1 // Copyright 2016 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Image transform methods for lossless encoder. 11 // 12 // Authors: Vikas Arora (vikaas.arora@gmail.com) 13 // Jyrki Alakuijala (jyrki@google.com) 14 // Urvang Joshi (urvang@google.com) 15 // Vincent Rabaud (vrabaud@google.com) 16 17 #include "src/dsp/lossless.h" 18 #include "src/dsp/lossless_common.h" 19 #include "src/enc/vp8li_enc.h" 20 21 #define MAX_DIFF_COST (1e30f) 22 23 static const float kSpatialPredictorBias = 15.f; 24 static const int kPredLowEffort = 11; 25 static const uint32_t kMaskAlpha = 0xff000000; 26 27 // Mostly used to reduce code size + readability 28 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } 29 30 //------------------------------------------------------------------------------ 31 // Methods to calculate Entropy (Shannon). 32 33 static float PredictionCostSpatial(const int counts[256], int weight_0, 34 double exp_val) { 35 const int significant_symbols = 256 >> 4; 36 const double exp_decay_factor = 0.6; 37 double bits = weight_0 * counts[0]; 38 int i; 39 for (i = 1; i < significant_symbols; ++i) { 40 bits += exp_val * (counts[i] + counts[256 - i]); 41 exp_val *= exp_decay_factor; 42 } 43 return (float)(-0.1 * bits); 44 } 45 46 static float PredictionCostSpatialHistogram(const int accumulated[4][256], 47 const int tile[4][256]) { 48 int i; 49 double retval = 0; 50 for (i = 0; i < 4; ++i) { 51 const double kExpValue = 0.94; 52 retval += PredictionCostSpatial(tile[i], 1, kExpValue); 53 retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]); 54 } 55 return (float)retval; 56 } 57 58 static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { 59 ++histo_argb[0][argb >> 24]; 60 ++histo_argb[1][(argb >> 16) & 0xff]; 61 ++histo_argb[2][(argb >> 8) & 0xff]; 62 ++histo_argb[3][argb & 0xff]; 63 } 64 65 //------------------------------------------------------------------------------ 66 // Spatial transform functions. 67 68 static WEBP_INLINE void PredictBatch(int mode, int x_start, int y, 69 int num_pixels, const uint32_t* current, 70 const uint32_t* upper, uint32_t* out) { 71 if (x_start == 0) { 72 if (y == 0) { 73 // ARGB_BLACK. 74 VP8LPredictorsSub[0](current, NULL, 1, out); 75 } else { 76 // Top one. 77 VP8LPredictorsSub[2](current, upper, 1, out); 78 } 79 ++x_start; 80 ++out; 81 --num_pixels; 82 } 83 if (y == 0) { 84 // Left one. 85 VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out); 86 } else { 87 VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels, 88 out); 89 } 90 } 91 92 #if (WEBP_NEAR_LOSSLESS == 1) 93 static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; } 94 95 static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) { 96 const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24)); 97 const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff)); 98 const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff)); 99 const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff)); 100 return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b)); 101 } 102 103 static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down, 104 uint32_t left, uint32_t right) { 105 const int diff_up = MaxDiffBetweenPixels(current, up); 106 const int diff_down = MaxDiffBetweenPixels(current, down); 107 const int diff_left = MaxDiffBetweenPixels(current, left); 108 const int diff_right = MaxDiffBetweenPixels(current, right); 109 return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right)); 110 } 111 112 static uint32_t AddGreenToBlueAndRed(uint32_t argb) { 113 const uint32_t green = (argb >> 8) & 0xff; 114 uint32_t red_blue = argb & 0x00ff00ffu; 115 red_blue += (green << 16) | green; 116 red_blue &= 0x00ff00ffu; 117 return (argb & 0xff00ff00u) | red_blue; 118 } 119 120 static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb, 121 uint8_t* const max_diffs, int used_subtract_green) { 122 uint32_t current, up, down, left, right; 123 int x; 124 if (width <= 2) return; 125 current = argb[0]; 126 right = argb[1]; 127 if (used_subtract_green) { 128 current = AddGreenToBlueAndRed(current); 129 right = AddGreenToBlueAndRed(right); 130 } 131 // max_diffs[0] and max_diffs[width - 1] are never used. 132 for (x = 1; x < width - 1; ++x) { 133 up = argb[-stride + x]; 134 down = argb[stride + x]; 135 left = current; 136 current = right; 137 right = argb[x + 1]; 138 if (used_subtract_green) { 139 up = AddGreenToBlueAndRed(up); 140 down = AddGreenToBlueAndRed(down); 141 right = AddGreenToBlueAndRed(right); 142 } 143 max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right); 144 } 145 } 146 147 // Quantize the difference between the actual component value and its prediction 148 // to a multiple of quantization, working modulo 256, taking care not to cross 149 // a boundary (inclusive upper limit). 