1 // Copyright 2012 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // main entry for the decoder 11 // 12 // Authors: Vikas Arora (vikaas.arora@gmail.com) 13 // Jyrki Alakuijala (jyrki@google.com) 14 15 #include <stdlib.h> 16 17 #include "src/dec/alphai_dec.h" 18 #include "src/dec/vp8li_dec.h" 19 #include "src/dsp/dsp.h" 20 #include "src/dsp/lossless.h" 21 #include "src/dsp/lossless_common.h" 22 #include "src/dsp/yuv.h" 23 #include "src/utils/endian_inl_utils.h" 24 #include "src/utils/huffman_utils.h" 25 #include "src/utils/utils.h" 26 27 #define NUM_ARGB_CACHE_ROWS 16 28 29 static const int kCodeLengthLiterals = 16; 30 static const int kCodeLengthRepeatCode = 16; 31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 }; 32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 }; 33 34 // ----------------------------------------------------------------------------- 35 // Five Huffman codes are used at each meta code: 36 // 1. green + length prefix codes + color cache codes, 37 // 2. alpha, 38 // 3. red, 39 // 4. blue, and, 40 // 5. distance prefix codes. 41 typedef enum { 42 GREEN = 0, 43 RED = 1, 44 BLUE = 2, 45 ALPHA = 3, 46 DIST = 4 47 } HuffIndex; 48 49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = { 50 NUM_LITERAL_CODES + NUM_LENGTH_CODES, 51 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES, 52 NUM_DISTANCE_CODES 53 }; 54 55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = { 56 0, 1, 1, 1, 0 57 }; 58 59 #define NUM_CODE_LENGTH_CODES 19 60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = { 61 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 62 }; 63 64 #define CODE_TO_PLANE_CODES 120 65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = { 66 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a, 67 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a, 68 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b, 69 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03, 70 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c, 71 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e, 72 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b, 73 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f, 74 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b, 75 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41, 76 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f, 77 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70 78 }; 79 80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha 81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for 82 // distance) and lookup table sizes for them in worst case are 630 and 410 83 // respectively. Size of green alphabet depends on color cache size and is equal 84 // to 256 (green component values) + 24 (length prefix values) 85 // + color_cache_size (between 0 and 2048). 86 // All values computed for 8-bit first level lookup with Mark Adler's tool: 87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c 88 #define FIXED_TABLE_SIZE (630 * 3 + 410) 89 static const uint16_t kTableSize[12] = { 90 FIXED_TABLE_SIZE + 654, 91 FIXED_TABLE_SIZE + 656, 92 FIXED_TABLE_SIZE + 658, 93 FIXED_TABLE_SIZE + 662, 94 FIXED_TABLE_SIZE + 670, 95 FIXED_TABLE_SIZE + 686, 96 FIXED_TABLE_SIZE + 718, 97 FIXED_TABLE_SIZE + 782, 98 FIXED_TABLE_SIZE + 912, 99 FIXED_TABLE_SIZE + 1168, 100 FIXED_TABLE_SIZE + 1680, 101 FIXED_TABLE_SIZE + 2704 102 }; 103 104 static int DecodeImageStream(int xsize, int ysize, 105 int is_level0, 106 VP8LDecoder* const dec, 107 uint32_t** const decoded_data); 108 109 //------------------------------------------------------------------------------ 110 111 int VP8LCheckSignature(const uint8_t* const data, size_t size) { 112 return (size >= VP8L_FRAME_HEADER_SIZE && 113 data[0] == VP8L_MAGIC_BYTE && 114 (data[4] >> 5) == 0); // version 115 } 116 117 static int ReadImageInfo(VP8LBitReader* const br, 118 int* const width, int* const height, 119 int* const has_alpha) { 120 if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0; 121 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 122 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1; 123 *has_alpha = VP8LReadBits(br, 1); 124 if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0; 125 return !br->eos_; 126 } 127 128 int VP8LGetInfo(const uint8_t* data, size_t data_size, 129 int* const width, int* const height, int* const has_alpha) { 130 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) { 131 return 0; // not enough data 132 } else if (!VP8LCheckSignature(data, data_size)) { 133 return 0; // bad signature 134 } else { 135 int w, h, a; 136 VP8LBitReader br; 137 VP8LInitBitReader(&br, data, data_size); 138 if (!ReadImageInfo(&br, &w, &h, &a)) { 139 return 0; 140 } 141 if (width != NULL) *width = w; 142 if (height != NULL) *height = h; 143 if (has_alpha != NULL) *has_alpha = a; 144 return 1; 145 } 146 } 147 148 //------------------------------------------------------------------------------ 149 150 static WEBP_INLINE int GetCopyDistance(int distance_symbol, 151 VP8LBitReader* const br) { 152 int extra_bits, offset; 153 if (distance_symbol < 4) { 154 return distance_symbol + 1; 155 } 156 extra_bits = (distance_symbol - 2) >> 1; 157 offset = (2 + (distance_symbol & 1)) << extra_bits; 158 return offset + VP8LReadBits(br, extra_bits) + 1; 159 } 160 161 static WEBP_INLINE int GetCopyLength(int length_symbol, 162 VP8LBitReader* const br) { 163 // Length and distance prefixes are encoded the same way. 164 return GetCopyDistance(length_symbol, br); 165 } 166 167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) { 168 if (plane_code > CODE_TO_PLANE_CODES) { 169 return plane_code - CODE_TO_PLANE_CODES; 170 } else { 171 const int dist_code = kCodeToPlane[plane_code - 1]; 172 const int yoffset = dist_code >> 4; 173 const int xoffset = 8 - (dist_code & 0xf); 174 const int dist = yoffset * xsize + xoffset; 175 return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small 176 } 177 } 178 179 //------------------------------------------------------------------------------ 180 // Decodes the next Huffman code from bit-stream. 181 // FillBitWindow(br) needs to be called at minimum every second call 182 // to ReadSymbol, in order to pre-fetch enough bits. 183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table, 184 VP8LBitReader* const br) { 185 int nbits; 186 uint32_t val = VP8LPrefetchBits(br); 187 table += val & HUFFMAN_TABLE_MASK; 188 nbits = table->bits - HUFFMAN_TABLE_BITS; 189 if (nbits > 0) { 190 VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS); 191 val = VP8LPrefetchBits(br); 192 table += table->value; 193 table += val & ((1 << nbits) - 1); 194 } 195 VP8LSetBitPos(br, br->bit_pos_ + table->bits); 196 return table->value; 197 } 198 199 // Reads packed symbol depending on GREEN channel 200 #define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask) 201 #define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES 202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group, 203 VP8LBitReader* const br, 204 uint32_t* const dst) { 205 const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1); 206 const HuffmanCode32 code = group->packed_table[val]; 207 assert(group->use_packed_table); 208 if (code.bits < BITS_SPECIAL_MARKER) { 209 VP8LSetBitPos(br, br->bit_pos_ + code.bits); 210 *dst = code.value; 211 return