts */ 618 uint32_t byte_pos; 619 uint32_t bit_res; 620 621 /* Address part of an instruction */ 622 uint32_t addr; 623 624 /* Mask used to detect which instructions to convert */ 625 uint32_t mask; 626 627 /* 41-bit instruction stored somewhere in the lowest 48 bits */ 628 uint64_t instr; 629 630 /* Instruction normalized with bit_res for easier manipulation */ 631 uint64_t norm; 632 633 for (i = 0; i + 16 <= size; i += 16) { 634 mask = branch_table[buf[i] & 0x1F]; 635 for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) { 636 if (((mask >> slot) & 1) == 0) 637 continue; 638 639 byte_pos = bit_pos >> 3; 640 bit_res = bit_pos & 7; 641 instr = 0; 642 for (j = 0; j < 6; ++j) 643 instr |= (uint64_t)(buf[i + j + byte_pos]) 644 << (8 * j); 645 646 norm = instr >> bit_res; 647 648 if (((norm >> 37) & 0x0F) == 0x05 649 && ((norm >> 9) & 0x07) == 0) { 650 addr = (norm >> 13) & 0x0FFFFF; 651 addr |= ((uint32_t)(norm >> 36) & 1) << 20; 652 addr <<= 4; 653 addr -= s->pos + (uint32_t)i; 654 addr >>= 4; 655 656 norm &= ~((uint64_t)0x8FFFFF << 13); 657 norm |= (uint64_t)(addr & 0x0FFFFF) << 13; 658 norm |= (uint64_t)(addr & 0x100000) 659 << (36 - 20); 660 661 instr &= (1 << bit_res) - 1; 662 instr |= norm << bit_res; 663 664 for (j = 0; j < 6; j++) 665 buf[i + j + byte_pos] 666 = (uint8_t)(instr >> (8 * j)); 667 } 668 } 669 } 670 671 return i; 672 } 673 #endif 674 675 #ifdef XZ_DEC_ARM 676 static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 677 { 678 size_t i; 679 uint32_t addr; 680 681 for (i = 0; i + 4 <= size; i += 4) { 682 if (buf[i + 3] == 0xEB) { 683 addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8) 684 | ((uint32_t)buf[i + 2] << 16); 685 addr <<= 2; 686 addr -= s->pos + (uint32_t)i + 8; 687 addr >>= 2; 688 buf[i] = (uint8_t)addr; 689 buf[i + 1] = (uint8_t)(addr >> 8); 690 buf[i + 2] = (uint8_t)(addr >> 16); 691 } 692 } 693 694 return i; 695 } 696 #endif 697 698 #ifdef XZ_DEC_ARMTHUMB 699 static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 700 { 701 size_t i; 702 uint32_t addr; 703 704 for (i = 0; i + 4 <= size; i += 2) { 705 if ((buf[i + 1] & 0xF8) == 0xF0 706 && (buf[i + 3] & 0xF8) == 0xF8) { 707 addr = (((uint32_t)buf[i + 1] & 0x07) << 19) 708 | ((uint32_t)buf[i] << 11) 709 | (((uint32_t)buf[i + 3] & 0x07) << 8) 710 | (uint32_t)buf[i + 2]; 711 addr <<= 1; 712 addr -= s->pos + (uint32_t)i + 4; 713 addr >>= 1; 714 buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07)); 715 buf[i] = (uint8_t)(addr >> 11); 716 buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07)); 717 buf[i + 2] = (uint8_t)addr; 718 i += 2; 719 } 720 } 721 722 return i; 723 } 724 #endif 725 726 #ifdef XZ_DEC_SPARC 727 static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size) 728 { 729 size_t i; 730 uint32_t instr; 731 732 for (i = 0; i + 4 <= size; i += 4) { 733 instr = get_unaligned_be32(buf + i); 734 if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) { 735 instr <<= 2; 736 instr -= s->pos + (uint32_t)i; 737 instr >>= 2; 738 instr = ((uint32_t)0x40000000 - (instr & 0x400000)) 739 | 0x40000000 | (instr & 0x3FFFFF); 740 put_unaligned_be32(instr, buf + i); 741 } 742 } 743 744 return i; 745 } 746 #endif 747 748 /* 749 * Apply the selected BCJ filter. Update *pos and s->pos to match the amount 750 * of data that got filtered. 751 * 752 * NOTE: This is implemented as a switch statement to avoid using function 753 * pointers, which could be problematic in the kernel boot code, which must 754 * avoid pointers to static data (at least on x86). 755 */ 756 static void bcj_apply(struct xz_dec_bcj *s, 757 uint8_t *buf, size_t *pos, size_t size) 758 { 759 size_t filtered; 760 761 buf += *pos; 762 size -= *pos; 763 764 switch (s->type) { 765 #ifdef XZ_DEC_X86 766 case BCJ_X86: 767 filtered = bcj_x86(s, buf, size); 768 break; 769 #endif 770 #ifdef XZ_DEC_POWERPC 771 case BCJ_POWERPC: 772 filtered = bcj_powerpc(s, buf, size); 773 break; 774 #endif 775 #ifdef XZ_DEC_IA64 776 case BCJ_IA64: 777 filtered = bcj_ia64(s, buf, size); 778 break; 779 #endif 780 #ifdef XZ_DEC_ARM 781 case BCJ_ARM: 782 filtered = bcj_arm(s, buf, size); 783 break; 784 #endif 785 #ifdef XZ_DEC_ARMTHUMB 786 case BCJ_ARMTHUMB: 787 filtered = bcj_armthumb(s, buf, size); 788 break; 789 #endif 790 #ifdef XZ_DEC_SPARC 791 case BCJ_SPARC: 792 filtered = bcj_sparc(s, buf, size); 793 break; 794 #endif 795 default: 796 /* Never reached but silence compiler warnings. */ 797 filtered = 0; 798 break; 799 } 800 801 *pos += filtered; 802 s->pos += filtered; 803 } 804 805 /* 806 * Flush pending filtered data from temp to the output buffer. 807 * Move the remaining mixture of possibly filtered and unfiltered 808 * data to the beginning of temp. 809 */ 810 static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b) 811 { 812 size_t copy_size; 813 814 copy_size = minof(s->temp.filtered, b->out_size - b->out_pos); 815 memcpy(b->out + b->out_pos, s->temp.buf, copy_size); 816 b->out_pos += copy_size; 817 818 s->temp.filtered -= copy_size; 819 s->temp.size -= copy_size; 820 memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size); 821 } 822 823 /* 824 * The BCJ filter functions are primitive in sense that they process the 825 * data in chunks of 1-16 bytes. To hide this issue, this function does 826 * some buffering. 827 */ 828 enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s, 829 struct xz_dec_lzma2 *lzma2, 830 struct xz_buf *b) 831 { 832 size_t out_start; 833 834 /* 835 * Flush pending already filtered data to the output buffer. Return 836 * immediatelly if we couldn't flush everything, or if the next 837 * filter in the chain had already returned XZ_STREAM_END. 838 */ 839 if (s->temp.filtered > 0) { 840 bcj_flush(s, b); 841 if (s->temp.filtered > 0) 842 return XZ_OK; 843 844 if (s->ret == XZ_STREAM_END) 845 return XZ_STREAM_END; 846 } 847 848 /* 849 * If we have more output space than what is currently pending in 850 * temp, copy the unfiltered data from temp to the output buffer 851 * and try to fill the output buffer by decoding more data from the 852 * next filter in the chain. Apply the BCJ filter on the new data 853 * in the output buffer. If everything cannot be filtered, copy it 854 * to temp and rewind the output buffer position accordingly. 855 * 856 * This needs to be always run when temp.size == 0 to handle a special 857 * case where the output buffer is full and the next filter has no 858 * more output coming but hasn't returned XZ_STREAM_END yet. 859 */ 860 if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) { 861 out_start = b->out_pos; 862 memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size); 863 b->out_pos += s->temp.size; 864 865 s->ret = xz_dec_lzma2_run(lzma2, b); 866 if (s->ret != XZ_STREAM_END 867 && (s->ret != XZ_OK )) 868 return s->ret; 869 870 bcj_apply(s, b->out, &out_start, b->out_pos); 871 872 /* 873 * As an exception, if the next filter returned XZ_STREAM_END, 874 * we can do that too, since the last few bytes that remain 875 * unfiltered are meant to remain unfiltered. 876 */ 877 if (s->ret == XZ_STREAM_END) 878 return XZ_STREAM_END; 879 880 s->temp.size = b->out_pos - out_start; 881 b->out_pos -= s->temp.size; 882 memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size); 883 884 /* 885 * If there wasn't enough input to the next filter to fill 886 * the output buffer with unfiltered data, there's no point 887 * to try decoding more data to temp. 888 */ 889 if (b->out_pos + s->temp.size < b->out_size) 890 return XZ_OK; 891 } 892 893 /* 894 * We have unfiltered data in temp. If the output buffer isn't full 895 * yet, try to fill the temp buffer by decoding more data from the 896 * next filter. Apply the BCJ filter on temp. Then we hopefully can 897 * fill the actual output buffer by copying filtered data from temp. 898 * A mix of filtered and unfiltered data may be left in temp; it will 899 * be taken care on the next call to this function. 