1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Macroblock analysis 11 // 12 // Author: Skal (pascal.massimino@gmail.com) 13 14 #include <stdlib.h> 15 #include <string.h> 16 #include <assert.h> 17 18 #include "src/enc/vp8i_enc.h" 19 #include "src/enc/cost_enc.h" 20 #include "src/utils/utils.h" 21 22 #define MAX_ITERS_K_MEANS 6 23 24 //------------------------------------------------------------------------------ 25 // Smooth the segment map by replacing isolated block by the majority of its 26 // neighbours. 27 28 static void SmoothSegmentMap(VP8Encoder* const enc) { 29 int n, x, y; 30 const int w = enc->mb_w_; 31 const int h = enc->mb_h_; 32 const int majority_cnt_3_x_3_grid = 5; 33 uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp)); 34 assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec 35 36 if (tmp == NULL) return; 37 for (y = 1; y < h - 1; ++y) { 38 for (x = 1; x < w - 1; ++x) { 39 int cnt[NUM_MB_SEGMENTS] = { 0 }; 40 const VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 41 int majority_seg = mb->segment_; 42 // Check the 8 neighbouring segment values. 43 cnt[mb[-w - 1].segment_]++; // top-left 44 cnt[mb[-w + 0].segment_]++; // top 45 cnt[mb[-w + 1].segment_]++; // top-right 46 cnt[mb[ - 1].segment_]++; // left 47 cnt[mb[ + 1].segment_]++; // right 48 cnt[mb[ w - 1].segment_]++; // bottom-left 49 cnt[mb[ w + 0].segment_]++; // bottom 50 cnt[mb[ w + 1].segment_]++; // bottom-right 51 for (n = 0; n < NUM_MB_SEGMENTS; ++n) { 52 if (cnt[n] >= majority_cnt_3_x_3_grid) { 53 majority_seg = n; 54 break; 55 } 56 } 57 tmp[x + y * w] = majority_seg; 58 } 59 } 60 for (y = 1; y < h - 1; ++y) { 61 for (x = 1; x < w - 1; ++x) { 62 VP8MBInfo* const mb = &enc->mb_info_[x + w * y]; 63 mb->segment_ = tmp[x + y * w]; 64 } 65 } 66 WebPSafeFree(tmp); 67 } 68 69 //------------------------------------------------------------------------------ 70 // set segment susceptibility alpha_ / beta_ 71 72 static WEBP_INLINE int clip(int v, int m, int M) { 73 return (v < m) ? m : (v > M) ? M : v; 74 } 75 76 static void SetSegmentAlphas(VP8Encoder* const enc, 77 const int centers[NUM_MB_SEGMENTS], 78 int mid) { 79 const int nb = enc->segment_hdr_.num_segments_; 80 int min = centers[0], max = centers[0]; 81 int n; 82 83 if (nb > 1) { 84 for (n = 0; n < nb; ++n) { 85 if (min > centers[n]) min = centers[n]; 86 if (max < centers[n]) max = centers[n]; 87 } 88 } 89 if (max == min) max = min + 1; 90 assert(mid <= max && mid >= min); 91 for (n = 0; n < nb; ++n) { 92 const int alpha = 255 * (centers[n] - mid) / (max - min); 93 const int beta = 255 * (centers[n] - min) / (max - min); 94 enc->dqm_[n].alpha_ = clip(alpha, -127, 127); 95 enc->dqm_[n].beta_ = clip(beta, 0, 255); 96 } 97 } 98 99 //------------------------------------------------------------------------------ 100 // Compute susceptibility based on DCT-coeff histograms: 101 // the higher, the "easier" the macroblock is to compress. 102 103 #define MAX_ALPHA 255 // 8b of precision for susceptibilities. 104 #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. 