PACKED_NON_LITERAL_CODE; 212 } else { 213 VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER); 214 assert(code.value >= NUM_LITERAL_CODES); 215 return code.value; 216 } 217 } 218 219 static int AccumulateHCode(HuffmanCode hcode, int shift, 220 HuffmanCode32* const huff) { 221 huff->bits += hcode.bits; 222 huff->value |= (uint32_t)hcode.value << shift; 223 assert(huff->bits <= HUFFMAN_TABLE_BITS); 224 return hcode.bits; 225 } 226 227 static void BuildPackedTable(HTreeGroup* const htree_group) { 228 uint32_t code; 229 for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) { 230 uint32_t bits = code; 231 HuffmanCode32* const huff = &htree_group->packed_table[bits]; 232 HuffmanCode hcode = htree_group->htrees[GREEN][bits]; 233 if (hcode.value >= NUM_LITERAL_CODES) { 234 huff->bits = hcode.bits + BITS_SPECIAL_MARKER; 235 huff->value = hcode.value; 236 } else { 237 huff->bits = 0; 238 huff->value = 0; 239 bits >>= AccumulateHCode(hcode, 8, huff); 240 bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff); 241 bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff); 242 bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff); 243 (void)bits; 244 } 245 } 246 } 247 248 static int ReadHuffmanCodeLengths( 249 VP8LDecoder* const dec, const int* const code_length_code_lengths, 250 int num_symbols, int* const code_lengths) { 251 int ok = 0; 252 VP8LBitReader* const br = &dec->br_; 253 int symbol; 254 int max_symbol; 255 int prev_code_len = DEFAULT_CODE_LENGTH; 256 HuffmanCode table[1 << LENGTHS_TABLE_BITS]; 257 258 if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS, 259 code_length_code_lengths, 260 NUM_CODE_LENGTH_CODES)) { 261 goto End; 262 } 263 264 if (VP8LReadBits(br, 1)) { // use length 265 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3); 266 max_symbol = 2 + VP8LReadBits(br, length_nbits); 267 if (max_symbol > num_symbols) { 268 goto End; 269 } 270 } else { 271 max_symbol = num_symbols; 272 } 273 274 symbol = 0; 275 while (symbol < num_symbols) { 276 const HuffmanCode* p; 277 int code_len; 278 if (max_symbol-- == 0) break; 279 VP8LFillBitWindow(br); 280 p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK]; 281 VP8LSetBitPos(br, br->bit_pos_ + p->bits); 282 code_len = p->value; 283 if (code_len < kCodeLengthLiterals) { 284 code_lengths[symbol++] = code_len; 285 if (code_len != 0) prev_code_len = code_len; 286 } else { 287 const int use_prev = (code_len == kCodeLengthRepeatCode); 288 const int slot = code_len - kCodeLengthLiterals; 289 const int extra_bits = kCodeLengthExtraBits[slot]; 290 const int repeat_offset = kCodeLengthRepeatOffsets[slot]; 291 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset; 292 if (symbol + repeat > num_symbols) { 293 goto End; 294 } else { 295 const int length = use_prev ? prev_code_len : 0; 296 while (repeat-- > 0) code_lengths[symbol++] = length; 297 } 298 } 299 } 300 ok = 1; 301 302 End: 303 if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 304 return ok; 305 } 306 307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman 308 // tree. 309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec, 310 int* const code_lengths, HuffmanCode* const table) { 311 int ok = 0; 312 int size = 0; 313 VP8LBitReader* const br = &dec->br_; 314 const int simple_code = VP8LReadBits(br, 1); 315 316 memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths)); 317 318 if (simple_code) { // Read symbols, codes & code lengths directly. 319 const int num_symbols = VP8LReadBits(br, 1) + 1; 320 const int first_symbol_len_code = VP8LReadBits(br, 1); 321 // The first code is either 1 bit or 8 bit code. 322 int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8); 323 code_lengths[symbol] = 1; 324 // The second code (if present), is always 8 bit long. 325 if (num_symbols == 2) { 326 symbol = VP8LReadBits(br, 8); 327 code_lengths[symbol] = 1; 328 } 329 ok = 1; 330 } else { // Decode Huffman-coded code lengths. 331 int i; 332 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 }; 333 const int num_codes = VP8LReadBits(br, 4) + 4; 334 if (num_codes > NUM_CODE_LENGTH_CODES) { 335 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 336 return 0; 337 } 338 339 for (i = 0; i < num_codes; ++i) { 340 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3); 341 } 342 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size, 343 code_lengths); 344 } 345 346 ok = ok && !br->eos_; 347 if (ok) { 348 size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS, 349 code_lengths, alphabet_size); 350 } 351 if (!ok || size == 0) { 352 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 353 return 0; 354 } 355 return size; 356 } 357 358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize, 359 int color_cache_bits, int allow_recursion) { 360 int i, j; 361 VP8LBitReader* const br = &dec->br_; 362 VP8LMetadata* const hdr = &dec->hdr_; 363 uint32_t* huffman_image = NULL; 364 HTreeGroup* htree_groups = NULL; 365 HuffmanCode* huffman_tables = NULL; 366 HuffmanCode* huffman_table = NULL; 367 int num_htree_groups = 1; 368 int num_htree_groups_max = 1; 369 int max_alphabet_size = 0; 370 int* code_lengths = NULL; 371 const int table_size = kTableSize[color_cache_bits]; 372 int* mapping = NULL; 373 int ok = 0; 374 375 if (allow_recursion && VP8LReadBits(br, 1)) { 376 // use meta Huffman codes. 377 const int huffman_precision = VP8LReadBits(br, 3) + 2; 378 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision); 379 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision); 380 const int huffman_pixs = huffman_xsize * huffman_ysize; 381 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec, 382 &huffman_image)) { 383 goto Error; 384 } 385 hdr->huffman_subsample_bits_ = huffman_precision; 386 for (i = 0; i < huffman_pixs; ++i) { 387 // The huffman data is stored in red and green bytes. 388 const int group = (huffman_image[i] >> 8) & 0xffff; 389 huffman_image[i] = group; 390 if (group >= num_htree_groups_max) { 391 num_htree_groups_max = group + 1; 392 } 393 } 394 // Check the validity of num_htree_groups_max. If it seems too big, use a 395 // smaller value for later. This will prevent big memory allocations to end 396 // up with a bad bitstream anyway. 397 // The value of 1000 is totally arbitrary. We know that num_htree_groups_max 398 // is smaller than (1 << 16) and should be smaller than the number of pixels 399 // (though the format allows it to be bigger). 400 if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) { 401 // Create a mapping from the used indices to the minimal set of used 402 // values [0, num_htree_groups) 403 mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping)); 404 if (mapping == NULL) { 405 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 406 goto Error; 407 } 408 // -1 means a value is unmapped, and therefore unused in the Huffman 409 // image. 410 memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping)); 411 for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) { 412 // Get the current mapping for the group and remap the Huffman image. 413 int* const mapped_group = &mapping[huffman_image[i]]; 414 if (*mapped_group == -1) *mapped_group = num_htree_groups++; 415 huffman_image[i] = *mapped_group; 416 } 417 } else { 418 num_htree_groups = num_htree_groups_max; 419 } 420 } 421 422 if (br->eos_) goto Error; 423 424 // Find maximum alphabet size for the htree group. 