150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict, 151 uint8_t boundary, int quantization) { 152 const int residual = (value - predict) & 0xff; 153 const int boundary_residual = (boundary - predict) & 0xff; 154 const int lower = residual & ~(quantization - 1); 155 const int upper = lower + quantization; 156 // Resolve ties towards a value closer to the prediction (i.e. towards lower 157 // if value comes after prediction and towards upper otherwise). 158 const int bias = ((boundary - value) & 0xff) < boundary_residual; 159 if (residual - lower < upper - residual + bias) { 160 // lower is closer to residual than upper. 161 if (residual > boundary_residual && lower <= boundary_residual) { 162 // Halve quantization step to avoid crossing boundary. This midpoint is 163 // on the same side of boundary as residual because midpoint >= residual 164 // (since lower is closer than upper) and residual is above the boundary. 165 return lower + (quantization >> 1); 166 } 167 return lower; 168 } else { 169 // upper is closer to residual than lower. 170 if (residual <= boundary_residual && upper > boundary_residual) { 171 // Halve quantization step to avoid crossing boundary. This midpoint is 172 // on the same side of boundary as residual because midpoint <= residual 173 // (since upper is closer than lower) and residual is below the boundary. 174 return lower + (quantization >> 1); 175 } 176 return upper & 0xff; 177 } 178 } 179 180 static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) { 181 return (uint8_t)((((int)(a) - (int)(b))) & 0xff); 182 } 183 184 // Quantize every component of the difference between the actual pixel value and 185 // its prediction to a multiple of a quantization (a power of 2, not larger than 186 // max_quantization which is a power of 2, smaller than max_diff). Take care if 187 // value and predict have undergone subtract green, which means that red and 188 // blue are represented as offsets from green. 189 static uint32_t NearLossless(uint32_t value, uint32_t predict, 190 int max_quantization, int max_diff, 191 int used_subtract_green) { 192 int quantization; 193 uint8_t new_green = 0; 194 uint8_t green_diff = 0; 195 uint8_t a, r, g, b; 196 if (max_diff <= 2) { 197 return VP8LSubPixels(value, predict); 198 } 199 quantization = max_quantization; 200 while (quantization >= max_diff) { 201 quantization >>= 1; 202 } 203 if ((value >> 24) == 0 || (value >> 24) == 0xff) { 204 // Preserve transparency of fully transparent or fully opaque pixels. 205 a = NearLosslessDiff((value >> 24) & 0xff, (predict >> 24) & 0xff); 206 } else { 207 a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization); 208 } 209 g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff, 210 quantization); 211 if (used_subtract_green) { 212 // The green offset will be added to red and blue components during decoding 213 // to obtain the actual red and blue values. 214 new_green = ((predict >> 8) + g) & 0xff; 215 // The amount by which green has been adjusted during quantization. It is 216 // subtracted from red and blue for compensation, to avoid accumulating two 217 // quantization errors in them. 218 green_diff = NearLosslessDiff(new_green, (value >> 8) & 0xff); 219 } 220 r = NearLosslessComponent(NearLosslessDiff((value >> 16) & 0xff, green_diff), 221 (predict >> 16) & 0xff, 0xff - new_green, 222 quantization); 223 b = NearLosslessComponent(NearLosslessDiff(value & 0xff, green_diff), 224 predict & 0xff, 0xff - new_green, quantization); 225 return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; 226 } 227 #endif // (WEBP_NEAR_LOSSLESS == 1) 228 229 // Stores the difference between the pixel and its prediction in "out". 