105 #define DEFAULT_ALPHA (-1) 106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) 107 108 static int FinalAlphaValue(int alpha) { 109 alpha = MAX_ALPHA - alpha; 110 return clip(alpha, 0, MAX_ALPHA); 111 } 112 113 static int GetAlpha(const VP8Histogram* const histo) { 114 // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer 115 // values which happen to be mostly noise. This leaves the maximum precision 116 // for handling the useful small values which contribute most. 117 const int max_value = histo->max_value; 118 const int last_non_zero = histo->last_non_zero; 119 const int alpha = 120 (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; 121 return alpha; 122 } 123 124 static void InitHistogram(VP8Histogram* const histo) { 125 histo->max_value = 0; 126 histo->last_non_zero = 1; 127 } 128 129 static void MergeHistograms(const VP8Histogram* const in, 130 VP8Histogram* const out) { 131 if (in->max_value > out->max_value) { 132 out->max_value = in->max_value; 133 } 134 if (in->last_non_zero > out->last_non_zero) { 135 out->last_non_zero = in->last_non_zero; 136 } 137 } 138 139 //------------------------------------------------------------------------------ 140 // Simplified k-Means, to assign Nb segments based on alpha-histogram 141 142 static void AssignSegments(VP8Encoder* const enc, 143 const int alphas[MAX_ALPHA + 1]) { 144 // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an 145 // explicit check is needed to avoid spurious warning about 'n + 1' exceeding 146 // array bounds of 'centers' with some compilers (noticed with gcc-4.9). 147 const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ? 148 enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS; 149 int centers[NUM_MB_SEGMENTS]; 150 int weighted_average = 0; 151 int map[MAX_ALPHA + 1]; 152 int a, n, k; 153 int min_a = 0, max_a = MAX_ALPHA, range_a; 154 // 'int' type is ok for histo, and won't overflow 155 int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; 156 157 assert(nb >= 1); 158 assert(nb <= NUM_MB_SEGMENTS); 159 160 // bracket the input 161 for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} 162 min_a = n; 163 for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} 164 max_a = n; 165 range_a = max_a - min_a; 166 167 // Spread initial centers evenly 168 for (k = 0, n = 1; k < nb; ++k, n += 2) { 169 assert(n < 2 * nb); 170 centers[k] = min_a + (n * range_a) / (2 * nb); 171 } 172 173 for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough 174 int total_weight; 175 int displaced; 176 // Reset stats 177 for (n = 0; n < nb; ++n) { 178 accum[n] = 0; 179 dist_accum[n] = 0; 180 } 181 // Assign nearest center for each 'a' 182 n = 0; // track the nearest center for current 'a' 183 for (a = min_a; a <= max_a; ++a) { 184 if (alphas[a]) { 185 while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) { 186 n++; 187 } 188 map[a] = n; 189 // accumulate contribution into best centroid 190 dist_accum[n] += a * alphas[a]; 191 accum[n] += alphas[a]; 192 } 193 } 194 // All point are classified. Move the centroids to the 195 // center of their respective cloud. 196 displaced = 0; 197 weighted_average = 0; 198 total_weight = 0; 199 for (n = 0; n < nb; ++n) { 200 if (accum[n]) { 201 const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n]; 202 displaced += abs(centers[n] - new_center); 203 centers[n] = new_center; 204 weighted_average += new_center * accum[n]; 205 total_weight += accum[n]; 206 } 207 } 208 weighted_average = (weighted_average + total_weight / 2) / total_weight; 209 if (displaced < 5) break; // no need to keep on looping... 210 } 211 212 // Map each original value to the closest centroid 213 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 214 VP8MBInfo* const mb = &enc->mb_info_[n]; 215 const int alpha = mb->alpha_; 216 mb->segment_ = map[alpha]; 217 mb->alpha_ = centers[map[alpha]]; // for the record. 218 } 219 220 if (nb > 1) { 221 const int smooth = (enc->config_->preprocessing & 1); 222 if (smooth) SmoothSegmentMap(enc); 223 } 224 225 SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. 