425 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 426 int alphabet_size = kAlphabetSize[j]; 427 if (j == 0 && color_cache_bits > 0) { 428 alphabet_size += 1 << color_cache_bits; 429 } 430 if (max_alphabet_size < alphabet_size) { 431 max_alphabet_size = alphabet_size; 432 } 433 } 434 435 code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, 436 sizeof(*code_lengths)); 437 huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size, 438 sizeof(*huffman_tables)); 439 htree_groups = VP8LHtreeGroupsNew(num_htree_groups); 440 441 if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) { 442 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 443 goto Error; 444 } 445 446 huffman_table = huffman_tables; 447 for (i = 0; i < num_htree_groups_max; ++i) { 448 // If the index "i" is unused in the Huffman image, just make sure the 449 // coefficients are valid but do not store them. 450 if (mapping != NULL && mapping[i] == -1) { 451 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 452 int alphabet_size = kAlphabetSize[j]; 453 if (j == 0 && color_cache_bits > 0) { 454 alphabet_size += (1 << color_cache_bits); 455 } 456 // Passing in NULL so that nothing gets filled. 457 if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, NULL)) { 458 goto Error; 459 } 460 } 461 } else { 462 HTreeGroup* const htree_group = 463 &htree_groups[(mapping == NULL) ? i : mapping[i]]; 464 HuffmanCode** const htrees = htree_group->htrees; 465 int size; 466 int total_size = 0; 467 int is_trivial_literal = 1; 468 int max_bits = 0; 469 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { 470 int alphabet_size = kAlphabetSize[j]; 471 htrees[j] = huffman_table; 472 if (j == 0 && color_cache_bits > 0) { 473 alphabet_size += (1 << color_cache_bits); 474 } 475 size = ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_table); 476 if (size == 0) { 477 goto Error; 478 } 479 if (is_trivial_literal && kLiteralMap[j] == 1) { 480 is_trivial_literal = (huffman_table->bits == 0); 481 } 482 total_size += huffman_table->bits; 483 huffman_table += size; 484 if (j <= ALPHA) { 485 int local_max_bits = code_lengths[0]; 486 int k; 487 for (k = 1; k < alphabet_size; ++k) { 488 if (code_lengths[k] > local_max_bits) { 489 local_max_bits = code_lengths[k]; 490 } 491 } 492 max_bits += local_max_bits; 493 } 494 } 495 htree_group->is_trivial_literal = is_trivial_literal; 496 htree_group->is_trivial_code = 0; 497 if (is_trivial_literal) { 498 const int red = htrees[RED][0].value; 499 const int blue = htrees[BLUE][0].value; 500 const int alpha = htrees[ALPHA][0].value; 501 htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue; 502 if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) { 503 htree_group->is_trivial_code = 1; 504 htree_group->literal_arb |= htrees[GREEN][0].value << 8; 505 } 506 } 507 htree_group->use_packed_table = 508 !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS); 509 if (htree_group->use_packed_table) BuildPackedTable(htree_group); 510 } 511 } 512 ok = 1; 513 514 // All OK. Finalize pointers. 515 hdr->huffman_image_ = huffman_image; 516 hdr->num_htree_groups_ = num_htree_groups; 517 hdr->htree_groups_ = htree_groups; 518 hdr->huffman_tables_ = huffman_tables; 519 520 Error: 521 WebPSafeFree(code_lengths); 522 WebPSafeFree(mapping); 523 if (!ok) { 524 WebPSafeFree(huffman_image); 525 WebPSafeFree(huffman_tables); 526 VP8LHtreeGroupsFree(htree_groups); 527 } 528 return ok; 529 } 530 531 //------------------------------------------------------------------------------ 532 // Scaling. 533 534 #if !defined(WEBP_REDUCE_SIZE) 535 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) { 536 const int num_channels = 4; 537 const int in_width = io->mb_w; 538 const int out_width = io->scaled_width; 539 const int in_height = io->mb_h; 540 const int out_height = io->scaled_height; 541 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width; 542 rescaler_t* work; // Rescaler work area. 543 const uint64_t scaled_data_size = (uint64_t)out_width; 544 uint32_t* scaled_data; // Temporary storage for scaled BGRA data. 545 const uint64_t memory_size = sizeof(*dec->rescaler) + 546 work_size * sizeof(*work) + 547 scaled_data_size * sizeof(*scaled_data); 548 uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory)); 549 if (memory == NULL) { 550 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 551 return 0; 552 } 553 assert(dec->rescaler_memory == NULL); 554 dec->rescaler_memory = memory; 555 556 dec->rescaler = (WebPRescaler*)memory; 557 memory += sizeof(*dec->rescaler); 558 work = (rescaler_t*)memory; 559 memory += work_size * sizeof(*work); 560 scaled_data = (uint32_t*)memory; 561 562 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data, 563 out_width, out_height, 0, num_channels, work); 564 return 1; 565 } 566 #endif // WEBP_REDUCE_SIZE 567 568 //------------------------------------------------------------------------------ 569 // Export to ARGB 570 571 #if !defined(WEBP_REDUCE_SIZE) 572 573 // We have special "export" function since we need to convert from BGRA 574 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace, 575 int rgba_stride, uint8_t* const rgba) { 576 uint32_t* const src = (uint32_t*)rescaler->dst; 577 const int dst_width = rescaler->dst_width; 578 int num_lines_out = 0; 579 while (WebPRescalerHasPendingOutput(rescaler)) { 580 uint8_t* const dst = rgba + num_lines_out * rgba_stride; 581 WebPRescalerExportRow(rescaler); 582 WebPMultARGBRow(src, dst_width, 1); 583 VP8LConvertFromBGRA(src, dst_width, colorspace, dst); 584 ++num_lines_out; 585 } 586 return num_lines_out; 587 } 588 589 // Emit scaled rows. 590 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec, 591 uint8_t* in, int in_stride, int mb_h, 592 uint8_t* const out, int out_stride) { 593 const WEBP_CSP_MODE colorspace = dec->output_->colorspace; 594 int num_lines_in = 0; 595 int num_lines_out = 0; 596 while (num_lines_in < mb_h) { 597 uint8_t* const row_in = in + num_lines_in * in_stride; 598 uint8_t* const row_out = out + num_lines_out * out_stride; 599 const int lines_left = mb_h - num_lines_in; 600 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 601 int lines_imported; 602 assert(needed_lines > 0 && needed_lines <= lines_left); 603 WebPMultARGBRows(row_in, in_stride, 604 dec->rescaler->src_width, needed_lines, 0); 605 lines_imported = 606 WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride); 607 assert(lines_imported == needed_lines); 608 num_lines_in += lines_imported; 609 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out); 610 } 611 return num_lines_out; 612 } 613 614 #endif // WEBP_REDUCE_SIZE 615 616 // Emit rows without any scaling. 617 static int EmitRows(WEBP_CSP_MODE colorspace, 618 const uint8_t* row_in, int in_stride, 619 int mb_w, int mb_h, 620 uint8_t* const out, int out_stride) { 621 int lines = mb_h; 622 uint8_t* row_out = out; 623 while (lines-- > 0) { 624 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out); 625 row_in += in_stride; 626 row_out += out_stride; 627 } 628 return mb_h; // Num rows out == num rows in. 629 } 630 631 //------------------------------------------------------------------------------ 632 // Export to YUVA 633 634 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos, 635 const WebPDecBuffer* const output) { 636 const WebPYUVABuffer* const buf = &output->u.YUVA; 637 638 // first, the luma plane 639 WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width); 640 641 // then U/V planes 642 { 643 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride; 644 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride; 645 // even lines: store values 646 // odd lines: average with previous values 647 WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1)); 648 } 649 // Lastly, store alpha if needed. 