900 */ 901 if (b->out_pos < b->out_size) { 902 /* Make b->out{,_pos,_size} temporarily point to s->temp. */ 903 s->out = b->out; 904 s->out_pos = b->out_pos; 905 s->out_size = b->out_size; 906 b->out = s->temp.buf; 907 b->out_pos = s->temp.size; 908 b->out_size = sizeof(s->temp.buf); 909 910 s->ret = xz_dec_lzma2_run(lzma2, b); 911 912 s->temp.size = b->out_pos; 913 b->out = s->out; 914 b->out_pos = s->out_pos; 915 b->out_size = s->out_size; 916 917 if (s->ret != XZ_OK && s->ret != XZ_STREAM_END) 918 return s->ret; 919 920 bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size); 921 922 /* 923 * If the next filter returned XZ_STREAM_END, we mark that 924 * everything is filtered, since the last unfiltered bytes 925 * of the stream are meant to be left as is. 926 */ 927 if (s->ret == XZ_STREAM_END) 928 s->temp.filtered = s->temp.size; 929 930 bcj_flush(s, b); 931 if (s->temp.filtered > 0) 932 return XZ_OK; 933 } 934 935 return s->ret; 936 } 937 938 enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id) 939 { 940 switch (id) { 941 #ifdef XZ_DEC_X86 942 case BCJ_X86: 943 #endif 944 #ifdef XZ_DEC_POWERPC 945 case BCJ_POWERPC: 946 #endif 947 #ifdef XZ_DEC_IA64 948 case BCJ_IA64: 949 #endif 950 #ifdef XZ_DEC_ARM 951 case BCJ_ARM: 952 #endif 953 #ifdef XZ_DEC_ARMTHUMB 954 case BCJ_ARMTHUMB: 955 #endif 956 #ifdef XZ_DEC_SPARC 957 case BCJ_SPARC: 958 #endif 959 break; 960 961 default: 962 /* Unsupported Filter ID */ 963 return XZ_OPTIONS_ERROR; 964 } 965 966 s->type = id; 967 s->ret = XZ_OK; 968 s->pos = 0; 969 s->x86_prev_mask = 0; 970 s->temp.filtered = 0; 971 s->temp.size = 0; 972 973 return XZ_OK; 974 } 975 976 #endif 977 /* 978 * LZMA2 decoder 979 */ 980 981 982 // BEGIN xz_lzma2.h 983 /* 984 * LZMA2 definitions 985 * 986 */ 987 988 989 /* Range coder constants */ 990 #define RC_SHIFT_BITS 8 991 #define RC_TOP_BITS 24 992 #define RC_TOP_VALUE (1 << RC_TOP_BITS) 993 #define RC_BIT_MODEL_TOTAL_BITS 11 994 #define RC_BIT_MODEL_TOTAL (1 << RC_BIT_MODEL_TOTAL_BITS) 995 #define RC_MOVE_BITS 5 996 997 /* 998 * Maximum number of position states. A position state is the lowest pb 999 * number of bits of the current uncompressed offset. In some places there 1000 * are different sets of probabilities for different position states. 1001 */ 1002 #define POS_STATES_MAX (1 << 4) 1003 1004 /* 1005 * This enum is used to track which LZMA symbols have occurred most recently 1006 * and in which order. This information is used to predict the next symbol. 1007 * 1008 * Symbols: 1009 * - Literal: One 8-bit byte 1010 * - Match: Repeat a chunk of data at some distance 1011 * - Long repeat: Multi-byte match at a recently seen distance 1012 * - Short repeat: One-byte repeat at a recently seen distance 1013 * 1014 * The symbol names are in from STATE_oldest_older_previous. REP means 1015 * either short or long repeated match, and NONLIT means any non-literal. 1016 */ 1017 enum lzma_state { 1018 STATE_LIT_LIT, 1019 STATE_MATCH_LIT_LIT, 1020 STATE_REP_LIT_LIT, 1021 STATE_SHORTREP_LIT_LIT, 1022 STATE_MATCH_LIT, 1023 STATE_REP_LIT, 1024 STATE_SHORTREP_LIT, 1025 STATE_LIT_MATCH, 1026 STATE_LIT_LONGREP, 1027 STATE_LIT_SHORTREP, 1028 STATE_NONLIT_MATCH, 1029 STATE_NONLIT_REP 1030 }; 1031 1032 /* Total number of states */ 1033 #define STATES 12 1034 1035 /* The lowest 7 states indicate that the previous state was a literal. */ 1036 #define LIT_STATES 7 1037 1038 /* Indicate that the latest symbol was a literal. */ 1039 static inline void lzma_state_literal(enum lzma_state *state) 1040 { 1041 if (*state <= STATE_SHORTREP_LIT_LIT) 1042 *state = STATE_LIT_LIT; 1043 else if (*state <= STATE_LIT_SHORTREP) 1044 *state -= 3; 1045 else 1046 *state -= 6; 1047 } 1048 1049 /* Indicate that the latest symbol was a match. */ 1050 static inline void lzma_state_match(enum lzma_state *state) 1051 { 1052 *state = *state < LIT_STATES ? STATE_LIT_MATCH : STATE_NONLIT_MATCH; 1053 } 1054 1055 /* Indicate that the latest state was a long repeated match. */ 1056 static inline void lzma_state_long_rep(enum lzma_state *state) 1057 { 1058 *state = *state < LIT_STATES ? STATE_LIT_LONGREP : STATE_NONLIT_REP; 1059 } 1060 1061 /* Indicate that the latest symbol was a short match. */ 1062 static inline void lzma_state_short_rep(enum lzma_state *state) 1063 { 1064 *state = *state < LIT_STATES ? STATE_LIT_SHORTREP : STATE_NONLIT_REP; 1065 } 1066 1067 /* Test if the previous symbol was a literal. */ 1068 static inline int lzma_state_is_literal(enum lzma_state state) 1069 { 1070 return state < LIT_STATES; 1071 } 1072 1073 /* Each literal coder is divided in three sections: 1074 * - 0x001-0x0FF: Without match byte 1075 * - 0x101-0x1FF: With match byte; match bit is 0 1076 * - 0x201-0x2FF: With match byte; match bit is 1 1077 * 1078 * Match byte is used when the previous LZMA symbol was something else than 1079 * a literal (that is, it was some kind of match). 1080 */ 1081 #define LITERAL_CODER_SIZE 0x300 1082 1083 /* Maximum number of literal coders */ 1084 #define LITERAL_CODERS_MAX (1 << 4) 1085 1086 /* Minimum length of a match is two bytes. */ 1087 #define MATCH_LEN_MIN 2 1088 1089 /* Match length is encoded with 4, 5, or 10 bits. 1090 * 1091 * Length Bits 1092 * 2-9 4 = Choice=0 + 3 bits 1093 * 10-17 5 = Choice=1 + Choice2=0 + 3 bits 1094 * 18-273 10 = Choice=1 + Choice2=1 + 8 bits 1095 */ 1096 #define LEN_LOW_BITS 3 1097 #define LEN_LOW_SYMBOLS (1 << LEN_LOW_BITS) 1098 #define LEN_MID_BITS 3 1099 #define LEN_MID_SYMBOLS (1 << LEN_MID_BITS) 1100 #define LEN_HIGH_BITS 8 1101 #define LEN_HIGH_SYMBOLS (1 << LEN_HIGH_BITS) 1102 #define LEN_SYMBOLS (LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS + LEN_HIGH_SYMBOLS) 1103 1104 /* 1105 * Maximum length of a match is 273 which is a result of the encoding 1106 * described above. 1107 */ 1108 #define MATCH_LEN_MAX (MATCH_LEN_MIN + LEN_SYMBOLS - 1) 1109 1110 /* 1111 * Different sets of probabilities are used for match distances that have 1112 * very short match length: Lengths of 2, 3, and 4 bytes have a separate 1113 * set of probabilities for each length. The matches with longer length 1114 * use a shared set of probabilities. 1115 */ 1116 #define DIST_STATES 4 1117 1118 /* 1119 * Get the index of the appropriate probability array for decoding 1120 * the distance slot. 1121 */ 1122 static inline uint32_t lzma_get_dist_state(uint32_t len) 1123 { 1124 return len < DIST_STATES + MATCH_LEN_MIN 1125 ? len - MATCH_LEN_MIN : DIST_STATES - 1; 1126 } 1127 1128 /* 1129 * The highest two bits of a 32-bit match distance are encoded using six bits. 1130 * This six-bit value is called a distance slot. This way encoding a 32-bit 1131 * value takes 6-36 bits, larger values taking more bits. 1132 */ 1133 #define DIST_SLOT_BITS 6 1134 #define DIST_SLOTS (1 << DIST_SLOT_BITS) 1135 1136 /* Match distances up to 127 are fully encoded using probabilities. Since 1137 * the highest two bits (distance slot) are always encoded using six bits, 1138 * the distances 0-3 don't need any additional bits to encode, since the 1139 * distance slot itself is the same as the actual distance. DIST_MODEL_START 1140 * indicates the first distance slot where at least one additional bit is 1141 * needed. 1142 */ 1143 #define DIST_MODEL_START 4 1144 1145 /* 1146 * Match distances greater than 127 are encoded in three pieces: 1147 * - distance slot: the highest two bits 1148 * - direct bits: 2-26 bits below the highest two bits 1149 * - alignment bits: four lowest bits 1150 * 1151 * Direct bits don't use any probabilities. 1152 * 1153 * The distance slot value of 14 is for distances 128-191. 1154 */ 1155 #define DIST_MODEL_END 14 1156 1157 /* Distance slots that indicate a distance <= 127. */ 1158 #define FULL_DISTANCES_BITS (DIST_MODEL_END / 2) 1159 #define FULL_DISTANCES (1 << FULL_DISTANCES_BITS) 1160 1161 /* 1162 * For match distances greater than 127, only the highest two bits and the 1163 * lowest four bits (alignment) is encoded using probabilities. 1164 */ 1165 #define ALIGN_BITS 4 1166 #define ALIGN_SIZE (1 << ALIGN_BITS) 1167 #define ALIGN_MASK (ALIGN_SIZE - 1) 1168 1169 /* Total number of all probability variables */ 1170 #define PROBS_TOTAL (1846 + LITERAL_CODERS_MAX * LITERAL_CODER_SIZE) 1171 1172 /* 1173 * LZMA remembers the four most recent match distances. Reusing these 1174 * distances tends to take less space than re-encoding the actual 1175 * distance value. 1176 */ 1177 #define REPS 4 1178 1179 1180 // END xz_lzma2.h 1181 1182 /* 1183 * Range decoder initialization eats the first five bytes of each LZMA chunk. 1184 */ 1185 #define RC_INIT_BYTES 5 1186 1187 /* 1188 * Minimum number of usable input buffer to safely decode one LZMA symbol. 1189 * The worst case is that we decode 22 bits using probabilities and 26 1190 * direct bits. This may decode at maximum of 20 bytes of input. However, 1191 * lzma_main() does an extra normalization before returning, thus we 1192 * need to put 21 here. 1193 */ 1194 #define LZMA_IN_REQUIRED 21 1195 1196 /* 1197 * Dictionary (history buffer) 1198 * 1199 * These are always true: 1200 * start <= pos <= full <= end 1201 * pos <= limit <= end 1202 * end == size 1203 * size <= size_max 1204 * allocated <= size 1205 * 1206 * Most of these variables are size_t as a relic of single-call mode, 1207 * in which the dictionary variables address the actual output 1208 * buffer directly. 1209 */ 1210 struct dictionary { 1211 /* Beginning of the history buffer */ 1212 uint8_t *buf; 1213 1214 /* Old position in buf (before decoding more data) */ 1215 size_t start; 1216 1217 /* Position in buf */ 1218 size_t pos; 1219 1220 /* 1221 * How full dictionary is. This is used to detect corrupt input that 1222 * would read beyond the beginning of the uncompressed stream. 