226 } 227 228 //------------------------------------------------------------------------------ 229 // Macroblock analysis: collect histogram for each mode, deduce the maximal 230 // susceptibility and set best modes for this macroblock. 231 // Segment assignment is done later. 232 233 // Number of modes to inspect for alpha_ evaluation. We don't need to test all 234 // the possible modes during the analysis phase: we risk falling into a local 235 // optimum, or be subject to boundary effect 236 #define MAX_INTRA16_MODE 2 237 #define MAX_INTRA4_MODE 2 238 #define MAX_UV_MODE 2 239 240 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { 241 const int max_mode = MAX_INTRA16_MODE; 242 int mode; 243 int best_alpha = DEFAULT_ALPHA; 244 int best_mode = 0; 245 246 VP8MakeLuma16Preds(it); 247 for (mode = 0; mode < max_mode; ++mode) { 248 VP8Histogram histo; 249 int alpha; 250 251 InitHistogram(&histo); 252 VP8CollectHistogram(it->yuv_in_ + Y_OFF_ENC, 253 it->yuv_p_ + VP8I16ModeOffsets[mode], 254 0, 16, &histo); 255 alpha = GetAlpha(&histo); 256 if (IS_BETTER_ALPHA(alpha, best_alpha)) { 257 best_alpha = alpha; 258 best_mode = mode; 259 } 260 } 261 VP8SetIntra16Mode(it, best_mode); 262 return best_alpha; 263 } 264 265 static int FastMBAnalyze(VP8EncIterator* const it) { 266 // Empirical cut-off value, should be around 16 (~=block size). We use the 267 // [8-17] range and favor intra4 at high quality, intra16 for low quality. 268 const int q = (int)it->enc_->config_->quality; 269 const uint32_t kThreshold = 8 + (17 - 8) * q / 100; 270 int k; 271 uint32_t dc[16], m, m2; 272 for (k = 0; k < 16; k += 4) { 273 VP8Mean16x4(it->yuv_in_ + Y_OFF_ENC + k * BPS, &dc[k]); 274 } 275 for (m = 0, m2 = 0, k = 0; k < 16; ++k) { 276 m += dc[k]; 277 m2 += dc[k] * dc[k]; 278 } 279 if (kThreshold * m2 < m * m) { 280 VP8SetIntra16Mode(it, 0); // DC16 281 } else { 282 const uint8_t modes[16] = { 0 }; // DC4 283 VP8SetIntra4Mode(it, modes); 284 } 285 return 0; 286 } 287 288 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, 289 int best_alpha) { 290 uint8_t modes[16]; 291 const int max_mode = MAX_INTRA4_MODE; 292 int i4_alpha; 293 VP8Histogram total_histo; 294 int cur_histo = 0; 295 InitHistogram(&total_histo); 296 297 VP8IteratorStartI4(it); 298 do { 299 int mode; 300 int best_mode_alpha = DEFAULT_ALPHA; 301 VP8Histogram histos[2]; 302 const uint8_t* const src = it->yuv_in_ + Y_OFF_ENC + VP8Scan[it->i4_]; 303 304 VP8MakeIntra4Preds(it); 305 for (mode = 0; mode < max_mode; ++mode) { 306 int alpha; 307 308 InitHistogram(&histos[cur_histo]); 309 VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], 310 0, 1, &histos[cur_histo]); 311 alpha = GetAlpha(&histos[cur_histo]); 312 if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { 313 best_mode_alpha = alpha; 314 modes[it->i4_] = mode; 315 cur_histo ^= 1; // keep track of best histo so far. 316 } 317 } 318 // accumulate best histogram 319 MergeHistograms(&histos[cur_histo ^ 1], &total_histo); 320 // Note: we reuse the original samples for predictors 321 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF_ENC)); 322 323 i4_alpha = GetAlpha(&total_histo); 324 if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { 325 VP8SetIntra4Mode(it, modes); 326 best_alpha = i4_alpha; 327 } 328 return best_alpha; 329 } 330 331 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { 332 int best_alpha = DEFAULT_ALPHA; 333 int smallest_alpha = 0; 334 int best_mode = 0; 335 const int max_mode = MAX_UV_MODE; 336 int mode; 337 338 VP8MakeChroma8Preds(it); 339 for (mode = 0; mode < max_mode; ++mode) { 340 VP8Histogram histo; 341 int alpha; 342 InitHistogram(&histo); 343 VP8CollectHistogram(it->yuv_in_ + U_OFF_ENC, 344 it->yuv_p_ + VP8UVModeOffsets[mode], 345 16, 16 + 4 + 4, &histo); 346 alpha = GetAlpha(&histo); 347 if (IS_BETTER_ALPHA(alpha, best_alpha)) { 348 best_alpha = alpha; 349 } 350 // The best prediction mode tends to be the one with the smallest alpha. 