650 if (buf->a != NULL) { 651 uint8_t* const a = buf->a + y_pos * buf->a_stride; 652 #if defined(WORDS_BIGENDIAN) 653 WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0); 654 #else 655 WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0); 656 #endif 657 } 658 } 659 660 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) { 661 WebPRescaler* const rescaler = dec->rescaler; 662 uint32_t* const src = (uint32_t*)rescaler->dst; 663 const int dst_width = rescaler->dst_width; 664 int num_lines_out = 0; 665 while (WebPRescalerHasPendingOutput(rescaler)) { 666 WebPRescalerExportRow(rescaler); 667 WebPMultARGBRow(src, dst_width, 1); 668 ConvertToYUVA(src, dst_width, y_pos, dec->output_); 669 ++y_pos; 670 ++num_lines_out; 671 } 672 return num_lines_out; 673 } 674 675 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec, 676 uint8_t* in, int in_stride, int mb_h) { 677 int num_lines_in = 0; 678 int y_pos = dec->last_out_row_; 679 while (num_lines_in < mb_h) { 680 const int lines_left = mb_h - num_lines_in; 681 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left); 682 int lines_imported; 683 WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0); 684 lines_imported = 685 WebPRescalerImport(dec->rescaler, lines_left, in, in_stride); 686 assert(lines_imported == needed_lines); 687 num_lines_in += lines_imported; 688 in += needed_lines * in_stride; 689 y_pos += ExportYUVA(dec, y_pos); 690 } 691 return y_pos; 692 } 693 694 static int EmitRowsYUVA(const VP8LDecoder* const dec, 695 const uint8_t* in, int in_stride, 696 int mb_w, int num_rows) { 697 int y_pos = dec->last_out_row_; 698 while (num_rows-- > 0) { 699 ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_); 700 in += in_stride; 701 ++y_pos; 702 } 703 return y_pos; 704 } 705 706 //------------------------------------------------------------------------------ 707 // Cropping. 708 709 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and 710 // crop options. Also updates the input data pointer, so that it points to the 711 // start of the cropped window. Note that pixels are in ARGB format even if 712 // 'in_data' is uint8_t*. 713 // Returns true if the crop window is not empty. 714 static int SetCropWindow(VP8Io* const io, int y_start, int y_end, 715 uint8_t** const in_data, int pixel_stride) { 716 assert(y_start < y_end); 717 assert(io->crop_left < io->crop_right); 718 if (y_end > io->crop_bottom) { 719 y_end = io->crop_bottom; // make sure we don't overflow on last row. 720 } 721 if (y_start < io->crop_top) { 722 const int delta = io->crop_top - y_start; 723 y_start = io->crop_top; 724 *in_data += delta * pixel_stride; 725 } 726 if (y_start >= y_end) return 0; // Crop window is empty. 727 728 *in_data += io->crop_left * sizeof(uint32_t); 729 730 io->mb_y = y_start - io->crop_top; 731 io->mb_w = io->crop_right - io->crop_left; 732 io->mb_h = y_end - y_start; 733 return 1; // Non-empty crop window. 734 } 735 736 //------------------------------------------------------------------------------ 737 738 static WEBP_INLINE int GetMetaIndex( 739 const uint32_t* const image, int xsize, int bits, int x, int y) { 740 if (bits == 0) return 0; 741 return image[xsize * (y >> bits) + (x >> bits)]; 742 } 743 744 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr, 745 int x, int y) { 746 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_, 747 hdr->huffman_subsample_bits_, x, y); 748 assert(meta_index < hdr->num_htree_groups_); 749 return hdr->htree_groups_ + meta_index; 750 } 751 752 //------------------------------------------------------------------------------ 753 // Main loop, with custom row-processing function 754 755 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row); 756 757 static void ApplyInverseTransforms(VP8LDecoder* const dec, 758 int start_row, int num_rows, 759 const uint32_t* const rows) { 760 int n = dec->next_transform_; 761 const int cache_pixs = dec->width_ * num_rows; 762 const int end_row = start_row + num_rows; 763 const uint32_t* rows_in = rows; 764 uint32_t* const rows_out = dec->argb_cache_; 765 766 // Inverse transforms. 767 while (n-- > 0) { 768 VP8LTransform* const transform = &dec->transforms_[n]; 769 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out); 770 rows_in = rows_out; 771 } 772 if (rows_in != rows_out) { 773 // No transform called, hence just copy. 774 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out)); 775 } 776 } 777 778 // Processes (transforms, scales & color-converts) the rows decoded after the 779 // last call. 780 static void ProcessRows(VP8LDecoder* const dec, int row) { 781 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_; 782 const int num_rows = row - dec->last_row_; 783 784 assert(row <= dec->io_->crop_bottom); 785 // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size 786 // of argb_cache_), but we currently don't need more than that. 787 assert(num_rows <= NUM_ARGB_CACHE_ROWS); 788 if (num_rows > 0) { // Emit output. 789 VP8Io* const io = dec->io_; 790 uint8_t* rows_data = (uint8_t*)dec->argb_cache_; 791 const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA 792 ApplyInverseTransforms(dec, dec->last_row_, num_rows, rows); 793 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) { 794 // Nothing to output (this time). 795 } else { 796 const WebPDecBuffer* const output = dec->output_; 797 if (WebPIsRGBMode(output->colorspace)) { // convert to RGBA 798 const WebPRGBABuffer* const buf = &output->u.RGBA; 799 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride; 800 const int num_rows_out = 801 #if !defined(WEBP_REDUCE_SIZE) 802 io->use_scaling ? 803 EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h, 804 rgba, buf->stride) : 805 #endif // WEBP_REDUCE_SIZE 806 EmitRows(output->colorspace, rows_data, in_stride, 807 io->mb_w, io->mb_h, rgba, buf->stride); 808 // Update 'last_out_row_'. 809 dec->last_out_row_ += num_rows_out; 810 } else { // convert to YUVA 811 dec->last_out_row_ = io->use_scaling ? 812 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) : 813 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h); 814 } 815 assert(dec->last_out_row_ <= output->height); 816 } 817 } 818 819 // Update 'last_row_'. 820 dec->last_row_ = row; 821 assert(dec->last_row_ <= dec->height_); 822 } 823 824 // Row-processing for the special case when alpha data contains only one 825 // transform (color indexing), and trivial non-green literals. 826 static int Is8bOptimizable(const VP8LMetadata* const hdr) { 827 int i; 828 if (hdr->color_cache_size_ > 0) return 0; 829 // When the Huffman tree contains only one symbol, we can skip the 830 // call to ReadSymbol() for red/blue/alpha channels. 