1223 */ 1224 size_t full; 1225 1226 /* Write limit; we don't write to buf[limit] or later bytes. */ 1227 size_t limit; 1228 1229 /* End of the dictionary buffer. This is the same as the dictionary size. */ 1230 size_t end; 1231 1232 /* 1233 * Size of the dictionary as specified in Block Header. This is used 1234 * together with "full" to detect corrupt input that would make us 1235 * read beyond the beginning of the uncompressed stream. 1236 */ 1237 uint32_t size; 1238 1239 /* 1240 * Maximum allowed dictionary size. 1241 */ 1242 uint32_t size_max; 1243 1244 /* 1245 * Amount of memory currently allocated for the dictionary. 1246 */ 1247 uint32_t allocated; 1248 }; 1249 1250 /* Range decoder */ 1251 struct rc_dec { 1252 uint32_t range; 1253 uint32_t code; 1254 1255 /* 1256 * Number of initializing bytes remaining to be read 1257 * by rc_read_init(). 1258 */ 1259 uint32_t init_bytes_left; 1260 1261 /* 1262 * Buffer from which we read our input. It can be either 1263 * temp.buf or the caller-provided input buffer. 1264 */ 1265 const uint8_t *in; 1266 size_t in_pos; 1267 size_t in_limit; 1268 }; 1269 1270 /* Probabilities for a length decoder. */ 1271 struct lzma_len_dec { 1272 /* Probability of match length being at least 10 */ 1273 uint16_t choice; 1274 1275 /* Probability of match length being at least 18 */ 1276 uint16_t choice2; 1277 1278 /* Probabilities for match lengths 2-9 */ 1279 uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; 1280 1281 /* Probabilities for match lengths 10-17 */ 1282 uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; 1283 1284 /* Probabilities for match lengths 18-273 */ 1285 uint16_t high[LEN_HIGH_SYMBOLS]; 1286 }; 1287 1288 struct lzma_dec { 1289 /* Distances of latest four matches */ 1290 uint32_t rep0; 1291 uint32_t rep1; 1292 uint32_t rep2; 1293 uint32_t rep3; 1294 1295 /* Types of the most recently seen LZMA symbols */ 1296 enum lzma_state state; 1297 1298 /* 1299 * Length of a match. This is updated so that dict_repeat can 1300 * be called again to finish repeating the whole match. 1301 */ 1302 uint32_t len; 1303 1304 /* 1305 * LZMA properties or related bit masks (number of literal 1306 * context bits, a mask dervied from the number of literal 1307 * position bits, and a mask dervied from the number 1308 * position bits) 1309 */ 1310 uint32_t lc; 1311 uint32_t literal_pos_mask; /* (1 << lp) - 1 */ 1312 uint32_t pos_mask; /* (1 << pb) - 1 */ 1313 1314 /* If 1, it's a match. Otherwise it's a single 8-bit literal. */ 1315 uint16_t is_match[STATES][POS_STATES_MAX]; 1316 1317 /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ 1318 uint16_t is_rep[STATES]; 1319 1320 /* 1321 * If 0, distance of a repeated match is rep0. 1322 * Otherwise check is_rep1. 1323 */ 1324 uint16_t is_rep0[STATES]; 1325 1326 /* 1327 * If 0, distance of a repeated match is rep1. 1328 * Otherwise check is_rep2. 1329 */ 1330 uint16_t is_rep1[STATES]; 1331 1332 /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ 1333 uint16_t is_rep2[STATES]; 1334 1335 /* 1336 * If 1, the repeated match has length of one byte. Otherwise 1337 * the length is decoded from rep_len_decoder. 1338 */ 1339 uint16_t is_rep0_long[STATES][POS_STATES_MAX]; 1340 1341 /* 1342 * Probability tree for the highest two bits of the match 1343 * distance. There is a separate probability tree for match 1344 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. 1345 */ 1346 uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; 1347 1348 /* 1349 * Probility trees for additional bits for match distance 1350 * when the distance is in the range [4, 127]. 1351 */ 1352 uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; 1353 1354 /* 1355 * Probability tree for the lowest four bits of a match 1356 * distance that is equal to or greater than 128. 1357 */ 1358 uint16_t dist_align[ALIGN_SIZE]; 1359 1360 /* Length of a normal match */ 1361 struct lzma_len_dec match_len_dec; 1362 1363 /* Length of a repeated match */ 1364 struct lzma_len_dec rep_len_dec; 1365 1366 /* Probabilities of literals */ 1367 uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; 1368 }; 1369 1370 struct lzma2_dec { 1371 /* Position in xz_dec_lzma2_run(). */ 1372 enum lzma2_seq { 1373 SEQ_CONTROL, 1374 SEQ_UNCOMPRESSED_1, 1375 SEQ_UNCOMPRESSED_2, 1376 SEQ_COMPRESSED_0, 1377 SEQ_COMPRESSED_1, 1378 SEQ_PROPERTIES, 1379 SEQ_LZMA_PREPARE, 1380 SEQ_LZMA_RUN, 1381 SEQ_COPY 1382 } sequence; 1383 1384 /* Next position after decoding the compressed size of the chunk. */ 1385 enum lzma2_seq next_sequence; 1386 1387 /* Uncompressed size of LZMA chunk (2 MiB at maximum) */ 1388 uint32_t uncompressed; 1389 1390 /* 1391 * Compressed size of LZMA chunk or compressed/uncompressed 1392 * size of uncompressed chunk (64 KiB at maximum) 1393 */ 1394 uint32_t compressed; 1395 1396 /* 1397 * True if dictionary reset is needed. This is false before 1398 * the first chunk (LZMA or uncompressed). 1399 */ 1400 int need_dict_reset; 1401 1402 /* 1403 * True if new LZMA properties are needed. This is false 1404 * before the first LZMA chunk. 1405 */ 1406 int need_props; 1407 }; 1408 1409 struct xz_dec_lzma2 { 1410 /* 1411 * The order below is important on x86 to reduce code size and 1412 * it shouldn't hurt on other platforms. Everything up to and 1413 * including lzma.pos_mask are in the first 128 bytes on x86-32, 1414 * which allows using smaller instructions to access those 1415 * variables. On x86-64, fewer variables fit into the first 128 1416 * bytes, but this is still the best order without sacrificing 1417 * the readability by splitting the structures. 1418 */ 1419 struct rc_dec rc; 1420 struct dictionary dict; 1421 struct lzma2_dec lzma2; 1422 struct lzma_dec lzma; 1423 1424 /* 1425 * Temporary buffer which holds small number of input bytes between 1426 * decoder calls. See lzma2_lzma() for details. 1427 */ 1428 struct { 1429 uint32_t size; 1430 uint8_t buf[3 * LZMA_IN_REQUIRED]; 1431 } temp; 1432 }; 1433 1434 /************** 1435 * Dictionary * 1436 **************/ 1437 1438 /* Reset the dictionary state. */ 1439 static void dict_reset(struct dictionary *dict) 1440 { 1441 dict->start = 0; 1442 dict->pos = 0; 1443 dict->limit = 0; 1444 dict->full = 0; 1445 } 1446 1447 /* Set dictionary write limit */ 1448 static void dict_limit(struct dictionary *dict, size_t out_max) 1449 { 1450 if (dict->end - dict->pos <= out_max) 1451 dict->limit = dict->end; 1452 else 1453 dict->limit = dict->pos + out_max; 1454 } 1455 1456 /* Return true if at least one byte can be written into the dictionary. */ 1457 static inline int dict_has_space(const struct dictionary *dict) 1458 { 1459 return dict->pos < dict->limit; 1460 } 1461 1462 /* 1463 * Get a byte from the dictionary at the given distance. The distance is 1464 * assumed to valid, or as a special case, zero when the dictionary is 1465 * still empty. This special case is needed for single-call decoding to 1466 * avoid writing a '\0' to the end of the destination buffer. 1467 */ 1468 static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) 1469 { 1470 size_t offset = dict->pos - dist - 1; 1471 1472 if (dist >= dict->pos) 1473 offset += dict->end; 1474 1475 return dict->full > 0 ? dict->buf[offset] : 0; 1476 } 1477 1478 /* 1479 * Put one byte into the dictionary. It is assumed that there is space for it. 1480 */ 1481 static inline void dict_put(struct dictionary *dict, uint8_t byte) 1482 { 1483 dict->buf[dict->pos++] = byte; 1484 1485 if (dict->full < dict->pos) 1486 dict->full = dict->pos; 1487 } 1488 1489 /* 1490 * Repeat given number of bytes from the given distance. If the distance is 1491 * invalid, false is returned. On success, true is returned and *len is 1492 * updated to indicate how many bytes were left to be repeated. 1493 */ 1494 static int dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) 1495 { 1496 size_t back; 1497 uint32_t left; 1498 1499 if (dist >= dict->full || dist >= dict->size) return 0; 1500 1501 left = minof(dict->limit - dict->pos, *len); 1502 *len -= left; 1503 1504 back = dict->pos - dist - 1; 1505 if (dist >= dict->pos) 1506 back += dict->end; 1507 1508 do { 1509 dict->buf[dict->pos++] = dict->buf[back++]; 1510 if (back == dict->end) 1511 back = 0; 1512 } while (--left > 0); 1513 1514 if (dict->full < dict->pos) 1515 dict->full = dict->pos; 1516 1517 return 1; 1518 } 1519 1520 /* Copy uncompressed data as is from input to dictionary and output buffers. */ 1521 static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, 1522 uint32_t *left) 1523 { 1524 size_t copy_size; 1525 1526 while (*left > 0 && b->in_pos < b->in_size 1527 && b->out_pos < b->out_size) { 1528 copy_size = minof(b->in_size - b->in_pos, 1529 b->out_size - b->out_pos); 1530 if (copy_size > dict->end - dict->pos) 1531 copy_size = dict->end - dict->pos; 1532 if (copy_size > *left) 1533 copy_size = *left; 1534 1535 *left -= copy_size; 1536 1537 memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); 1538 dict->pos += copy_size; 1539 1540 if (dict->full < dict->pos) 1541 dict->full = dict->pos; 1542 1543 if (dict->pos == dict->end) 1544 dict->pos = 0; 1545 1546 memcpy(b->out + b->out_pos, b->in + b->in_pos, 1547 copy_size); 1548 1549 dict->start = dict->pos; 1550 1551 b->out_pos += copy_size; 1552 b->in_pos += copy_size; 1553 } 1554 } 1555 1556 /* 1557 * Flush pending data from dictionary to b->out. It is assumed that there is 1558 * enough space in b->out. This is guaranteed because caller uses dict_limit() 1559 * before decoding data into the dictionary. 