230 // In case of a lossy encoding, updates the source image to avoid propagating 231 // the deviation further to pixels which depend on the current pixel for their 232 // predictions. 233 static WEBP_INLINE void GetResidual( 234 int width, int height, uint32_t* const upper_row, 235 uint32_t* const current_row, const uint8_t* const max_diffs, int mode, 236 int x_start, int x_end, int y, int max_quantization, int exact, 237 int used_subtract_green, uint32_t* const out) { 238 if (exact) { 239 PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row, 240 out); 241 } else { 242 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; 243 int x; 244 for (x = x_start; x < x_end; ++x) { 245 uint32_t predict; 246 uint32_t residual; 247 if (y == 0) { 248 predict = (x == 0) ? ARGB_BLACK : current_row[x - 1]; // Left. 249 } else if (x == 0) { 250 predict = upper_row[x]; // Top. 251 } else { 252 predict = pred_func(current_row[x - 1], upper_row + x); 253 } 254 #if (WEBP_NEAR_LOSSLESS == 1) 255 if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 || 256 x == 0 || x == width - 1) { 257 residual = VP8LSubPixels(current_row[x], predict); 258 } else { 259 residual = NearLossless(current_row[x], predict, max_quantization, 260 max_diffs[x], used_subtract_green); 261 // Update the source image. 262 current_row[x] = VP8LAddPixels(predict, residual); 263 // x is never 0 here so we do not need to update upper_row like below. 264 } 265 #else 266 (void)max_diffs; 267 (void)height; 268 (void)max_quantization; 269 (void)used_subtract_green; 270 residual = VP8LSubPixels(current_row[x], predict); 271 #endif 272 if ((current_row[x] & kMaskAlpha) == 0) { 273 // If alpha is 0, cleanup RGB. We can choose the RGB values of the 274 // residual for best compression. The prediction of alpha itself can be 275 // non-zero and must be kept though. We choose RGB of the residual to be 276 // 0. 277 residual &= kMaskAlpha; 278 // Update the source image. 279 current_row[x] = predict & ~kMaskAlpha; 280 // The prediction for the rightmost pixel in a row uses the leftmost 281 // pixel 282 // in that row as its top-right context pixel. Hence if we change the 283 // leftmost pixel of current_row, the corresponding change must be 284 // applied 285 // to upper_row as well where top-right context is being read from. 286 if (x == 0 && y != 0) upper_row[width] = current_row[0]; 287 } 288 out[x - x_start] = residual; 289 } 290 } 291 } 292 293 // Returns best predictor and updates the accumulated histogram. 294 // If max_quantization > 1, assumes that near lossless processing will be 295 // applied, quantizing residuals to multiples of quantization levels up to 296 // max_quantization (the actual quantization level depends on smoothness near 297 // the given pixel). 298 static int GetBestPredictorForTile(int width, int height, 299 int tile_x, int tile_y, int bits, 300 int accumulated[4][256], 301 uint32_t* const argb_scratch, 302 const uint32_t* const argb, 303 int max_quantization, 304 int exact, int used_subtract_green, 305 const uint32_t* const modes) { 306 const int kNumPredModes = 14; 307 const int start_x = tile_x << bits; 308 const int start_y = tile_y << bits; 309 const int tile_size = 1 << bits; 310 const int max_y = GetMin(tile_size, height - start_y); 311 const int max_x = GetMin(tile_size, width - start_x); 312 // Whether there exist columns just outside the tile. 313 const int have_left = (start_x > 0); 314 // Position and size of the strip covering the tile and adjacent columns if 315 // they exist. 316 const int context_start_x = start_x - have_left; 317 #if (WEBP_NEAR_LOSSLESS == 1) 318 const int context_width = max_x + have_left + (max_x < width - start_x); 319 #endif 320 const int tiles_per_row = VP8LSubSampleSize(width, bits); 321 // Prediction modes of the left and above neighbor tiles. 322 const int left_mode = (tile_x > 0) ? 323 (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff; 324 const int above_mode = (tile_y > 0) ? 