831 for (i = 0; i < hdr->num_htree_groups_; ++i) { 832 HuffmanCode** const htrees = hdr->htree_groups_[i].htrees; 833 if (htrees[RED][0].bits > 0) return 0; 834 if (htrees[BLUE][0].bits > 0) return 0; 835 if (htrees[ALPHA][0].bits > 0) return 0; 836 } 837 return 1; 838 } 839 840 static void AlphaApplyFilter(ALPHDecoder* const alph_dec, 841 int first_row, int last_row, 842 uint8_t* out, int stride) { 843 if (alph_dec->filter_ != WEBP_FILTER_NONE) { 844 int y; 845 const uint8_t* prev_line = alph_dec->prev_line_; 846 assert(WebPUnfilters[alph_dec->filter_] != NULL); 847 for (y = first_row; y < last_row; ++y) { 848 WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride); 849 prev_line = out; 850 out += stride; 851 } 852 alph_dec->prev_line_ = prev_line; 853 } 854 } 855 856 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) { 857 // For vertical and gradient filtering, we need to decode the part above the 858 // crop_top row, in order to have the correct spatial predictors. 859 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque; 860 const int top_row = 861 (alph_dec->filter_ == WEBP_FILTER_NONE || 862 alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top 863 : dec->last_row_; 864 const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_; 865 assert(last_row <= dec->io_->crop_bottom); 866 if (last_row > first_row) { 867 // Special method for paletted alpha data. We only process the cropped area. 868 const int width = dec->io_->width; 869 uint8_t* out = alph_dec->output_ + width * first_row; 870 const uint8_t* const in = 871 (uint8_t*)dec->pixels_ + dec->width_ * first_row; 872 VP8LTransform* const transform = &dec->transforms_[0]; 873 assert(dec->next_transform_ == 1); 874 assert(transform->type_ == COLOR_INDEXING_TRANSFORM); 875 VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row, 876 in, out); 877 AlphaApplyFilter(alph_dec, first_row, last_row, out, width); 878 } 879 dec->last_row_ = dec->last_out_row_ = last_row; 880 } 881 882 //------------------------------------------------------------------------------ 883 // Helper functions for fast pattern copy (8b and 32b) 884 885 // cyclic rotation of pattern word 886 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) { 887 #if defined(WORDS_BIGENDIAN) 888 return ((V & 0xff000000u) >> 24) | (V << 8); 889 #else 890 return ((V & 0xffu) << 24) | (V >> 8); 891 #endif 892 } 893 894 // copy 1, 2 or 4-bytes pattern 895 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst, 896 int length, uint32_t pattern) { 897 int i; 898 // align 'dst' to 4-bytes boundary. Adjust the pattern along the way. 899 while ((uintptr_t)dst & 3) { 900 *dst++ = *src++; 901 pattern = Rotate8b(pattern); 902 --length; 903 } 904 // Copy the pattern 4 bytes at a time. 905 for (i = 0; i < (length >> 2); ++i) { 906 ((uint32_t*)dst)[i] = pattern; 907 } 908 // Finish with left-overs. 'pattern' is still correctly positioned, 909 // so no Rotate8b() call is needed. 910 for (i <<= 2; i < length; ++i) { 911 dst[i] = src[i]; 912 } 913 } 914 915 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) { 916 const uint8_t* src = dst - dist; 917 if (length >= 8) { 918 uint32_t pattern = 0; 919 switch (dist) { 920 case 1: 921 pattern = src[0]; 922 #if defined(__arm__) || defined(_M_ARM) // arm doesn't like multiply that much 923 pattern |= pattern << 8; 924 pattern |= pattern << 16; 925 #elif defined(WEBP_USE_MIPS_DSP_R2) 926 __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern)); 927 #else 928 pattern = 0x01010101u * pattern; 929 #endif 930 break; 931 case 2: 932 #if !defined(WORDS_BIGENDIAN) 933 memcpy(&pattern, src, sizeof(uint16_t)); 934 #else 935 pattern = ((uint32_t)src[0] << 8) | src[1]; 936 #endif 937 #if defined(__arm__) || defined(_M_ARM) 938 pattern |= pattern << 16; 939 #elif defined(WEBP_USE_MIPS_DSP_R2) 940 __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern)); 941 #else 942 pattern = 0x00010001u * pattern; 943 #endif 944 break; 945 case 4: 946 memcpy(&pattern, src, sizeof(uint32_t)); 947 break; 948 default: 949 goto Copy; 950 break; 951 } 952 CopySmallPattern8b(src, dst, length, pattern); 953 return; 954 } 955 Copy: 956 if (dist >= length) { // no overlap -> use memcpy() 957 memcpy(dst, src, length * sizeof(*dst)); 958 } else { 959 int i; 960 for (i = 0; i < length; ++i) dst[i] = src[i]; 961 } 962 } 963 964 // copy pattern of 1 or 2 uint32_t's 965 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src, 966 uint32_t* dst, 967 int length, uint64_t pattern) { 968 int i; 969 if ((uintptr_t)dst & 4) { // Align 'dst' to 8-bytes boundary. 970 *dst++ = *src++; 971 pattern = (pattern >> 32) | (pattern << 32); 972 --length; 973 } 974 assert(0 == ((uintptr_t)dst & 7)); 975 for (i = 0; i < (length >> 1); ++i) { 976 ((uint64_t*)dst)[i] = pattern; // Copy the pattern 8 bytes at a time. 977 } 978 if (length & 1) { // Finish with left-over. 979 dst[i << 1] = src[i << 1]; 980 } 981 } 982 983 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst, 984 int dist, int length) { 985 const uint32_t* const src = dst - dist; 986 if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) { 987 uint64_t pattern; 988 if (dist == 1) { 989 pattern = (uint64_t)src[0]; 990 pattern |= pattern << 32; 991 } else { 992 memcpy(&pattern, src, sizeof(pattern)); 993 } 994 CopySmallPattern32b(src, dst, length, pattern); 995 } else if (dist >= length) { // no overlap 996 memcpy(dst, src, length * sizeof(*dst)); 997 } else { 998 int i; 999 for (i = 0; i < length; ++i) dst[i] = src[i]; 1000 } 1001 } 1002 1003 //------------------------------------------------------------------------------ 1004 1005 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data, 1006 int width, int height, int last_row) { 1007 int ok = 1; 1008 int row = dec->last_pixel_ / width; 1009 int col = dec->last_pixel_ % width; 1010 VP8LBitReader* const br = &dec->br_; 1011 VP8LMetadata* const hdr = &dec->hdr_; 1012 int pos = dec->last_pixel_; // current position 1013 const int end = width * height; // End of data 1014 const int last = width * last_row; // Last pixel to decode 1015 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 1016 const int mask = hdr->huffman_mask_; 1017 const HTreeGroup* htree_group = 1018 (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL; 1019 assert(pos <= end); 1020 assert(last_row <= height); 1021 assert(Is8bOptimizable(hdr)); 1022 1023 while (!br->eos_ && pos < last) { 1024 int code; 1025 // Only update when changing tile. 1026 if ((col & mask) == 0) { 1027 htree_group = GetHtreeGroupForPos(hdr, col, row); 1028 } 1029 assert(htree_group != NULL); 1030 VP8LFillBitWindow(br); 1031 code = ReadSymbol(htree_group->htrees[GREEN], br); 1032 if (code < NUM_LITERAL_CODES) { // Literal 1033 data[pos] = code; 1034 ++pos; 1035 ++col; 1036 if (col >= width) { 1037 col = 0; 1038 ++row; 1039 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { 1040 ExtractPalettedAlphaRows(dec, row); 1041 } 1042 } 1043 } else if (code < len_code_limit) { // Backward reference 1044 int dist_code, dist; 1045 const int length_sym = code - NUM_LITERAL_CODES; 1046 const int length = GetCopyLength(length_sym, br); 1047 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br); 1048 VP8LFillBitWindow(br); 1049 dist_code = GetCopyDistance(dist_symbol, br); 1050 dist = PlaneCodeToDistance(width, dist_code); 1051 if (pos >= dist && end - pos >= length) { 1052 CopyBlock8b(data + pos, dist, length); 1053 } else { 1054 ok = 0; 1055 goto End; 1056 } 1057 pos += length; 1058 col += length; 1059 while (col >= width) { 1060 col -= width; 1061 ++row; 1062 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { 1063 ExtractPalettedAlphaRows(dec, row); 1064 } 1065 } 1066 if (pos < last && (col & mask)) { 1067 htree_group = GetHtreeGroupForPos(hdr, col, row); 1068 } 1069 } else { // Not reached 1070 ok = 0; 1071 goto End; 1072 } 1073 br->eos_ = VP8LIsEndOfStream(br); 1074 } 1075 // Process the remaining rows corresponding to last row-block. 