1560 */ 1561 static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) 1562 { 1563 size_t copy_size = dict->pos - dict->start; 1564 1565 if (dict->pos == dict->end) 1566 dict->pos = 0; 1567 1568 memcpy(b->out + b->out_pos, dict->buf + dict->start, 1569 copy_size); 1570 1571 dict->start = dict->pos; 1572 b->out_pos += copy_size; 1573 return copy_size; 1574 } 1575 1576 /***************** 1577 * Range decoder * 1578 *****************/ 1579 1580 /* Reset the range decoder. */ 1581 static void rc_reset(struct rc_dec *rc) 1582 { 1583 rc->range = (uint32_t)-1; 1584 rc->code = 0; 1585 rc->init_bytes_left = RC_INIT_BYTES; 1586 } 1587 1588 /* 1589 * Read the first five initial bytes into rc->code if they haven't been 1590 * read already. (Yes, the first byte gets completely ignored.) 1591 */ 1592 static int rc_read_init(struct rc_dec *rc, struct xz_buf *b) 1593 { 1594 while (rc->init_bytes_left > 0) { 1595 if (b->in_pos == b->in_size) return 0; 1596 1597 rc->code = (rc->code << 8) + b->in[b->in_pos++]; 1598 --rc->init_bytes_left; 1599 } 1600 1601 return 1; 1602 } 1603 1604 /* Return true if there may not be enough input for the next decoding loop. */ 1605 static inline int rc_limit_exceeded(const struct rc_dec *rc) 1606 { 1607 return rc->in_pos > rc->in_limit; 1608 } 1609 1610 /* 1611 * Return true if it is possible (from point of view of range decoder) that 1612 * we have reached the end of the LZMA chunk. 1613 */ 1614 static inline int rc_is_finished(const struct rc_dec *rc) 1615 { 1616 return rc->code == 0; 1617 } 1618 1619 /* Read the next input byte if needed. */ 1620 static inline void rc_normalize(struct rc_dec *rc) 1621 { 1622 if (rc->range < RC_TOP_VALUE) { 1623 rc->range <<= RC_SHIFT_BITS; 1624 rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; 1625 } 1626 } 1627 1628 /* 1629 * Decode one bit. In some versions, this function has been splitted in three 1630 * functions so that the compiler is supposed to be able to more easily avoid 1631 * an extra branch. In this particular version of the LZMA decoder, this 1632 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 1633 * on x86). Using a non-splitted version results in nicer looking code too. 1634 * 1635 * NOTE: This must return an int. Do not make it return a bool or the speed 1636 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, 1637 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) 1638 */ 1639 static inline int rc_bit(struct rc_dec *rc, uint16_t *prob) 1640 { 1641 uint32_t bound; 1642 int bit; 1643 1644 rc_normalize(rc); 1645 bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; 1646 if (rc->code < bound) { 1647 rc->range = bound; 1648 *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; 1649 bit = 0; 1650 } else { 1651 rc->range -= bound; 1652 rc->code -= bound; 1653 *prob -= *prob >> RC_MOVE_BITS; 1654 bit = 1; 1655 } 1656 1657 return bit; 1658 } 1659 1660 /* Decode a bittree starting from the most significant bit. */ 1661 static inline uint32_t rc_bittree(struct rc_dec *rc, 1662 uint16_t *probs, uint32_t limit) 1663 { 1664 uint32_t symbol = 1; 1665 1666 do { 1667 if (rc_bit(rc, &probs[symbol])) 1668 symbol = (symbol << 1) + 1; 1669 else 1670 symbol <<= 1; 1671 } while (symbol < limit); 1672 1673 return symbol; 1674 } 1675 1676 /* Decode a bittree starting from the least significant bit. */ 1677 static inline void rc_bittree_reverse(struct rc_dec *rc, 1678 uint16_t *probs, 1679 uint32_t *dest, uint32_t limit) 1680 { 1681 uint32_t symbol = 1; 1682 uint32_t i = 0; 1683 1684 do { 1685 if (rc_bit(rc, &probs[symbol])) { 1686 symbol = (symbol << 1) + 1; 1687 *dest += 1 << i; 1688 } else { 1689 symbol <<= 1; 1690 } 1691 } while (++i < limit); 1692 } 1693 1694 /* Decode direct bits (fixed fifty-fifty probability) */ 1695 static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) 1696 { 1697 uint32_t mask; 1698 1699 do { 1700 rc_normalize(rc); 1701 rc->range >>= 1; 1702 rc->code -= rc->range; 1703 mask = (uint32_t)0 - (rc->code >> 31); 1704 rc->code += rc->range & mask; 1705 *dest = (*dest << 1) + (mask + 1); 1706 } while (--limit > 0); 1707 } 1708 1709 /******** 1710 * LZMA * 1711 ********/ 1712 1713 /* Get pointer to literal coder probability array. */ 1714 static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) 1715 { 1716 uint32_t prev_byte = dict_get(&s->dict, 0); 1717 uint32_t low = prev_byte >> (8 - s->lzma.lc); 1718 uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; 1719 return s->lzma.literal[low + high]; 1720 } 1721 1722 /* Decode a literal (one 8-bit byte) */ 1723 static void lzma_literal(struct xz_dec_lzma2 *s) 1724 { 1725 uint16_t *probs; 1726 uint32_t symbol; 1727 uint32_t match_byte; 1728 uint32_t match_bit; 1729 uint32_t offset; 1730 uint32_t i; 1731 1732 probs = lzma_literal_probs(s); 1733 1734 if (lzma_state_is_literal(s->lzma.state)) { 1735 symbol = rc_bittree(&s->rc, probs, 0x100); 1736 } else { 1737 symbol = 1; 1738 match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; 1739 offset = 0x100; 1740 1741 do { 1742 match_bit = match_byte & offset; 1743 match_byte <<= 1; 1744 i = offset + match_bit + symbol; 1745 1746 if (rc_bit(&s->rc, &probs[i])) { 1747 symbol = (symbol << 1) + 1; 1748 offset &= match_bit; 1749 } else { 1750 symbol <<= 1; 1751 offset &= ~match_bit; 1752 } 1753 } while (symbol < 0x100); 1754 } 1755 1756 dict_put(&s->dict, (uint8_t)symbol); 1757 lzma_state_literal(&s->lzma.state); 1758 } 1759 1760 /* Decode the length of the match into s->lzma.len. */ 1761 static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, 1762 uint32_t pos_state) 1763 { 1764 uint16_t *probs; 1765 uint32_t limit; 1766 1767 if (!rc_bit(&s->rc, &l->choice)) { 1768 probs = l->low[pos_state]; 1769 limit = LEN_LOW_SYMBOLS; 1770 s->lzma.len = MATCH_LEN_MIN; 1771 } else { 1772 if (!rc_bit(&s->rc, &l->choice2)) { 1773 probs = l->mid[pos_state]; 1774 limit = LEN_MID_SYMBOLS; 1775 s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; 1776 } else { 1777 probs = l->high; 1778 limit = LEN_HIGH_SYMBOLS; 1779 s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS 1780 + LEN_MID_SYMBOLS; 1781 } 1782 } 1783 1784 s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; 1785 } 1786 1787 /* Decode a match. The distance will be stored in s->lzma.rep0. */ 1788 static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) 1789 { 1790 uint16_t *probs; 1791 uint32_t dist_slot; 1792 uint32_t limit; 1793 1794 lzma_state_match(&s->lzma.state); 1795 1796 s->lzma.rep3 = s->lzma.rep2; 1797 s->lzma.rep2 = s->lzma.rep1; 1798 s->lzma.rep1 = s->lzma.rep0; 1799 1800 lzma_len(s, &s->lzma.match_len_dec, pos_state); 1801 1802 probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; 1803 dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; 1804 1805 if (dist_slot < DIST_MODEL_START) { 1806 s->lzma.rep0 = dist_slot; 1807 } else { 1808 limit = (dist_slot >> 1) - 1; 1809 s->lzma.rep0 = 2 + (dist_slot & 1); 1810 1811 if (dist_slot < DIST_MODEL_END) { 1812 s->lzma.rep0 <<= limit; 1813 probs = s->lzma.dist_special + s->lzma.rep0 1814 - dist_slot - 1; 1815 rc_bittree_reverse(&s->rc, probs, 1816 &s->lzma.rep0, limit); 1817 } else { 1818 rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); 1819 s->lzma.rep0 <<= ALIGN_BITS; 1820 rc_bittree_reverse(&s->rc, s->lzma.dist_align, 1821 &s->lzma.rep0, ALIGN_BITS); 1822 } 1823 } 1824 } 1825 1826 /* 1827 * Decode a repeated match. The distance is one of the four most recently 1828 * seen matches. The distance will be stored in s->lzma.rep0. 1829 */ 1830 static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) 1831 { 1832 uint32_t tmp; 1833 1834 if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { 1835 if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ 1836 s->lzma.state][pos_state])) { 1837 lzma_state_short_rep(&s->lzma.state); 1838 s->lzma.len = 1; 1839 return; 1840 } 1841 } else { 1842 if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { 1843 tmp = s->lzma.rep1; 1844 } else { 1845 if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { 1846 tmp = s->lzma.rep2; 1847 } else { 1848 tmp = s->lzma.rep3; 1849 s->lzma.rep3 = s->lzma.rep2; 1850 } 1851 1852 s->lzma.rep2 = s->lzma.rep1; 1853 } 1854 1855 s->lzma.rep1 = s->lzma.rep0; 1856 s->lzma.rep0 = tmp; 1857 } 1858 1859 lzma_state_long_rep(&s->lzma.state); 1860 lzma_len(s, &s->lzma.rep_len_dec, pos_state); 1861 } 1862 1863 /* LZMA decoder core */ 1864 static int lzma_main(struct xz_dec_lzma2 *s) 1865 { 1866 uint32_t pos_state; 1867 1868 /* 1869 * If the dictionary was reached during the previous call, try to 1870 * finish the possibly pending repeat in the dictionary. 