325 (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff; 326 // The width of upper_row and current_row is one pixel larger than image width 327 // to allow the top right pixel to point to the leftmost pixel of the next row 328 // when at the right edge. 329 uint32_t* upper_row = argb_scratch; 330 uint32_t* current_row = upper_row + width + 1; 331 uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1); 332 float best_diff = MAX_DIFF_COST; 333 int best_mode = 0; 334 int mode; 335 int histo_stack_1[4][256]; 336 int histo_stack_2[4][256]; 337 // Need pointers to be able to swap arrays. 338 int (*histo_argb)[256] = histo_stack_1; 339 int (*best_histo)[256] = histo_stack_2; 340 int i, j; 341 uint32_t residuals[1 << MAX_TRANSFORM_BITS]; 342 assert(bits <= MAX_TRANSFORM_BITS); 343 assert(max_x <= (1 << MAX_TRANSFORM_BITS)); 344 345 for (mode = 0; mode < kNumPredModes; ++mode) { 346 float cur_diff; 347 int relative_y; 348 memset(histo_argb, 0, sizeof(histo_stack_1)); 349 if (start_y > 0) { 350 // Read the row above the tile which will become the first upper_row. 351 // Include a pixel to the left if it exists; include a pixel to the right 352 // in all cases (wrapping to the leftmost pixel of the next row if it does 353 // not exist). 354 memcpy(current_row + context_start_x, 355 argb + (start_y - 1) * width + context_start_x, 356 sizeof(*argb) * (max_x + have_left + 1)); 357 } 358 for (relative_y = 0; relative_y < max_y; ++relative_y) { 359 const int y = start_y + relative_y; 360 int relative_x; 361 uint32_t* tmp = upper_row; 362 upper_row = current_row; 363 current_row = tmp; 364 // Read current_row. Include a pixel to the left if it exists; include a 365 // pixel to the right in all cases except at the bottom right corner of 366 // the image (wrapping to the leftmost pixel of the next row if it does 367 // not exist in the current row). 368 memcpy(current_row + context_start_x, 369 argb + y * width + context_start_x, 370 sizeof(*argb) * (max_x + have_left + (y + 1 < height))); 371 #if (WEBP_NEAR_LOSSLESS == 1) 372 if (max_quantization > 1 && y >= 1 && y + 1 < height) { 373 MaxDiffsForRow(context_width, width, argb + y * width + context_start_x, 374 max_diffs + context_start_x, used_subtract_green); 375 } 376 #endif 377 378 GetResidual(width, height, upper_row, current_row, max_diffs, mode, 379 start_x, start_x + max_x, y, max_quantization, exact, 380 used_subtract_green, residuals); 381 for (relative_x = 0; relative_x < max_x; ++relative_x) { 382 UpdateHisto(histo_argb, residuals[relative_x]); 383 } 384 } 385 cur_diff = PredictionCostSpatialHistogram( 386 (const int (*)[256])accumulated, (const int (*)[256])histo_argb); 387 // Favor keeping the areas locally similar. 388 if (mode == left_mode) cur_diff -= kSpatialPredictorBias; 389 if (mode == above_mode) cur_diff -= kSpatialPredictorBias; 390 391 if (cur_diff < best_diff) { 392 int (*tmp)[256] = histo_argb; 393 histo_argb = best_histo; 394 best_histo = tmp; 395 best_diff = cur_diff; 396 best_mode = mode; 397 } 398 } 399 400 for (i = 0; i < 4; i++) { 401 for (j = 0; j < 256; j++) { 402 accumulated[i][j] += best_histo[i][j]; 403 } 404 } 405 406 return best_mode; 407 } 408 409 // Converts pixels of the image to residuals with respect to predictions. 410 // If max_quantization > 1, applies near lossless processing, quantizing 411 // residuals to multiples of quantization levels up to max_quantization 412 // (the actual quantization level depends on smoothness near the given pixel). 413 static void CopyImageWithPrediction(int width, int height, 414 int bits, uint32_t* const modes, 415 uint32_t* const argb_scratch, 416 uint32_t* const argb, 417 int low_effort, int max_quantization, 418 int exact, int used_subtract_green) { 419 const int tiles_per_row = VP8LSubSampleSize(width, bits); 420 // The width of upper_row and current_row is one pixel larger than image width 421 // to allow the top right pixel to point to the leftmost pixel of the next row 422 // when at the right edge. 423 uint32_t* upper_row = argb_scratch; 424 uint32_t* current_row = upper_row + width + 1; 425 uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1); 426 #if (WEBP_NEAR_LOSSLESS == 1) 427 uint8_t* lower_max_diffs = current_max_diffs + width; 428 #endif 429 int y; 430 431 for (y = 0; y < height; ++y) { 432 int x; 433 uint32_t* const tmp32 = upper_row; 