1076 ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row); 1077 1078 End: 1079 br->eos_ = VP8LIsEndOfStream(br); 1080 if (!ok || (br->eos_ && pos < end)) { 1081 ok = 0; 1082 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED 1083 : VP8_STATUS_BITSTREAM_ERROR; 1084 } else { 1085 dec->last_pixel_ = pos; 1086 } 1087 return ok; 1088 } 1089 1090 static void SaveState(VP8LDecoder* const dec, int last_pixel) { 1091 assert(dec->incremental_); 1092 dec->saved_br_ = dec->br_; 1093 dec->saved_last_pixel_ = last_pixel; 1094 if (dec->hdr_.color_cache_size_ > 0) { 1095 VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_); 1096 } 1097 } 1098 1099 static void RestoreState(VP8LDecoder* const dec) { 1100 assert(dec->br_.eos_); 1101 dec->status_ = VP8_STATUS_SUSPENDED; 1102 dec->br_ = dec->saved_br_; 1103 dec->last_pixel_ = dec->saved_last_pixel_; 1104 if (dec->hdr_.color_cache_size_ > 0) { 1105 VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_); 1106 } 1107 } 1108 1109 #define SYNC_EVERY_N_ROWS 8 // minimum number of rows between check-points 1110 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data, 1111 int width, int height, int last_row, 1112 ProcessRowsFunc process_func) { 1113 int row = dec->last_pixel_ / width; 1114 int col = dec->last_pixel_ % width; 1115 VP8LBitReader* const br = &dec->br_; 1116 VP8LMetadata* const hdr = &dec->hdr_; 1117 uint32_t* src = data + dec->last_pixel_; 1118 uint32_t* last_cached = src; 1119 uint32_t* const src_end = data + width * height; // End of data 1120 uint32_t* const src_last = data + width * last_row; // Last pixel to decode 1121 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES; 1122 const int color_cache_limit = len_code_limit + hdr->color_cache_size_; 1123 int next_sync_row = dec->incremental_ ? row : 1 << 24; 1124 VP8LColorCache* const color_cache = 1125 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL; 1126 const int mask = hdr->huffman_mask_; 1127 const HTreeGroup* htree_group = 1128 (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL; 1129 assert(dec->last_row_ < last_row); 1130 assert(src_last <= src_end); 1131 1132 while (src < src_last) { 1133 int code; 1134 if (row >= next_sync_row) { 1135 SaveState(dec, (int)(src - data)); 1136 next_sync_row = row + SYNC_EVERY_N_ROWS; 1137 } 1138 // Only update when changing tile. Note we could use this test: 1139 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed 1140 // but that's actually slower and needs storing the previous col/row. 1141 if ((col & mask) == 0) { 1142 htree_group = GetHtreeGroupForPos(hdr, col, row); 1143 } 1144 assert(htree_group != NULL); 1145 if (htree_group->is_trivial_code) { 1146 *src = htree_group->literal_arb; 1147 goto AdvanceByOne; 1148 } 1149 VP8LFillBitWindow(br); 1150 if (htree_group->use_packed_table) { 1151 code = ReadPackedSymbols(htree_group, br, src); 1152 if (VP8LIsEndOfStream(br)) break; 1153 if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne; 1154 } else { 1155 code = ReadSymbol(htree_group->htrees[GREEN], br); 1156 } 1157 if (VP8LIsEndOfStream(br)) break; 1158 if (code < NUM_LITERAL_CODES) { // Literal 1159 if (htree_group->is_trivial_literal) { 1160 *src = htree_group->literal_arb | (code << 8); 1161 } else { 1162 int red, blue, alpha; 1163 red = ReadSymbol(htree_group->htrees[RED], br); 1164 VP8LFillBitWindow(br); 1165 blue = ReadSymbol(htree_group->htrees[BLUE], br); 1166 alpha = ReadSymbol(htree_group->htrees[ALPHA], br); 1167 if (VP8LIsEndOfStream(br)) break; 1168 *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue; 1169 } 1170 AdvanceByOne: 1171 ++src; 1172 ++col; 1173 if (col >= width) { 1174 col = 0; 1175 ++row; 1176 if (process_func != NULL) { 1177 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { 1178 process_func(dec, row); 1179 } 1180 } 1181 if (color_cache != NULL) { 1182 while (last_cached < src) { 1183 VP8LColorCacheInsert(color_cache, *last_cached++); 1184 } 1185 } 1186 } 1187 } else if (code < len_code_limit) { // Backward reference 1188 int dist_code, dist; 1189 const int length_sym = code - NUM_LITERAL_CODES; 1190 const int length = GetCopyLength(length_sym, br); 1191 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br); 1192 VP8LFillBitWindow(br); 1193 dist_code = GetCopyDistance(dist_symbol, br); 1194 dist = PlaneCodeToDistance(width, dist_code); 1195 1196 if (VP8LIsEndOfStream(br)) break; 1197 if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) { 1198 goto Error; 1199 } else { 1200 CopyBlock32b(src, dist, length); 1201 } 1202 src += length; 1203 col += length; 1204 while (col >= width) { 1205 col -= width; 1206 ++row; 1207 if (process_func != NULL) { 1208 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) { 1209 process_func(dec, row); 1210 } 1211 } 1212 } 1213 // Because of the check done above (before 'src' was incremented by 1214 // 'length'), the following holds true. 1215 assert(src <= src_end); 1216 if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row); 1217 if (color_cache != NULL) { 1218 while (last_cached < src) { 1219 VP8LColorCacheInsert(color_cache, *last_cached++); 1220 } 1221 } 1222 } else if (code < color_cache_limit) { // Color cache 1223 const int key = code - len_code_limit; 1224 assert(color_cache != NULL); 1225 while (last_cached < src) { 1226 VP8LColorCacheInsert(color_cache, *last_cached++); 1227 } 1228 *src = VP8LColorCacheLookup(color_cache, key); 1229 goto AdvanceByOne; 1230 } else { // Not reached 1231 goto Error; 1232 } 1233 } 1234 1235 br->eos_ = VP8LIsEndOfStream(br); 1236 if (dec->incremental_ && br->eos_ && src < src_end) { 1237 RestoreState(dec); 1238 } else if (!br->eos_) { 1239 // Process the remaining rows corresponding to last row-block. 1240 if (process_func != NULL) { 1241 process_func(dec, row > last_row ? last_row : row); 1242 } 1243 dec->status_ = VP8_STATUS_OK; 1244 dec->last_pixel_ = (int)(src - data); // end-of-scan marker 1245 } else { 1246 // if not incremental, and we are past the end of buffer (eos_=1), then this 1247 // is a real bitstream error. 1248 goto Error; 1249 } 1250 return 1; 1251 1252 Error: 1253 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1254 return 0; 1255 } 1256 1257 // ----------------------------------------------------------------------------- 1258 // VP8LTransform 1259 1260 static void ClearTransform(VP8LTransform* const transform) { 1261 WebPSafeFree(transform->data_); 1262 transform->data_ = NULL; 1263 } 1264 1265 // For security reason, we need to remap the color map to span 1266 // the total possible bundled values, and not just the num_colors. 1267 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) { 1268 int i; 1269 const int final_num_colors = 1 << (8 >> transform->bits_); 1270 uint32_t* const new_color_map = 1271 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors, 1272 sizeof(*new_color_map)); 1273 if (new_color_map == NULL) { 1274 return 0; 1275 } else { 1276 uint8_t* const data = (uint8_t*)transform->data_; 1277 uint8_t* const new_data = (uint8_t*)new_color_map; 1278 new_color_map[0] = transform->data_[0]; 1279 for (i = 4; i < 4 * num_colors; ++i) { 1280 // Equivalent to AddPixelEq(), on a byte-basis. 