351 if (mode == 0 || alpha < smallest_alpha) { 352 smallest_alpha = alpha; 353 best_mode = mode; 354 } 355 } 356 VP8SetIntraUVMode(it, best_mode); 357 return best_alpha; 358 } 359 360 static void MBAnalyze(VP8EncIterator* const it, 361 int alphas[MAX_ALPHA + 1], 362 int* const alpha, int* const uv_alpha) { 363 const VP8Encoder* const enc = it->enc_; 364 int best_alpha, best_uv_alpha; 365 366 VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED 367 VP8SetSkip(it, 0); // not skipped 368 VP8SetSegment(it, 0); // default segment, spec-wise. 369 370 if (enc->method_ <= 1) { 371 best_alpha = FastMBAnalyze(it); 372 } else { 373 best_alpha = MBAnalyzeBestIntra16Mode(it); 374 if (enc->method_ >= 5) { 375 // We go and make a fast decision for intra4/intra16. 376 // It's usually not a good and definitive pick, but helps seeding the 377 // stats about level bit-cost. 378 // TODO(skal): improve criterion. 379 best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha); 380 } 381 } 382 best_uv_alpha = MBAnalyzeBestUVMode(it); 383 384 // Final susceptibility mix 385 best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; 386 best_alpha = FinalAlphaValue(best_alpha); 387 alphas[best_alpha]++; 388 it->mb_->alpha_ = best_alpha; // for later remapping. 389 390 // Accumulate for later complexity analysis. 391 *alpha += best_alpha; // mixed susceptibility (not just luma) 392 *uv_alpha += best_uv_alpha; 393 } 394 395 static void DefaultMBInfo(VP8MBInfo* const mb) { 396 mb->type_ = 1; // I16x16 397 mb->uv_mode_ = 0; 398 mb->skip_ = 0; // not skipped 399 mb->segment_ = 0; // default segment 400 mb->alpha_ = 0; 401 } 402 403 //------------------------------------------------------------------------------ 404 // Main analysis loop: 405 // Collect all susceptibilities for each macroblock and record their 406 // distribution in alphas[]. Segments is assigned a-posteriori, based on 407 // this histogram. 408 // We also pick an intra16 prediction mode, which shouldn't be considered 409 // final except for fast-encode settings. We can also pick some intra4 modes 410 // and decide intra4/intra16, but that's usually almost always a bad choice at 411 // this stage. 412 413 static void ResetAllMBInfo(VP8Encoder* const enc) { 414 int n; 415 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { 416 DefaultMBInfo(&enc->mb_info_[n]); 417 } 418 // Default susceptibilities. 419 enc->dqm_[0].alpha_ = 0; 420 enc->dqm_[0].beta_ = 0; 421 // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value. 422 enc->alpha_ = 0; 423 enc->uv_alpha_ = 0; 424 WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); 425 } 426 427 // struct used to collect job result 428 typedef struct { 429 WebPWorker worker; 430 int alphas[MAX_ALPHA + 1]; 431 int alpha, uv_alpha; 432 VP8EncIterator it; 433 int delta_progress; 434 } SegmentJob; 435 436 // main work call 437 static int DoSegmentsJob(void* arg1, void* arg2) { 438 SegmentJob* const job = (SegmentJob*)arg1; 439 VP8EncIterator* const it = (VP8EncIterator*)arg2; 440 int ok = 1; 441 if (!VP8IteratorIsDone(it)) { 442 uint8_t tmp[32 + WEBP_ALIGN_CST]; 443 uint8_t* const scratch = (uint8_t*)WEBP_ALIGN(tmp); 444 do { 445 // Let's pretend we have perfect lossless reconstruction. 