434 upper_row = current_row; 435 current_row = tmp32; 436 memcpy(current_row, argb + y * width, 437 sizeof(*argb) * (width + (y + 1 < height))); 438 439 if (low_effort) { 440 PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row, 441 argb + y * width); 442 } else { 443 #if (WEBP_NEAR_LOSSLESS == 1) 444 if (max_quantization > 1) { 445 // Compute max_diffs for the lower row now, because that needs the 446 // contents of argb for the current row, which we will overwrite with 447 // residuals before proceeding with the next row. 448 uint8_t* const tmp8 = current_max_diffs; 449 current_max_diffs = lower_max_diffs; 450 lower_max_diffs = tmp8; 451 if (y + 2 < height) { 452 MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs, 453 used_subtract_green); 454 } 455 } 456 #endif 457 for (x = 0; x < width;) { 458 const int mode = 459 (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff; 460 int x_end = x + (1 << bits); 461 if (x_end > width) x_end = width; 462 GetResidual(width, height, upper_row, current_row, current_max_diffs, 463 mode, x, x_end, y, max_quantization, exact, 464 used_subtract_green, argb + y * width + x); 465 x = x_end; 466 } 467 } 468 } 469 } 470 471 // Finds the best predictor for each tile, and converts the image to residuals 472 // with respect to predictions. If near_lossless_quality < 100, applies 473 // near lossless processing, shaving off more bits of residuals for lower 474 // qualities. 475 void VP8LResidualImage(int width, int height, int bits, int low_effort, 476 uint32_t* const argb, uint32_t* const argb_scratch, 477 uint32_t* const image, int near_lossless_quality, 478 int exact, int used_subtract_green) { 479 const int tiles_per_row = VP8LSubSampleSize(width, bits); 480 const int tiles_per_col = VP8LSubSampleSize(height, bits); 481 int tile_y; 482 int histo[4][256]; 483 const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality); 484 if (low_effort) { 485 int i; 486 for (i = 0; i < tiles_per_row * tiles_per_col; ++i) { 487 image[i] = ARGB_BLACK | (kPredLowEffort << 8); 488 } 489 } else { 490 memset(histo, 0, sizeof(histo)); 491 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { 492 int tile_x; 493 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { 494 const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y, 495 bits, histo, argb_scratch, argb, max_quantization, exact, 496 used_subtract_green, image); 497 image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8); 498 } 499 } 500 } 501 502 CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb, 503 low_effort, max_quantization, exact, 504 used_subtract_green); 505 } 506 507 //------------------------------------------------------------------------------ 508 // Color transform functions. 509 510 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { 511 m->green_to_red_ = 0; 512 m->green_to_blue_ = 0; 513 m->red_to_blue_ = 0; 514 } 515 516 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, 517 VP8LMultipliers* const m) { 518 m->green_to_red_ = (color_code >> 0) & 0xff; 519 m->green_to_blue_ = (color_code >> 8) & 0xff; 520 m->red_to_blue_ = (color_code >> 16) & 0xff; 521 } 522 523 static WEBP_INLINE uint32_t MultipliersToColorCode( 524 const VP8LMultipliers* const m) { 525 return 0xff000000u | 526 ((uint32_t)(m->red_to_blue_) << 16) | 527 ((uint32_t)(m->green_to_blue_) << 8) | 528 m->green_to_red_; 529 } 530 531 static float PredictionCostCrossColor(const int accumulated[256], 532 const int counts[256]) { 533 // Favor low entropy, locally and globally. 534 // Favor small absolute values for PredictionCostSpatial 535 static const double kExpValue = 2.4; 536 return VP8LCombinedShannonEntropy(counts, accumulated) + 537 PredictionCostSpatial(counts, 3, kExpValue); 538 } 539 540 static float GetPredictionCostCrossColorRed( 541 const uint32_t* argb, int stride, int tile_width, int tile_height, 542 VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, 543 const int accumulated_red_histo[256]) { 544 int histo[256] = { 0 }; 545 float cur_diff; 546 547 VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height, 548 green_to_red, histo); 549 550 cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); 551 if ((uint8_t)green_to_red == prev_x.green_to_red_) { 552 cur_diff -= 3; // favor keeping the areas locally similar 553 } 554 if ((uint8_t)green_to_red == prev_y.green_to_red_) { 555 cur_diff -= 3; // favor keeping the areas locally similar 556 } 557 if (green_to_red == 0) { 558 cur_diff -= 3; 559 } 560 return cur_diff; 561 } 562 563 static void GetBestGreenToRed( 564 const uint32_t* argb, int stride, int tile_width, int tile_height, 565 VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, 566 const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) { 567 const int kMaxIters = 4 + ((7 * quality) >> 8); // in range [4..6] 568 int green_to_red_best = 0; 569 int iter, offset; 570 float best_diff = GetPredictionCostCrossColorRed( 571 argb, stride, tile_width, tile_height, prev_x, prev_y, 572 green_to_red_best, accumulated_red_histo); 573 for (iter = 0; iter < kMaxIters; ++iter) { 574 // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to 575 // one in color computation. Having initial delta here as 1 is sufficient 576 // to explore the range of (-2, 2). 577 const int delta = 32 >> iter; 578 // Try a negative and a positive delta from the best known value. 579 for (offset = -delta; offset <= delta; offset += 2 * delta) { 580 const int green_to_red_cur = offset + green_to_red_best; 581 const float cur_diff = GetPredictionCostCrossColorRed( 582 argb, stride, tile_width, tile_height, prev_x, prev_y, 583 green_to_red_cur, accumulated_red_histo); 584 if (cur_diff < best_diff) { 585 best_diff = cur_diff; 586 green_to_red_best = green_to_red_cur; 587 } 588 } 589 } 590 best_tx->green_to_red_ = (green_to_red_best & 0xff); 591 } 592 593 static float GetPredictionCostCrossColorBlue( 594 const uint32_t* argb, int stride, int tile_width, int tile_height, 595 VP8LMultipliers prev_x, VP8LMultipliers prev_y, 596 int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) { 597 int histo[256] = { 0 }; 598 float cur_diff; 599 600 VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height, 601 green_to_blue, red_to_blue, histo); 602 603 cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); 604 if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { 605 cur_diff -= 3; // favor keeping the areas locally similar 606 } 607 if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { 608 cur_diff -= 3; // favor keeping the areas locally similar 609 } 610 if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { 611 cur_diff -= 3; // favor keeping the areas locally similar 612 } 613 if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { 614 cur_diff -= 3; // favor keeping the areas locally similar 615 } 616 if (green_to_blue == 0) { 617 cur_diff -= 3; 618 } 619 if (red_to_blue == 0) { 620 cur_diff -= 3; 621 } 622 return cur_diff; 623 } 624 625 #define kGreenRedToBlueNumAxis 8 626 #define kGreenRedToBlueMaxIters 7 627 static void GetBestGreenRedToBlue( 628 const uint32_t* argb, int stride, int tile_width, int tile_height, 629 VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, 630 const int accumulated_blue_histo[256], 631 VP8LMultipliers* const best_tx) { 632 const int8_t offset[kGreenRedToBlueNumAxis][2] = 633 {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}}; 634 const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 }; 635 const int iters = 636 (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4; 637 int green_to_blue_best = 0; 638 int red_to_blue_best = 0; 639 int iter; 640 // Initial value at origin: 641 float best_diff = GetPredictionCostCrossColorBlue( 642 argb, stride, tile_width, tile_height, prev_x, prev_y, 643 green_to_blue_best, red_to_blue_best, accumulated_blue_histo); 644 for (iter = 0; iter < iters; ++iter) { 645 const int delta = delta_lut[iter]; 646 int axis; 647 for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) { 648 const int green_to_blue_cur = 649 offset[axis][0] * delta + green_to_blue_best; 650 const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best; 651 const float cur_diff = GetPredictionCostCrossColorBlue( 652 argb, stride, tile_width, tile_height, prev_x, prev_y, 653 green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo); 654 if (cur_diff < best_diff) { 655 best_diff = cur_diff; 656 green_to_blue_best = green_to_blue_cur; 657 red_to_blue_best = red_to_blue_cur; 658 } 659 if (quality < 25 && iter == 4) { 660 // Only axis aligned diffs for lower quality. 