1871 */ 1872 if (dict_has_space(&s->dict) && s->lzma.len > 0) 1873 dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); 1874 1875 /* 1876 * Decode more LZMA symbols. One iteration may consume up to 1877 * LZMA_IN_REQUIRED - 1 bytes. 1878 */ 1879 while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { 1880 pos_state = s->dict.pos & s->lzma.pos_mask; 1881 1882 if (!rc_bit(&s->rc, &s->lzma.is_match[ 1883 s->lzma.state][pos_state])) { 1884 lzma_literal(s); 1885 } else { 1886 if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) 1887 lzma_rep_match(s, pos_state); 1888 else 1889 lzma_match(s, pos_state); 1890 1891 if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) 1892 return 0; 1893 } 1894 } 1895 1896 /* 1897 * Having the range decoder always normalized when we are outside 1898 * this function makes it easier to correctly handle end of the chunk. 1899 */ 1900 rc_normalize(&s->rc); 1901 1902 return 1; 1903 } 1904 1905 /* 1906 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset 1907 * here, because LZMA state may be reset without resetting the dictionary. 1908 */ 1909 static void lzma_reset(struct xz_dec_lzma2 *s) 1910 { 1911 uint16_t *probs; 1912 size_t i; 1913 1914 s->lzma.state = STATE_LIT_LIT; 1915 s->lzma.rep0 = 0; 1916 s->lzma.rep1 = 0; 1917 s->lzma.rep2 = 0; 1918 s->lzma.rep3 = 0; 1919 1920 /* 1921 * All probabilities are initialized to the same value. This hack 1922 * makes the code smaller by avoiding a separate loop for each 1923 * probability array. 1924 * 1925 * This could be optimized so that only that part of literal 1926 * probabilities that are actually required. In the common case 1927 * we would write 12 KiB less. 1928 */ 1929 probs = s->lzma.is_match[0]; 1930 for (i = 0; i < PROBS_TOTAL; ++i) 1931 probs[i] = RC_BIT_MODEL_TOTAL / 2; 1932 1933 rc_reset(&s->rc); 1934 } 1935 1936 /* 1937 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks 1938 * from the decoded lp and pb values. On success, the LZMA decoder state is 1939 * reset and true is returned. 1940 */ 1941 static int lzma_props(struct xz_dec_lzma2 *s, uint8_t props) 1942 { 1943 if (props > (4 * 5 + 4) * 9 + 8) 1944 return 0; 1945 1946 s->lzma.pos_mask = 0; 1947 while (props >= 9 * 5) { 1948 props -= 9 * 5; 1949 ++s->lzma.pos_mask; 1950 } 1951 1952 s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; 1953 1954 s->lzma.literal_pos_mask = 0; 1955 while (props >= 9) { 1956 props -= 9; 1957 ++s->lzma.literal_pos_mask; 1958 } 1959 1960 s->lzma.lc = props; 1961 1962 if (s->lzma.lc + s->lzma.literal_pos_mask > 4) 1963 return 0; 1964 1965 s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; 1966 1967 lzma_reset(s); 1968 1969 return 1; 1970 } 1971 1972 /********* 1973 * LZMA2 * 1974 *********/ 1975 1976 /* 1977 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't 1978 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This 1979 * wrapper function takes care of making the LZMA decoder's assumption safe. 1980 * 1981 * As long as there is plenty of input left to be decoded in the current LZMA 1982 * chunk, we decode directly from the caller-supplied input buffer until 1983 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into 1984 * s->temp.buf, which (hopefully) gets filled on the next call to this 1985 * function. We decode a few bytes from the temporary buffer so that we can 1986 * continue decoding from the caller-supplied input buffer again. 1987 */ 1988 static int lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) 1989 { 1990 size_t in_avail; 1991 uint32_t tmp; 1992 1993 in_avail = b->in_size - b->in_pos; 1994 if (s->temp.size > 0 || s->lzma2.compressed == 0) { 1995 tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; 1996 if (tmp > s->lzma2.compressed - s->temp.size) 1997 tmp = s->lzma2.compressed - s->temp.size; 1998 if (tmp > in_avail) 1999 tmp = in_avail; 2000 2001 memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); 2002 2003 if (s->temp.size + tmp == s->lzma2.compressed) { 2004 memset(s->temp.buf + s->temp.size + tmp, 0, 2005 sizeof(s->temp.buf) 2006 - s->temp.size - tmp); 2007 s->rc.in_limit = s->temp.size + tmp; 2008 } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { 2009 s->temp.size += tmp; 2010 b->in_pos += tmp; 2011 return 1; 2012 } else { 2013 s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; 2014 } 2015 2016 s->rc.in = s->temp.buf; 2017 s->rc.in_pos = 0; 2018 2019 if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) 2020 return 0; 2021 2022 s->lzma2.compressed -= s->rc.in_pos; 2023 2024 if (s->rc.in_pos < s->temp.size) { 2025 s->temp.size -= s->rc.in_pos; 2026 memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, 2027 s->temp.size); 2028 return 1; 2029 } 2030 2031 b->in_pos += s->rc.in_pos - s->temp.size; 2032 s->temp.size = 0; 2033 } 2034 2035 in_avail = b->in_size - b->in_pos; 2036 if (in_avail >= LZMA_IN_REQUIRED) { 2037 s->rc.in = b->in; 2038 s->rc.in_pos = b->in_pos; 2039 2040 if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) 2041 s->rc.in_limit = b->in_pos + s->lzma2.compressed; 2042 else 2043 s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; 2044 2045 if (!lzma_main(s)) 2046 return 0; 2047 2048 in_avail = s->rc.in_pos - b->in_pos; 2049 if (in_avail > s->lzma2.compressed) return 0; 2050 2051 s->lzma2.compressed -= in_avail; 2052 b->in_pos = s->rc.in_pos; 2053 } 2054 2055 in_avail = b->in_size - b->in_pos; 2056 if (in_avail < LZMA_IN_REQUIRED) { 2057 if (in_avail > s->lzma2.compressed) 2058 in_avail = s->lzma2.compressed; 2059 2060 memcpy(s->temp.buf, b->in + b->in_pos, in_avail); 2061 s->temp.size = in_avail; 2062 b->in_pos += in_avail; 2063 } 2064 2065 return 1; 2066 } 2067 2068 /* 2069 * Take care of the LZMA2 control layer, and forward the job of actual LZMA 2070 * decoding or copying of uncompressed chunks to other functions. 2071 */ 2072 enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, 2073 struct xz_buf *b) 2074 { 2075 uint32_t tmp; 2076 2077 while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { 2078 switch (s->lzma2.sequence) { 2079 case SEQ_CONTROL: 2080 /* 2081 * LZMA2 control byte 2082 * 2083 * Exact values: 2084 * 0x00 End marker 2085 * 0x01 Dictionary reset followed by 2086 * an uncompressed chunk 2087 * 0x02 Uncompressed chunk (no dictionary reset) 2088 * 2089 * Highest three bits (s->control & 0xE0): 2090 * 0xE0 Dictionary reset, new properties and state 2091 * reset, followed by LZMA compressed chunk 2092 * 0xC0 New properties and state reset, followed 2093 * by LZMA compressed chunk (no dictionary 2094 * reset) 2095 * 0xA0 State reset using old properties, 2096 * followed by LZMA compressed chunk (no 2097 * dictionary reset) 2098 * 0x80 LZMA chunk (no dictionary or state reset) 2099 * 2100 * For LZMA compressed chunks, the lowest five bits 2101 * (s->control & 1F) are the highest bits of the 2102 * uncompressed size (bits 16-20). 2103 * 2104 * A new LZMA2 stream must begin with a dictionary 2105 * reset. The first LZMA chunk must set new 2106 * properties and reset the LZMA state. 2107 * 2108 * Values that don't match anything described above 2109 * are invalid and we return XZ_DATA_ERROR. 2110 */ 2111 tmp = b->in[b->in_pos++]; 2112 2113 if (tmp == 0x00) 2114 return XZ_STREAM_END; 2115 2116 if (tmp >= 0xE0 || tmp == 0x01) { 2117 s->lzma2.need_props = 1; 2118 s->lzma2.need_dict_reset = 0; 2119 dict_reset(&s->dict); 2120 } else if (s->lzma2.need_dict_reset) { 2121 return XZ_DATA_ERROR; 2122 } 2123 2124 if (tmp >= 0x80) { 2125 s->lzma2.uncompressed = (tmp & 0x1F) << 16; 2126 s->lzma2.sequence = SEQ_UNCOMPRESSED_1; 2127 2128 if (tmp >= 0xC0) { 2129 /* 2130 * When there are new properties, 2131 * state reset is done at 2132 * SEQ_PROPERTIES. 