446 VP8IteratorImport(it, scratch); 447 MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha); 448 ok = VP8IteratorProgress(it, job->delta_progress); 449 } while (ok && VP8IteratorNext(it)); 450 } 451 return ok; 452 } 453 454 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) { 455 int i; 456 for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i]; 457 dst->alpha += src->alpha; 458 dst->uv_alpha += src->uv_alpha; 459 } 460 461 // initialize the job struct with some tasks to perform 462 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job, 463 int start_row, int end_row) { 464 WebPGetWorkerInterface()->Init(&job->worker); 465 job->worker.data1 = job; 466 job->worker.data2 = &job->it; 467 job->worker.hook = DoSegmentsJob; 468 VP8IteratorInit(enc, &job->it); 469 VP8IteratorSetRow(&job->it, start_row); 470 VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_); 471 memset(job->alphas, 0, sizeof(job->alphas)); 472 job->alpha = 0; 473 job->uv_alpha = 0; 474 // only one of both jobs can record the progress, since we don't 475 // expect the user's hook to be multi-thread safe 476 job->delta_progress = (start_row == 0) ? 20 : 0; 477 } 478 479 // main entry point 480 int VP8EncAnalyze(VP8Encoder* const enc) { 481 int ok = 1; 482 const int do_segments = 483 enc->config_->emulate_jpeg_size || // We need the complexity evaluation. 484 (enc->segment_hdr_.num_segments_ > 1) || 485 (enc->method_ <= 1); // for method 0 - 1, we need preds_[] to be filled. 486 if (do_segments) { 487 const int last_row = enc->mb_h_; 488 // We give a little more than a half work to the main thread. 489 const int split_row = (9 * last_row + 15) >> 4; 490 const int total_mb = last_row * enc->mb_w_; 491 #ifdef WEBP_USE_THREAD 492 const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it 493 const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow); 494 #else 495 const int do_mt = 0; 496 #endif 497 const WebPWorkerInterface* const worker_interface = 498 WebPGetWorkerInterface(); 499 SegmentJob main_job; 500 if (do_mt) { 501 SegmentJob side_job; 502 // Note the use of '&' instead of '&&' because we must call the functions 503 // no matter what. 504 InitSegmentJob(enc, &main_job, 0, split_row); 505 InitSegmentJob(enc, &side_job, split_row, last_row); 506 // we don't need to call Reset() on main_job.worker, since we're calling 507 // WebPWorkerExecute() on it 508 ok &= worker_interface->Reset(&side_job.worker); 509 // launch the two jobs in parallel 510 if (ok) { 511 worker_interface->Launch(&side_job.worker); 512 worker_interface->Execute(&main_job.worker); 513 ok &= worker_interface->Sync(&side_job.worker); 514 ok &= worker_interface->Sync(&main_job.worker); 515 } 516 worker_interface->End(&side_job.worker); 517 if (ok) MergeJobs(&side_job, &main_job); // merge results together 518 } else { 519 // Even for single-thread case, we use the generic Worker tools. 520 InitSegmentJob(enc, &main_job, 0, last_row); 521 worker_interface->Execute(&main_job.worker); 522 ok &= worker_interface->Sync(&main_job.worker); 523 } 524 worker_interface->End(&main_job.worker); 525 if (ok) { 526 enc->alpha_ = main_job.alpha / total_mb; 527 enc->uv_alpha_ = main_job.uv_alpha / total_mb; 528 AssignSegments(enc, main_job.alphas); 529 } 530 } else { // Use only one default segment. 531 ResetAllMBInfo(enc); 532 } 533 return ok; 534 } 535 536