661 break; // next iter. 662 } 663 } 664 if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) { 665 // Further iterations would not help. 666 break; // out of iter-loop. 667 } 668 } 669 best_tx->green_to_blue_ = green_to_blue_best & 0xff; 670 best_tx->red_to_blue_ = red_to_blue_best & 0xff; 671 } 672 #undef kGreenRedToBlueMaxIters 673 #undef kGreenRedToBlueNumAxis 674 675 static VP8LMultipliers GetBestColorTransformForTile( 676 int tile_x, int tile_y, int bits, 677 VP8LMultipliers prev_x, 678 VP8LMultipliers prev_y, 679 int quality, int xsize, int ysize, 680 const int accumulated_red_histo[256], 681 const int accumulated_blue_histo[256], 682 const uint32_t* const argb) { 683 const int max_tile_size = 1 << bits; 684 const int tile_y_offset = tile_y * max_tile_size; 685 const int tile_x_offset = tile_x * max_tile_size; 686 const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); 687 const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); 688 const int tile_width = all_x_max - tile_x_offset; 689 const int tile_height = all_y_max - tile_y_offset; 690 const uint32_t* const tile_argb = argb + tile_y_offset * xsize 691 + tile_x_offset; 692 VP8LMultipliers best_tx; 693 MultipliersClear(&best_tx); 694 695 GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height, 696 prev_x, prev_y, quality, accumulated_red_histo, &best_tx); 697 GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height, 698 prev_x, prev_y, quality, accumulated_blue_histo, 699 &best_tx); 700 return best_tx; 701 } 702 703 static void CopyTileWithColorTransform(int xsize, int ysize, 704 int tile_x, int tile_y, 705 int max_tile_size, 706 VP8LMultipliers color_transform, 707 uint32_t* argb) { 708 const int xscan = GetMin(max_tile_size, xsize - tile_x); 709 int yscan = GetMin(max_tile_size, ysize - tile_y); 710 argb += tile_y * xsize + tile_x; 711 while (yscan-- > 0) { 712 VP8LTransformColor(&color_transform, argb, xscan); 713 argb += xsize; 714 } 715 } 716 717 void VP8LColorSpaceTransform(int width, int height, int bits, int quality, 718 uint32_t* const argb, uint32_t* image) { 719 const int max_tile_size = 1 << bits; 720 const int tile_xsize = VP8LSubSampleSize(width, bits); 721 const int tile_ysize = VP8LSubSampleSize(height, bits); 722 int accumulated_red_histo[256] = { 0 }; 723 int accumulated_blue_histo[256] = { 0 }; 724 int tile_x, tile_y; 725 VP8LMultipliers prev_x, prev_y; 726 MultipliersClear(&prev_y); 727 MultipliersClear(&prev_x); 728 for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { 729 for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { 730 int y; 731 const int tile_x_offset = tile_x * max_tile_size; 732 const int tile_y_offset = tile_y * max_tile_size; 733 const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); 734 const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); 735 const int offset = tile_y * tile_xsize + tile_x; 736 if (tile_y != 0) { 737 ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); 738 } 739 prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, 740 prev_x, prev_y, 741 quality, width, height, 742 accumulated_red_histo, 743 accumulated_blue_histo, 744 argb); 745 image[offset] = MultipliersToColorCode(&prev_x); 746 CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, 747 max_tile_size, prev_x, argb); 748 749 // Gather accumulated histogram data. 750 for (y = tile_y_offset; y < all_y_max; ++y) { 751 int ix = y * width + tile_x_offset; 752 const int ix_end = ix + all_x_max - tile_x_offset; 753 for (; ix < ix_end; ++ix) { 754 const uint32_t pix = argb[ix]; 755 if (ix >= 2 && 756 pix == argb[ix - 2] && 757 pix == argb[ix - 1]) { 758 continue; // repeated pixels are handled by backward references 759 } 760 if (ix >= width + 2 && 761 argb[ix - 2] == argb[ix - width - 2] && 762 argb[ix - 1] == argb[ix - width - 1] && 763 pix == argb[ix - width]) { 764 continue; // repeated pixels are handled by backward references 765 } 766 ++accumulated_red_histo[(pix >> 16) & 0xff]; 767 ++accumulated_blue_histo[(pix >> 0) & 0xff]; 768 } 769 } 770 } 771 } 772 } 773