2133 */ 2134 s->lzma2.need_props = 0; 2135 s->lzma2.next_sequence 2136 = SEQ_PROPERTIES; 2137 2138 } else if (s->lzma2.need_props) { 2139 return XZ_DATA_ERROR; 2140 2141 } else { 2142 s->lzma2.next_sequence 2143 = SEQ_LZMA_PREPARE; 2144 if (tmp >= 0xA0) 2145 lzma_reset(s); 2146 } 2147 } else { 2148 if (tmp > 0x02) 2149 return XZ_DATA_ERROR; 2150 2151 s->lzma2.sequence = SEQ_COMPRESSED_0; 2152 s->lzma2.next_sequence = SEQ_COPY; 2153 } 2154 2155 break; 2156 2157 case SEQ_UNCOMPRESSED_1: 2158 s->lzma2.uncompressed 2159 += (uint32_t)b->in[b->in_pos++] << 8; 2160 s->lzma2.sequence = SEQ_UNCOMPRESSED_2; 2161 break; 2162 2163 case SEQ_UNCOMPRESSED_2: 2164 s->lzma2.uncompressed 2165 += (uint32_t)b->in[b->in_pos++] + 1; 2166 s->lzma2.sequence = SEQ_COMPRESSED_0; 2167 break; 2168 2169 case SEQ_COMPRESSED_0: 2170 s->lzma2.compressed 2171 = (uint32_t)b->in[b->in_pos++] << 8; 2172 s->lzma2.sequence = SEQ_COMPRESSED_1; 2173 break; 2174 2175 case SEQ_COMPRESSED_1: 2176 s->lzma2.compressed 2177 += (uint32_t)b->in[b->in_pos++] + 1; 2178 s->lzma2.sequence = s->lzma2.next_sequence; 2179 break; 2180 2181 case SEQ_PROPERTIES: 2182 if (!lzma_props(s, b->in[b->in_pos++])) 2183 return XZ_DATA_ERROR; 2184 2185 s->lzma2.sequence = SEQ_LZMA_PREPARE; 2186 2187 case SEQ_LZMA_PREPARE: 2188 if (s->lzma2.compressed < RC_INIT_BYTES) 2189 return XZ_DATA_ERROR; 2190 2191 if (!rc_read_init(&s->rc, b)) 2192 return XZ_OK; 2193 2194 s->lzma2.compressed -= RC_INIT_BYTES; 2195 s->lzma2.sequence = SEQ_LZMA_RUN; 2196 2197 case SEQ_LZMA_RUN: 2198 /* 2199 * Set dictionary limit to indicate how much we want 2200 * to be encoded at maximum. Decode new data into the 2201 * dictionary. Flush the new data from dictionary to 2202 * b->out. Check if we finished decoding this chunk. 2203 * In case the dictionary got full but we didn't fill 2204 * the output buffer yet, we may run this loop 2205 * multiple times without changing s->lzma2.sequence. 2206 */ 2207 dict_limit(&s->dict, minof(b->out_size - b->out_pos, 2208 s->lzma2.uncompressed)); 2209 if (!lzma2_lzma(s, b)) 2210 return XZ_DATA_ERROR; 2211 2212 s->lzma2.uncompressed -= dict_flush(&s->dict, b); 2213 2214 if (s->lzma2.uncompressed == 0) { 2215 if (s->lzma2.compressed > 0 || s->lzma.len > 0 2216 || !rc_is_finished(&s->rc)) 2217 return XZ_DATA_ERROR; 2218 2219 rc_reset(&s->rc); 2220 s->lzma2.sequence = SEQ_CONTROL; 2221 2222 } else if (b->out_pos == b->out_size 2223 || (b->in_pos == b->in_size 2224 && s->temp.size 2225 < s->lzma2.compressed)) { 2226 return XZ_OK; 2227 } 2228 2229 break; 2230 2231 case SEQ_COPY: 2232 dict_uncompressed(&s->dict, b, &s->lzma2.compressed); 2233 if (s->lzma2.compressed > 0) 2234 return XZ_OK; 2235 2236 s->lzma2.sequence = SEQ_CONTROL; 2237 break; 2238 } 2239 } 2240 2241 return XZ_OK; 2242 } 2243 2244 struct xz_dec_lzma2 *xz_dec_lzma2_create(uint32_t dict_max) 2245 { 2246 struct xz_dec_lzma2 *s = malloc(sizeof(*s)); 2247 if (s == NULL) 2248 return NULL; 2249 2250 s->dict.size_max = dict_max; 2251 s->dict.buf = NULL; 2252 s->dict.allocated = 0; 2253 2254 return s; 2255 } 2256 2257 enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) 2258 { 2259 /* This limits dictionary size to 3 GiB to keep parsing simpler. */ 2260 if (props > 39) 2261 return XZ_OPTIONS_ERROR; 2262 2263 s->dict.size = 2 + (props & 1); 2264 s->dict.size <<= (props >> 1) + 11; 2265 2266 if (s->dict.size > s->dict.size_max) 2267 return XZ_MEMLIMIT_ERROR; 2268 2269 s->dict.end = s->dict.size; 2270 2271 if (s->dict.allocated < s->dict.size) { 2272 free(s->dict.buf); 2273 s->dict.buf = malloc(s->dict.size); 2274 if (s->dict.buf == NULL) { 2275 s->dict.allocated = 0; 2276 return XZ_MEM_ERROR; 2277 } 2278 } 2279 2280 s->lzma.len = 0; 2281 2282 s->lzma2.sequence = SEQ_CONTROL; 2283 s->lzma2.need_dict_reset = 1; 2284 2285 s->temp.size = 0; 2286 2287 return XZ_OK; 2288 } 2289 2290 /* 2291 * .xz Stream decoder 2292 */ 2293 2294 2295 // BEGIN xz_stream.h 2296 /* 2297 * Definitions for handling the .xz file format 2298 */ 2299 2300 /* 2301 * See the .xz file format specification at 2302 * http://tukaani.org/xz/xz-file-format.txt 2303 * to understand the container format. 2304 */ 2305 2306 #define STREAM_HEADER_SIZE 12 2307 2308 #define HEADER_MAGIC "\3757zXZ" 2309 #define HEADER_MAGIC_SIZE 6 2310 2311 #define FOOTER_MAGIC "YZ" 2312 #define FOOTER_MAGIC_SIZE 2 2313 2314 /* 2315 * Variable-length integer can hold a 63-bit unsigned integer or a special 2316 * value indicating that the value is unknown. 2317 * 2318 * Experimental: vli_type can be defined to uint32_t to save a few bytes 2319 * in code size (no effect on speed). Doing so limits the uncompressed and 2320 * compressed size of the file to less than 256 MiB and may also weaken 2321 * error detection slightly. 2322 */ 2323 typedef uint64_t vli_type; 2324 2325 #define VLI_MAX ((vli_type)-1 / 2) 2326 #define VLI_UNKNOWN ((vli_type)-1) 2327 2328 /* Maximum encoded size of a VLI */ 2329 #define VLI_BYTES_MAX (sizeof(vli_type) * 8 / 7) 2330 2331 /* Integrity Check types */ 2332 enum xz_check { 2333 XZ_CHECK_NONE = 0, 2334 XZ_CHECK_CRC32 = 1, 2335 XZ_CHECK_CRC64 = 4, 2336 XZ_CHECK_SHA256 = 10 2337 }; 2338 2339 /* Maximum possible Check ID */ 2340 #define XZ_CHECK_MAX 15 2341 // END xz_stream.h 2342 2343 #define IS_CRC64(check_type) ((check_type) == XZ_CHECK_CRC64) 2344 2345 /* Hash used to validate the Index field */ 2346 struct xz_dec_hash { 2347 vli_type unpadded; 2348 vli_type uncompressed; 2349 uint32_t crc32; 2350 }; 2351 2352 struct xz_dec { 2353 /* Position in dec_main() */ 2354 enum { 2355 SEQ_STREAM_HEADER, 2356 SEQ_BLOCK_START, 2357 SEQ_BLOCK_HEADER, 2358 SEQ_BLOCK_UNCOMPRESS, 2359 SEQ_BLOCK_PADDING, 2360 SEQ_BLOCK_CHECK, 2361 SEQ_INDEX, 2362 SEQ_INDEX_PADDING, 2363 SEQ_INDEX_CRC32, 2364 SEQ_STREAM_FOOTER 2365 } sequence; 2366 2367 /* Position in variable-length integers and Check fields */ 2368 uint32_t pos; 2369 2370 /* Variable-length integer decoded by dec_vli() */ 2371 vli_type vli; 2372 2373 /* Saved in_pos and out_pos */ 2374 size_t in_start; 2375 size_t out_start; 2376 2377 /* CRC32 or CRC64 value in Block or CRC32 value in Index */ 2378 uint64_t crc; 2379 2380 /* Type of the integrity check calculated from uncompressed data */ 2381 enum xz_check check_type; 2382 2383 /* 2384 * True if the next call to xz_dec_run() is allowed to return 2385 * XZ_BUF_ERROR. 2386 */ 2387 int allow_buf_error; 2388 2389 /* Information stored in Block Header */ 2390 struct { 2391 /* 2392 * Value stored in the Compressed Size field, or 2393 * VLI_UNKNOWN if Compressed Size is not present. 2394 */ 2395 vli_type compressed; 2396 2397 /* 2398 * Value stored in the Uncompressed Size field, or 2399 * VLI_UNKNOWN if Uncompressed Size is not present. 2400 */ 2401 vli_type uncompressed; 2402 2403 /* Size of the Block Header field */ 2404 uint32_t size; 2405 } block_header; 2406 2407 /* Information collected when decoding Blocks */ 2408 struct { 2409 /* Observed compressed size of the current Block */ 2410 vli_type compressed; 2411 2412 /* Observed uncompressed size of the current Block */ 2413 vli_type uncompressed; 2414 2415 /* Number of Blocks decoded so far */ 2416 vli_type count; 2417 2418 /* 2419 * Hash calculated from the Block sizes. This is used to 2420 * validate the Index field. 2421 */ 2422 struct xz_dec_hash hash; 2423 } block; 2424 2425 /* Variables needed when verifying the Index field */ 2426 struct { 2427 /* Position in dec_index() */ 2428 enum { 2429 SEQ_INDEX_COUNT, 2430 SEQ_INDEX_UNPADDED, 2431 SEQ_INDEX_UNCOMPRESSED 2432 } sequence; 2433 2434 /* Size of the Index in bytes */ 2435 vli_type size; 2436 2437 /* Number of Records (matches block.count in valid files) */ 2438 vli_type count; 2439 2440 /* 2441 * Hash calculated from the Records (matches block.hash in 2442 * valid files). 2443 */ 2444 struct xz_dec_hash hash; 2445 } index; 2446 2447 /* 2448 * Temporary buffer needed to hold Stream Header, Block Header, 2449 * and Stream Footer. The Block Header is the biggest (1 KiB) 2450 * so we reserve space according to that. buf[] has to be aligned 2451 * to a multiple of four bytes; the size_t variables before it 2452 * should guarantee this. 2453 */ 2454 struct { 2455 size_t pos; 2456 size_t size; 2457 uint8_t buf[1024]; 2458 } temp; 2459 2460 struct xz_dec_lzma2 *lzma2; 2461 2462 #ifdef XZ_DEC_BCJ 2463 struct xz_dec_bcj *bcj; 2464 int bcj_active; 2465 #endif 2466 }; 2467 2468 /* Sizes of the Check field with different Check IDs */ 2469 static const uint8_t check_sizes[16] = { 2470 0, 2471 4, 4, 4, 2472 8, 8, 8, 2473 16, 16, 16, 2474 32, 32, 32, 2475 64, 64, 64 2476 }; 2477 2478 /* 2479 * Fill s->temp by copying data starting from b->in[b->in_pos]. Caller 2480 * must have set s->temp.pos to indicate how much data we are supposed 2481 * to copy into s->temp.buf. Return true once s->temp.pos has reached 2482 * s->temp.size. 2483 */ 2484 static int fill_temp(struct xz_dec *s, struct xz_buf *b) 2485 { 2486 size_t copy_size = minof(b->in_size - b->in_pos, s->temp.size - s->temp.pos); 2487 2488 memcpy(s->temp.buf + s->temp.pos, b->in + b->in_pos, copy_size); 2489 b->in_pos += copy_size; 2490 s->temp.pos += copy_size; 2491 2492 if (s->temp.pos == s->temp.size) { 2493 s->temp.pos = 0; 2494 return 1; 2495 } 2496 2497 return 0; 2498 } 2499 2500 /* Decode a variable-length integer (little-endian base-128 encoding) */ 2501 static enum xz_ret dec_vli(struct xz_dec *s, const uint8_t *in, 2502 size_t *in_pos, size_t in_size) 2503 { 2504 uint8_t byte; 2505 2506 if (s->pos == 0) 2507 s->vli = 0; 2508 2509 while (*in_pos < in_size) { 2510 byte = in[*in_pos]; 2511 ++*in_pos; 2512 2513 s->vli |= (vli_type)(byte & 0x7F) << s->pos; 2514 2515 if ((byte & 0x80) == 0) { 2516 /* Don't allow non-minimal encodings. */ 2517 if (byte == 0 && s->pos != 0) 2518 return XZ_DATA_ERROR; 2519 2520 s->pos = 0; 2521 return XZ_STREAM_END; 2522 } 2523 2524 s->pos += 7; 2525 if (s->pos == 7 * VLI_BYTES_MAX) 2526 return XZ_DATA_ERROR; 2527 } 2528 2529 return XZ_OK; 2530 } 2531 2532 /* 2533 * Decode the Compressed Data field from a Block. Update and validate 2534 * the observed compressed and uncompressed sizes of the Block so that 2535 * they don't exceed the values possibly stored in the Block Header 2536 * (validation assumes that no integer overflow occurs, since vli_type 2537 * is normally uint64_t). Update the CRC32 or CRC64 value if presence of 2538 * the CRC32 or CRC64 field was indicated in Stream Header. 