1281 new_data[i] = (data[i] + new_data[i - 4]) & 0xff; 1282 } 1283 for (; i < 4 * final_num_colors; ++i) { 1284 new_data[i] = 0; // black tail. 1285 } 1286 WebPSafeFree(transform->data_); 1287 transform->data_ = new_color_map; 1288 } 1289 return 1; 1290 } 1291 1292 static int ReadTransform(int* const xsize, int const* ysize, 1293 VP8LDecoder* const dec) { 1294 int ok = 1; 1295 VP8LBitReader* const br = &dec->br_; 1296 VP8LTransform* transform = &dec->transforms_[dec->next_transform_]; 1297 const VP8LImageTransformType type = 1298 (VP8LImageTransformType)VP8LReadBits(br, 2); 1299 1300 // Each transform type can only be present once in the stream. 1301 if (dec->transforms_seen_ & (1U << type)) { 1302 return 0; // Already there, let's not accept the second same transform. 1303 } 1304 dec->transforms_seen_ |= (1U << type); 1305 1306 transform->type_ = type; 1307 transform->xsize_ = *xsize; 1308 transform->ysize_ = *ysize; 1309 transform->data_ = NULL; 1310 ++dec->next_transform_; 1311 assert(dec->next_transform_ <= NUM_TRANSFORMS); 1312 1313 switch (type) { 1314 case PREDICTOR_TRANSFORM: 1315 case CROSS_COLOR_TRANSFORM: 1316 transform->bits_ = VP8LReadBits(br, 3) + 2; 1317 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_, 1318 transform->bits_), 1319 VP8LSubSampleSize(transform->ysize_, 1320 transform->bits_), 1321 0, dec, &transform->data_); 1322 break; 1323 case COLOR_INDEXING_TRANSFORM: { 1324 const int num_colors = VP8LReadBits(br, 8) + 1; 1325 const int bits = (num_colors > 16) ? 0 1326 : (num_colors > 4) ? 1 1327 : (num_colors > 2) ? 2 1328 : 3; 1329 *xsize = VP8LSubSampleSize(transform->xsize_, bits); 1330 transform->bits_ = bits; 1331 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_); 1332 ok = ok && ExpandColorMap(num_colors, transform); 1333 break; 1334 } 1335 case SUBTRACT_GREEN: 1336 break; 1337 default: 1338 assert(0); // can't happen 1339 break; 1340 } 1341 1342 return ok; 1343 } 1344 1345 // ----------------------------------------------------------------------------- 1346 // VP8LMetadata 1347 1348 static void InitMetadata(VP8LMetadata* const hdr) { 1349 assert(hdr != NULL); 1350 memset(hdr, 0, sizeof(*hdr)); 1351 } 1352 1353 static void ClearMetadata(VP8LMetadata* const hdr) { 1354 assert(hdr != NULL); 1355 1356 WebPSafeFree(hdr->huffman_image_); 1357 WebPSafeFree(hdr->huffman_tables_); 1358 VP8LHtreeGroupsFree(hdr->htree_groups_); 1359 VP8LColorCacheClear(&hdr->color_cache_); 1360 VP8LColorCacheClear(&hdr->saved_color_cache_); 1361 InitMetadata(hdr); 1362 } 1363 1364 // ----------------------------------------------------------------------------- 1365 // VP8LDecoder 1366 1367 VP8LDecoder* VP8LNew(void) { 1368 VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec)); 1369 if (dec == NULL) return NULL; 1370 dec->status_ = VP8_STATUS_OK; 1371 dec->state_ = READ_DIM; 1372 1373 VP8LDspInit(); // Init critical function pointers. 1374 1375 return dec; 1376 } 1377 1378 void VP8LClear(VP8LDecoder* const dec) { 1379 int i; 1380 if (dec == NULL) return; 1381 ClearMetadata(&dec->hdr_); 1382 1383 WebPSafeFree(dec->pixels_); 1384 dec->pixels_ = NULL; 1385 for (i = 0; i < dec->next_transform_; ++i) { 1386 ClearTransform(&dec->transforms_[i]); 1387 } 1388 dec->next_transform_ = 0; 1389 dec->transforms_seen_ = 0; 1390 1391 WebPSafeFree(dec->rescaler_memory); 1392 dec->rescaler_memory = NULL; 1393 1394 dec->output_ = NULL; // leave no trace behind 1395 } 1396 1397 void VP8LDelete(VP8LDecoder* const dec) { 1398 if (dec != NULL) { 1399 VP8LClear(dec); 1400 WebPSafeFree(dec); 1401 } 1402 } 1403 1404 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) { 1405 VP8LMetadata* const hdr = &dec->hdr_; 1406 const int num_bits = hdr->huffman_subsample_bits_; 1407 dec->width_ = width; 1408 dec->height_ = height; 1409 1410 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits); 1411 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1; 1412 } 1413 1414 static int DecodeImageStream(int xsize, int ysize, 1415 int is_level0, 1416 VP8LDecoder* const dec, 1417 uint32_t** const decoded_data) { 1418 int ok = 1; 1419 int transform_xsize = xsize; 1420 int transform_ysize = ysize; 1421 VP8LBitReader* const br = &dec->br_; 1422 VP8LMetadata* const hdr = &dec->hdr_; 1423 uint32_t* data = NULL; 1424 int color_cache_bits = 0; 1425 1426 // Read the transforms (may recurse). 1427 if (is_level0) { 1428 while (ok && VP8LReadBits(br, 1)) { 1429 ok = ReadTransform(&transform_xsize, &transform_ysize, dec); 1430 } 1431 } 1432 1433 // Color cache 1434 if (ok && VP8LReadBits(br, 1)) { 1435 color_cache_bits = VP8LReadBits(br, 4); 1436 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS); 1437 if (!ok) { 1438 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1439 goto End; 1440 } 1441 } 1442 1443 // Read the Huffman codes (may recurse). 1444 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize, 1445 color_cache_bits, is_level0); 1446 if (!ok) { 1447 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1448 goto End; 1449 } 1450 1451 // Finish setting up the color-cache 1452 if (color_cache_bits > 0) { 1453 hdr->color_cache_size_ = 1 << color_cache_bits; 1454 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) { 1455 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1456 ok = 0; 1457 goto End; 1458 } 1459 } else { 1460 hdr->color_cache_size_ = 0; 1461 } 1462 UpdateDecoder(dec, transform_xsize, transform_ysize); 1463 1464 if (is_level0) { // level 0 complete 1465 dec->state_ = READ_HDR; 1466 goto End; 1467 } 1468 1469 { 1470 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize; 1471 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data)); 1472 if (data == NULL) { 1473 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1474 ok = 0; 1475 goto End; 1476 } 1477 } 1478 1479 // Use the Huffman trees to decode the LZ77 encoded data. 1480 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize, 1481 transform_ysize, NULL); 1482 ok = ok && !br->eos_; 1483 1484 End: 1485 if (!ok) { 1486 WebPSafeFree(data); 1487 ClearMetadata(hdr); 1488 } else { 1489 if (decoded_data != NULL) { 1490 *decoded_data = data; 1491 } else { 1492 // We allocate image data in this function only for transforms. At level 0 1493 // (that is: not the transforms), we shouldn't have allocated anything. 1494 assert(data == NULL); 1495 assert(is_level0); 1496 } 1497 dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls. 1498 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind. 1499 } 1500 return ok; 1501 } 1502 1503 //------------------------------------------------------------------------------ 1504 // Allocate internal buffers dec->pixels_ and dec->argb_cache_. 1505 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) { 1506 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_; 1507 // Scratch buffer corresponding to top-prediction row for transforming the 1508 // first row in the row-blocks. Not needed for paletted alpha. 