2539 * 2540 * Once the decoding is finished, validate that the observed sizes match 2541 * the sizes possibly stored in the Block Header. Update the hash and 2542 * Block count, which are later used to validate the Index field. 2543 */ 2544 static enum xz_ret dec_block(struct xz_dec *s, struct xz_buf *b) 2545 { 2546 enum xz_ret ret; 2547 2548 s->in_start = b->in_pos; 2549 s->out_start = b->out_pos; 2550 2551 #ifdef XZ_DEC_BCJ 2552 if (s->bcj_active) 2553 ret = xz_dec_bcj_run(s->bcj, s->lzma2, b); 2554 else 2555 #endif 2556 ret = xz_dec_lzma2_run(s->lzma2, b); 2557 2558 s->block.compressed += b->in_pos - s->in_start; 2559 s->block.uncompressed += b->out_pos - s->out_start; 2560 2561 /* 2562 * There is no need to separately check for VLI_UNKNOWN, since 2563 * the observed sizes are always smaller than VLI_UNKNOWN. 2564 */ 2565 if (s->block.compressed > s->block_header.compressed 2566 || s->block.uncompressed 2567 > s->block_header.uncompressed) 2568 return XZ_DATA_ERROR; 2569 2570 if (s->check_type == XZ_CHECK_CRC32) 2571 s->crc = xz_crc32(b->out + s->out_start, 2572 b->out_pos - s->out_start, s->crc); 2573 else if (s->check_type == XZ_CHECK_CRC64) 2574 s->crc = ~(s->crc); 2575 size_t size = b->out_pos - s->out_start; 2576 uint8_t *buf = b->out + s->out_start; 2577 while (size) { 2578 s->crc = xz_crc64_table[*buf++ ^ (s->crc & 0xFF)] ^ (s->crc >> 8); 2579 --size; 2580 } 2581 s->crc=~(s->crc); 2582 2583 if (ret == XZ_STREAM_END) { 2584 if (s->block_header.compressed != VLI_UNKNOWN 2585 && s->block_header.compressed 2586 != s->block.compressed) 2587 return XZ_DATA_ERROR; 2588 2589 if (s->block_header.uncompressed != VLI_UNKNOWN 2590 && s->block_header.uncompressed 2591 != s->block.uncompressed) 2592 return XZ_DATA_ERROR; 2593 2594 s->block.hash.unpadded += s->block_header.size 2595 + s->block.compressed; 2596 2597 s->block.hash.unpadded += check_sizes[s->check_type]; 2598 2599 s->block.hash.uncompressed += s->block.uncompressed; 2600 s->block.hash.crc32 = xz_crc32( 2601 (const uint8_t *)&s->block.hash, 2602 sizeof(s->block.hash), s->block.hash.crc32); 2603 2604 ++s->block.count; 2605 } 2606 2607 return ret; 2608 } 2609 2610 /* Update the Index size and the CRC32 value. */ 2611 static void index_update(struct xz_dec *s, const struct xz_buf *b) 2612 { 2613 size_t in_used = b->in_pos - s->in_start; 2614 s->index.size += in_used; 2615 s->crc = xz_crc32(b->in + s->in_start, in_used, s->crc); 2616 } 2617 2618 /* 2619 * Decode the Number of Records, Unpadded Size, and Uncompressed Size 2620 * fields from the Index field. That is, Index Padding and CRC32 are not 2621 * decoded by this function. 2622 * 2623 * This can return XZ_OK (more input needed), XZ_STREAM_END (everything 2624 * successfully decoded), or XZ_DATA_ERROR (input is corrupt). 2625 */ 2626 static enum xz_ret dec_index(struct xz_dec *s, struct xz_buf *b) 2627 { 2628 enum xz_ret ret; 2629 2630 do { 2631 ret = dec_vli(s, b->in, &b->in_pos, b->in_size); 2632 if (ret != XZ_STREAM_END) { 2633 index_update(s, b); 2634 return ret; 2635 } 2636 2637 switch (s->index.sequence) { 2638 case SEQ_INDEX_COUNT: 2639 s->index.count = s->vli; 2640 2641 /* 2642 * Validate that the Number of Records field 2643 * indicates the same number of Records as 2644 * there were Blocks in the Stream. 2645 */ 2646 if (s->index.count != s->block.count) 2647 return XZ_DATA_ERROR; 2648 2649 s->index.sequence = SEQ_INDEX_UNPADDED; 2650 break; 2651 2652 case SEQ_INDEX_UNPADDED: 2653 s->index.hash.unpadded += s->vli; 2654 s->index.sequence = SEQ_INDEX_UNCOMPRESSED; 2655 break; 2656 2657 case SEQ_INDEX_UNCOMPRESSED: 2658 s->index.hash.uncompressed += s->vli; 2659 s->index.hash.crc32 = xz_crc32( 2660 (const uint8_t *)&s->index.hash, 2661 sizeof(s->index.hash), 2662 s->index.hash.crc32); 2663 --s->index.count; 2664 s->index.sequence = SEQ_INDEX_UNPADDED; 2665 break; 2666 } 2667 } while (s->index.count > 0); 2668 2669 return XZ_STREAM_END; 2670 } 2671 2672 /* 2673 * Validate that the next four or eight input bytes match the value 2674 * of s->crc. s->pos must be zero when starting to validate the first byte. 2675 * The "bits" argument allows using the same code for both CRC32 and CRC64. 2676 */ 2677 static enum xz_ret crc_validate(struct xz_dec *s, struct xz_buf *b, 2678 uint32_t bits) 2679 { 2680 do { 2681 if (b->in_pos == b->in_size) 2682 return XZ_OK; 2683 2684 if (((s->crc >> s->pos) & 0xFF) != b->in[b->in_pos++]) 2685 return XZ_DATA_ERROR; 2686 2687 s->pos += 8; 2688 2689 } while (s->pos < bits); 2690 2691 s->crc = 0; 2692 s->pos = 0; 2693 2694 return XZ_STREAM_END; 2695 } 2696 2697 /* 2698 * Skip over the Check field when the Check ID is not supported. 2699 * Returns true once the whole Check field has been skipped over. 2700 */ 2701 static int check_skip(struct xz_dec *s, struct xz_buf *b) 2702 { 2703 while (s->pos < check_sizes[s->check_type]) { 2704 if (b->in_pos == b->in_size) return 0; 2705 2706 ++b->in_pos; 2707 ++s->pos; 2708 } 2709 2710 s->pos = 0; 2711 2712 return 1; 2713 } 2714 2715 /* Decode the Stream Header field (the first 12 bytes of the .xz Stream). */ 2716 static enum xz_ret dec_stream_header(struct xz_dec *s) 2717 { 2718 if (!memeq(s->temp.buf, HEADER_MAGIC, HEADER_MAGIC_SIZE)) 2719 return XZ_FORMAT_ERROR; 2720 2721 if (xz_crc32(s->temp.buf + HEADER_MAGIC_SIZE, 2, 0) 2722 != get_le32(s->temp.buf + HEADER_MAGIC_SIZE + 2)) 2723 return XZ_DATA_ERROR; 2724 2725 if (s->temp.buf[HEADER_MAGIC_SIZE] != 0) 2726 return XZ_OPTIONS_ERROR; 2727 2728 /* 2729 * Of integrity checks, we support none (Check ID = 0), 2730 * CRC32 (Check ID = 1), and optionally CRC64 (Check ID = 4). 2731 * However, if XZ_DEC_ANY_CHECK is defined, we will accept other 2732 * check types too, but then the check won't be verified and 2733 * a warning (XZ_UNSUPPORTED_CHECK) will be given. 2734 */ 2735 s->check_type = s->temp.buf[HEADER_MAGIC_SIZE + 1]; 2736 2737 if (s->check_type > XZ_CHECK_MAX) 2738 return XZ_OPTIONS_ERROR; 2739 2740 if (s->check_type > XZ_CHECK_CRC32 && !IS_CRC64(s->check_type)) 2741 return XZ_UNSUPPORTED_CHECK; 2742 2743 return XZ_OK; 2744 } 2745 2746 /* Decode the Stream Footer field (the last 12 bytes of the .xz Stream) */ 2747 static enum xz_ret dec_stream_footer(struct xz_dec *s) 2748 { 2749 if (!memeq(s->temp.buf + 10, FOOTER_MAGIC, FOOTER_MAGIC_SIZE)) 2750 return XZ_DATA_ERROR; 2751 2752 if (xz_crc32(s->temp.buf + 4, 6, 0) != get_le32(s->temp.buf)) 2753 return XZ_DATA_ERROR; 2754 2755 /* 2756 * Validate Backward Size. Note that we never added the size of the 2757 * Index CRC32 field to s->index.size, thus we use s->index.size / 4 2758 * instead of s->index.size / 4 - 1. 2759 */ 2760 if ((s->index.size >> 2) != get_le32(s->temp.buf + 4)) 2761 return XZ_DATA_ERROR; 2762 2763 if (s->temp.buf[8] != 0 || s->temp.buf[9] != s->check_type) 2764 return XZ_DATA_ERROR; 2765 2766 /* 2767 * Use XZ_STREAM_END instead of XZ_OK to be more convenient 2768 * for the caller. 