1509 const uint64_t cache_top_pixels = (uint16_t)final_width; 1510 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha. 1511 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS; 1512 const uint64_t total_num_pixels = 1513 num_pixels + cache_top_pixels + cache_pixels; 1514 1515 assert(dec->width_ <= final_width); 1516 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t)); 1517 if (dec->pixels_ == NULL) { 1518 dec->argb_cache_ = NULL; // for sanity check 1519 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1520 return 0; 1521 } 1522 dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels; 1523 return 1; 1524 } 1525 1526 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) { 1527 const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_; 1528 dec->argb_cache_ = NULL; // for sanity check 1529 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t)); 1530 if (dec->pixels_ == NULL) { 1531 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1532 return 0; 1533 } 1534 return 1; 1535 } 1536 1537 //------------------------------------------------------------------------------ 1538 1539 // Special row-processing that only stores the alpha data. 1540 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) { 1541 int cur_row = dec->last_row_; 1542 int num_rows = last_row - cur_row; 1543 const uint32_t* in = dec->pixels_ + dec->width_ * cur_row; 1544 1545 assert(last_row <= dec->io_->crop_bottom); 1546 while (num_rows > 0) { 1547 const int num_rows_to_process = 1548 (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows; 1549 // Extract alpha (which is stored in the green plane). 1550 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque; 1551 uint8_t* const output = alph_dec->output_; 1552 const int width = dec->io_->width; // the final width (!= dec->width_) 1553 const int cache_pixs = width * num_rows_to_process; 1554 uint8_t* const dst = output + width * cur_row; 1555 const uint32_t* const src = dec->argb_cache_; 1556 ApplyInverseTransforms(dec, cur_row, num_rows_to_process, in); 1557 WebPExtractGreen(src, dst, cache_pixs); 1558 AlphaApplyFilter(alph_dec, 1559 cur_row, cur_row + num_rows_to_process, dst, width); 1560 num_rows -= num_rows_to_process; 1561 in += num_rows_to_process * dec->width_; 1562 cur_row += num_rows_to_process; 1563 } 1564 assert(cur_row == last_row); 1565 dec->last_row_ = dec->last_out_row_ = last_row; 1566 } 1567 1568 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec, 1569 const uint8_t* const data, size_t data_size) { 1570 int ok = 0; 1571 VP8LDecoder* dec = VP8LNew(); 1572 1573 if (dec == NULL) return 0; 1574 1575 assert(alph_dec != NULL); 1576 1577 dec->width_ = alph_dec->width_; 1578 dec->height_ = alph_dec->height_; 1579 dec->io_ = &alph_dec->io_; 1580 dec->io_->opaque = alph_dec; 1581 dec->io_->width = alph_dec->width_; 1582 dec->io_->height = alph_dec->height_; 1583 1584 dec->status_ = VP8_STATUS_OK; 1585 VP8LInitBitReader(&dec->br_, data, data_size); 1586 1587 if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) { 1588 goto Err; 1589 } 1590 1591 // Special case: if alpha data uses only the color indexing transform and 1592 // doesn't use color cache (a frequent case), we will use DecodeAlphaData() 1593 // method that only needs allocation of 1 byte per pixel (alpha channel). 1594 if (dec->next_transform_ == 1 && 1595 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM && 1596 Is8bOptimizable(&dec->hdr_)) { 1597 alph_dec->use_8b_decode_ = 1; 1598 ok = AllocateInternalBuffers8b(dec); 1599 } else { 1600 // Allocate internal buffers (note that dec->width_ may have changed here). 1601 alph_dec->use_8b_decode_ = 0; 1602 ok = AllocateInternalBuffers32b(dec, alph_dec->width_); 1603 } 1604 1605 if (!ok) goto Err; 1606 1607 // Only set here, once we are sure it is valid (to avoid thread races). 1608 alph_dec->vp8l_dec_ = dec; 1609 return 1; 1610 1611 Err: 1612 VP8LDelete(dec); 1613 return 0; 1614 } 1615 1616 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) { 1617 VP8LDecoder* const dec = alph_dec->vp8l_dec_; 1618 assert(dec != NULL); 1619 assert(last_row <= dec->height_); 1620 1621 if (dec->last_row_ >= last_row) { 1622 return 1; // done 1623 } 1624 1625 if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing(); 1626 1627 // Decode (with special row processing). 1628 return alph_dec->use_8b_decode_ ? 1629 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_, 1630 last_row) : 1631 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1632 last_row, ExtractAlphaRows); 1633 } 1634 1635 //------------------------------------------------------------------------------ 1636 1637 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) { 1638 int width, height, has_alpha; 1639 1640 if (dec == NULL) return 0; 1641 if (io == NULL) { 1642 dec->status_ = VP8_STATUS_INVALID_PARAM; 1643 return 0; 1644 } 1645 1646 dec->io_ = io; 1647 dec->status_ = VP8_STATUS_OK; 1648 VP8LInitBitReader(&dec->br_, io->data, io->data_size); 1649 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) { 1650 dec->status_ = VP8_STATUS_BITSTREAM_ERROR; 1651 goto Error; 1652 } 1653 dec->state_ = READ_DIM; 1654 io->width = width; 1655 io->height = height; 1656 1657 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error; 1658 return 1; 1659 1660 Error: 1661 VP8LClear(dec); 1662 assert(dec->status_ != VP8_STATUS_OK); 1663 return 0; 1664 } 1665 1666 int VP8LDecodeImage(VP8LDecoder* const dec) { 1667 VP8Io* io = NULL; 1668 WebPDecParams* params = NULL; 1669 1670 // Sanity checks. 1671 if (dec == NULL) return 0; 1672 1673 assert(dec->hdr_.huffman_tables_ != NULL); 1674 assert(dec->hdr_.htree_groups_ != NULL); 1675 assert(dec->hdr_.num_htree_groups_ > 0); 1676 1677 io = dec->io_; 1678 assert(io != NULL); 1679 params = (WebPDecParams*)io->opaque; 1680 assert(params != NULL); 1681 1682 // Initialization. 1683 if (dec->state_ != READ_DATA) { 1684 dec->output_ = params->output; 1685 assert(dec->output_ != NULL); 1686 1687 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) { 1688 dec->status_ = VP8_STATUS_INVALID_PARAM; 1689 goto Err; 1690 } 1691 1692 if (!AllocateInternalBuffers32b(dec, io->width)) goto Err; 1693 1694 #if !defined(WEBP_REDUCE_SIZE) 1695 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err; 1696 #else 1697 if (io->use_scaling) { 1698 dec->status_ = VP8_STATUS_INVALID_PARAM; 1699 goto Err; 1700 } 1701 #endif 1702 if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) { 1703 // need the alpha-multiply functions for premultiplied output or rescaling 1704 WebPInitAlphaProcessing(); 1705 } 1706 1707 if (!WebPIsRGBMode(dec->output_->colorspace)) { 1708 WebPInitConvertARGBToYUV(); 1709 if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing(); 1710 } 1711 if (dec->incremental_) { 1712 if (dec->hdr_.color_cache_size_ > 0 && 1713 dec->hdr_.saved_color_cache_.colors_ == NULL) { 1714 if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_, 1715 dec->hdr_.color_cache_.hash_bits_)) { 1716 dec->status_ = VP8_STATUS_OUT_OF_MEMORY; 1717 goto Err; 1718 } 1719 } 1720 } 1721 dec->state_ = READ_DATA; 1722 } 1723 1724 // Decode. 1725 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_, 1726 io->crop_bottom, ProcessRows)) { 1727 goto Err; 1728 } 1729 1730 params->last_y = dec->last_out_row_; 1731 return 1; 1732 1733 Err: 1734 VP8LClear(dec); 1735 assert(dec->status_ != VP8_STATUS_OK); 1736 return 0; 1737 } 1738 1739 //------------------------------------------------------------------------------ 1740