2769 */ 2770 return XZ_STREAM_END; 2771 } 2772 2773 /* Decode the Block Header and initialize the filter chain. */ 2774 static enum xz_ret dec_block_header(struct xz_dec *s) 2775 { 2776 enum xz_ret ret; 2777 2778 /* 2779 * Validate the CRC32. We know that the temp buffer is at least 2780 * eight bytes so this is safe. 2781 */ 2782 s->temp.size -= 4; 2783 if (xz_crc32(s->temp.buf, s->temp.size, 0) 2784 != get_le32(s->temp.buf + s->temp.size)) 2785 return XZ_DATA_ERROR; 2786 2787 s->temp.pos = 2; 2788 2789 /* 2790 * Catch unsupported Block Flags. We support only one or two filters 2791 * in the chain, so we catch that with the same test. 2792 */ 2793 #ifdef XZ_DEC_BCJ 2794 if (s->temp.buf[1] & 0x3E) 2795 #else 2796 if (s->temp.buf[1] & 0x3F) 2797 #endif 2798 return XZ_OPTIONS_ERROR; 2799 2800 /* Compressed Size */ 2801 if (s->temp.buf[1] & 0x40) { 2802 if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size) 2803 != XZ_STREAM_END) 2804 return XZ_DATA_ERROR; 2805 2806 s->block_header.compressed = s->vli; 2807 } else { 2808 s->block_header.compressed = VLI_UNKNOWN; 2809 } 2810 2811 /* Uncompressed Size */ 2812 if (s->temp.buf[1] & 0x80) { 2813 if (dec_vli(s, s->temp.buf, &s->temp.pos, s->temp.size) 2814 != XZ_STREAM_END) 2815 return XZ_DATA_ERROR; 2816 2817 s->block_header.uncompressed = s->vli; 2818 } else { 2819 s->block_header.uncompressed = VLI_UNKNOWN; 2820 } 2821 2822 #ifdef XZ_DEC_BCJ 2823 /* If there are two filters, the first one must be a BCJ filter. */ 2824 s->bcj_active = s->temp.buf[1] & 0x01; 2825 if (s->bcj_active) { 2826 if (s->temp.size - s->temp.pos < 2) 2827 return XZ_OPTIONS_ERROR; 2828 2829 ret = xz_dec_bcj_reset(s->bcj, s->temp.buf[s->temp.pos++]); 2830 if (ret != XZ_OK) 2831 return ret; 2832 2833 /* 2834 * We don't support custom start offset, 2835 * so Size of Properties must be zero. 2836 */ 2837 if (s->temp.buf[s->temp.pos++] != 0x00) 2838 return XZ_OPTIONS_ERROR; 2839 } 2840 #endif 2841 2842 /* Valid Filter Flags always take at least two bytes. */ 2843 if (s->temp.size - s->temp.pos < 2) 2844 return XZ_DATA_ERROR; 2845 2846 /* Filter ID = LZMA2 */ 2847 if (s->temp.buf[s->temp.pos++] != 0x21) 2848 return XZ_OPTIONS_ERROR; 2849 2850 /* Size of Properties = 1-byte Filter Properties */ 2851 if (s->temp.buf[s->temp.pos++] != 0x01) 2852 return XZ_OPTIONS_ERROR; 2853 2854 /* Filter Properties contains LZMA2 dictionary size. */ 2855 if (s->temp.size - s->temp.pos < 1) 2856 return XZ_DATA_ERROR; 2857 2858 ret = xz_dec_lzma2_reset(s->lzma2, s->temp.buf[s->temp.pos++]); 2859 if (ret != XZ_OK) 2860 return ret; 2861 2862 /* The rest must be Header Padding. */ 2863 while (s->temp.pos < s->temp.size) 2864 if (s->temp.buf[s->temp.pos++] != 0x00) 2865 return XZ_OPTIONS_ERROR; 2866 2867 s->temp.pos = 0; 2868 s->block.compressed = 0; 2869 s->block.uncompressed = 0; 2870 2871 return XZ_OK; 2872 } 2873 2874 static enum xz_ret dec_main(struct xz_dec *s, struct xz_buf *b) 2875 { 2876 enum xz_ret ret; 2877 2878 /* 2879 * Store the start position for the case when we are in the middle 2880 * of the Index field. 2881 */ 2882 s->in_start = b->in_pos; 2883 2884 for (;;) { 2885 switch (s->sequence) { 2886 case SEQ_STREAM_HEADER: 2887 /* 2888 * Stream Header is copied to s->temp, and then 2889 * decoded from there. This way if the caller 2890 * gives us only little input at a time, we can 2891 * still keep the Stream Header decoding code 2892 * simple. Similar approach is used in many places 2893 * in this file. 2894 */ 2895 if (!fill_temp(s, b)) 2896 return XZ_OK; 2897 2898 /* 2899 * If dec_stream_header() returns 2900 * XZ_UNSUPPORTED_CHECK, it is still possible 2901 * to continue decoding if working in multi-call 2902 * mode. Thus, update s->sequence before calling 2903 * dec_stream_header(). 2904 */ 2905 s->sequence = SEQ_BLOCK_START; 2906 2907 ret = dec_stream_header(s); 2908 if (ret != XZ_OK) 2909 return ret; 2910 2911 case SEQ_BLOCK_START: 2912 /* We need one byte of input to continue. */ 2913 if (b->in_pos == b->in_size) 2914 return XZ_OK; 2915 2916 /* See if this is the beginning of the Index field. */ 2917 if (b->in[b->in_pos] == 0) { 2918 s->in_start = b->in_pos++; 2919 s->sequence = SEQ_INDEX; 2920 break; 2921 } 2922 2923 /* 2924 * Calculate the size of the Block Header and 2925 * prepare to decode it. 2926 */ 2927 s->block_header.size 2928 = ((uint32_t)b->in[b->in_pos] + 1) * 4; 2929 2930 s->temp.size = s->block_header.size; 2931 s->temp.pos = 0; 2932 s->sequence = SEQ_BLOCK_HEADER; 2933 2934 case SEQ_BLOCK_HEADER: 2935 if (!fill_temp(s, b)) 2936 return XZ_OK; 2937 2938 ret = dec_block_header(s); 2939 if (ret != XZ_OK) 2940 return ret; 2941 2942 s->sequence = SEQ_BLOCK_UNCOMPRESS; 2943 2944 case SEQ_BLOCK_UNCOMPRESS: 2945 ret = dec_block(s, b); 2946 if (ret != XZ_STREAM_END) 2947 return ret; 2948 2949 s->sequence = SEQ_BLOCK_PADDING; 2950 2951 case SEQ_BLOCK_PADDING: 2952 /* 2953 * Size of Compressed Data + Block Padding 2954 * must be a multiple of four. We don't need 2955 * s->block.compressed for anything else 2956 * anymore, so we use it here to test the size 2957 * of the Block Padding field. 2958 */ 2959 while (s->block.compressed & 3) { 2960 if (b->in_pos == b->in_size) 2961 return XZ_OK; 2962 2963 if (b->in[b->in_pos++] != 0) 2964 return XZ_DATA_ERROR; 2965 2966 ++s->block.compressed; 2967 } 2968 2969 s->sequence = SEQ_BLOCK_CHECK; 2970 2971 case SEQ_BLOCK_CHECK: 2972 if (s->check_type == XZ_CHECK_CRC32) { 2973 ret = crc_validate(s, b, 32); 2974 if (ret != XZ_STREAM_END) 2975 return ret; 2976 } 2977 else if (IS_CRC64(s->check_type)) { 2978 ret = crc_validate(s, b, 64); 2979 if (ret != XZ_STREAM_END) 2980 return ret; 2981 } 2982 else if (!check_skip(s, b)) { 2983 return XZ_OK; 2984 } 2985 2986 s->sequence = SEQ_BLOCK_START; 2987 break; 2988 2989 case SEQ_INDEX: 2990 ret = dec_index(s, b); 2991 if (ret != XZ_STREAM_END) 2992 return ret; 2993 2994 s->sequence = SEQ_INDEX_PADDING; 2995 2996 case SEQ_INDEX_PADDING: 2997 while ((s->index.size + (b->in_pos - s->in_start)) 2998 & 3) { 2999 if (b->in_pos == b->in_size) { 3000 index_update(s, b); 3001 return XZ_OK; 3002 } 3003 3004 if (b->in[b->in_pos++] != 0) 3005 return XZ_DATA_ERROR; 3006 } 3007 3008 /* Finish the CRC32 value and Index size. */ 3009 index_update(s, b); 3010 3011 /* Compare the hashes to validate the Index field. */ 3012 if (!memeq(&s->block.hash, &s->index.hash, 3013 sizeof(s->block.hash))) 3014 return XZ_DATA_ERROR; 3015 3016 s->sequence = SEQ_INDEX_CRC32; 3017 3018 case SEQ_INDEX_CRC32: 3019 ret = crc_validate(s, b, 32); 3020 if (ret != XZ_STREAM_END) 3021 return ret; 3022 3023 s->temp.size = STREAM_HEADER_SIZE; 3024 s->sequence = SEQ_STREAM_FOOTER; 3025 3026 case SEQ_STREAM_FOOTER: 3027 if (!fill_temp(s, b)) 3028 return XZ_OK; 3029 3030 return dec_stream_footer(s); 3031 } 3032 } 3033 3034 /* Never reached */ 3035 } 3036 3037 /* 3038 * xz_dec_run() is a wrapper for dec_main() to handle some special cases in 3039 * multi-call and single-call decoding. 3040 * 3041 * In multi-call mode, we must return XZ_BUF_ERROR when it seems clear that we 3042 * are not going to make any progress anymore. This is to prevent the caller 3043 * from calling us infinitely when the input file is truncated or otherwise 3044 * corrupt. Since zlib-style API allows that the caller fills the input buffer 3045 * only when the decoder doesn't produce any new output, we have to be careful 3046 * to avoid returning XZ_BUF_ERROR too easily: XZ_BUF_ERROR is returned only 3047 * after the second consecutive call to xz_dec_run() that makes no progress. 3048 * 3049 * In single-call mode, if we couldn't decode everything and no error 3050 * occurred, either the input is truncated or the output buffer is too small. 3051 * Since we know that the last input byte never produces any output, we know 3052 * that if all the input was consumed and decoding wasn't finished, the file 3053 * must be corrupt. Otherwise the output buffer has to be too small or the 3054 * file is corrupt in a way that decoding it produces too big output. 3055 * 3056 * If single-call decoding fails, we reset b->in_pos and b->out_pos back to 3057 * their original values. This is because with some filter chains there won't 3058 * be any valid uncompressed data in the output buffer unless the decoding 3059 * actually succeeds (that's the price to pay of using the output buffer as 3060 * the workspace). 3061 */ 3062 enum xz_ret xz_dec_run(struct xz_dec *s, struct xz_buf *b) 3063 { 3064 size_t in_start; 3065 size_t out_start; 3066 enum xz_ret ret; 3067 3068 in_start = b->in_pos; 3069 out_start = b->out_pos; 3070 ret = dec_main(s, b); 3071 3072 if (ret == XZ_OK && in_start == b->in_pos && out_start == b->out_pos) { 3073 if (s->allow_buf_error) 3074 ret = XZ_BUF_ERROR; 3075 3076 s->allow_buf_error = 1; 3077 } else { 3078 s->allow_buf_error = 0; 3079 } 3080 3081 return ret; 3082 } 3083 3084 struct xz_dec *xz_dec_init(uint32_t dict_max) 3085 { 3086 struct xz_dec *s = malloc(sizeof(*s)); 3087 if (!s) 3088 return NULL; 3089 3090 #ifdef XZ_DEC_BCJ 3091 s->bcj = malloc(sizeof(*s->bcj)); 3092 if (!s->bcj) 3093 goto error_bcj; 3094 #endif 3095 3096 s->lzma2 = xz_dec_lzma2_create(dict_max); 3097 if (s->lzma2 == NULL) 3098 goto error_lzma2; 3099 3100 xz_dec_reset(s); 3101 return s; 3102 3103 error_lzma2: 3104 #ifdef XZ_DEC_BCJ 3105 free(s->bcj); 3106 error_bcj: 3107 #endif 3108 free(s); 3109 return NULL; 3110 } 3111 3112 void xz_dec_reset(struct xz_dec *s) 3113 { 3114 s->sequence = SEQ_STREAM_HEADER; 3115 s->allow_buf_error = 0; 3116 s->pos = 0; 3117 s->crc = 0; 3118 memset(&s->block, 0, sizeof(s->block)); 3119 memset(&s->index, 0, sizeof(s->index)); 3120 s->temp.pos = 0; 3121 s->temp.size = STREAM_HEADER_SIZE; 3122 } 3123 3124 void xz_dec_end(struct xz_dec *s) 3125 { 3126 if (s != NULL) { 3127 free((s->lzma2)->dict.buf); 3128 free(s->lzma2); 3129 3130 #ifdef XZ_DEC_BCJ 3131 free(s->bcj); 3132 #endif 3133 free(s); 3134 } 3135 } 3136