1 // Copyright 2011 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Author: Jyrki Alakuijala (jyrki@google.com) 11 // 12 // Entropy encoding (Huffman) for webp lossless. 13 14 #include <assert.h> 15 #include <stdlib.h> 16 #include <string.h> 17 #include "src/utils/huffman_encode_utils.h" 18 #include "src/utils/utils.h" 19 #include "src/webp/format_constants.h" 20 21 // ----------------------------------------------------------------------------- 22 // Util function to optimize the symbol map for RLE coding 23 24 // Heuristics for selecting the stride ranges to collapse. 25 static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) { 26 return abs(a - b) < 4; 27 } 28 29 // Change the population counts in a way that the consequent 30 // Huffman tree compression, especially its RLE-part, give smaller output. 31 static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle, 32 uint32_t* const counts) { 33 // 1) Let's make the Huffman code more compatible with rle encoding. 34 int i; 35 for (; length >= 0; --length) { 36 if (length == 0) { 37 return; // All zeros. 38 } 39 if (counts[length - 1] != 0) { 40 // Now counts[0..length - 1] does not have trailing zeros. 41 break; 42 } 43 } 44 // 2) Let's mark all population counts that already can be encoded 45 // with an rle code. 46 { 47 // Let's not spoil any of the existing good rle codes. 48 // Mark any seq of 0's that is longer as 5 as a good_for_rle. 49 // Mark any seq of non-0's that is longer as 7 as a good_for_rle. 50 uint32_t symbol = counts[0]; 51 int stride = 0; 52 for (i = 0; i < length + 1; ++i) { 53 if (i == length || counts[i] != symbol) { 54 if ((symbol == 0 && stride >= 5) || 55 (symbol != 0 && stride >= 7)) { 56 int k; 57 for (k = 0; k < stride; ++k) { 58 good_for_rle[i - k - 1] = 1; 59 } 60 } 61 stride = 1; 62 if (i != length) { 63 symbol = counts[i]; 64 } 65 } else { 66 ++stride; 67 } 68 } 69 } 70 // 3) Let's replace those population counts that lead to more rle codes. 71 { 72 uint32_t stride = 0; 73 uint32_t limit = counts[0]; 74 uint32_t sum = 0; 75 for (i = 0; i < length + 1; ++i) { 76 if (i == length || good_for_rle[i] || 77 (i != 0 && good_for_rle[i - 1]) || 78 !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) { 79 if (stride >= 4 || (stride >= 3 && sum == 0)) { 80 uint32_t k; 81 // The stride must end, collapse what we have, if we have enough (4). 82 uint32_t count = (sum + stride / 2) / stride; 83 if (count < 1) { 84 count = 1; 85 } 86 if (sum == 0) { 87 // Don't make an all zeros stride to be upgraded to ones. 88 count = 0; 89 } 90 for (k = 0; k < stride; ++k) { 91 // We don't want to change value at counts[i], 92 // that is already belonging to the next stride. Thus - 1. 93 counts[i - k - 1] = count; 94 } 95 } 96 stride = 0; 97 sum = 0; 98 if (i < length - 3) { 99 // All interesting strides have a count of at least 4, 100 // at least when non-zeros. 101 limit = (counts[i] + counts[i + 1] + 102 counts[i + 2] + counts[i + 3] + 2) / 4; 103 } else if (i < length) { 104 limit = counts[i]; 105 } else { 106 limit = 0; 107 } 108 } 109 ++stride; 110 if (i != length) { 111 sum += counts[i]; 112 if (stride >= 4) { 113 limit = (sum + stride / 2) / stride; 114 } 115 } 116 } 117 } 118 } 119 120 // A comparer function for two Huffman trees: sorts first by 'total count' 121 // (more comes first), and then by 'value' (more comes first). 122 static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) { 123 const HuffmanTree* const t1 = (const HuffmanTree*)ptr1; 124 const HuffmanTree* const t2 = (const HuffmanTree*)ptr2; 125 if (t1->total_count_ > t2->total_count_) { 126 return -1; 127 } else if (t1->total_count_ < t2->total_count_) { 128 return 1; 129 } else { 130 assert(t1->value_ != t2->value_); 131 return (t1->value_ < t2->value_) ? -1 : 1; 132 } 133 } 134 135 static void SetBitDepths(const HuffmanTree* const tree, 136 const HuffmanTree* const pool, 137 uint8_t* const bit_depths, int level) { 138 if (tree->pool_index_left_ >= 0) { 139 SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1); 140 SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1); 141 } else { 142 bit_depths[tree->value_] = level; 143 } 144 } 145 146 // Create an optimal Huffman tree. 147 // 148 // (data,length): population counts. 149 // tree_limit: maximum bit depth (inclusive) of the codes. 150 // bit_depths[]: how many bits are used for the symbol. 151 // 152 // Returns 0 when an error has occurred. 153 // 154 // The catch here is that the tree cannot be arbitrarily deep 155 // 156 // count_limit is the value that is to be faked as the minimum value 157 // and this minimum value is raised until the tree matches the 158 // maximum length requirement. 159 // 160 // This algorithm is not of excellent performance for very long data blocks, 161 // especially when population counts are longer than 2**tree_limit, but 162 // we are not planning to use this with extremely long blocks. 163 // 164 // See http://en.wikipedia.org/wiki/Huffman_coding 165 static void GenerateOptimalTree(const uint32_t* const histogram, 166 int histogram_size, 167 HuffmanTree* tree, int tree_depth_limit, 168 uint8_t* const bit_depths) { 169 uint32_t count_min; 170 HuffmanTree* tree_pool; 171 int tree_size_orig = 0; 172 int i; 173 174 for (i = 0; i < histogram_size; ++i) { 175 if (histogram[i] != 0) { 176 ++tree_size_orig; 177 } 178 } 179 180 if (tree_size_orig == 0) { // pretty optimal already! 181 return; 182 } 183 184 tree_pool = tree + tree_size_orig; 185 186 // For block sizes with less than 64k symbols we never need to do a 187 // second iteration of this loop. 188 // If we actually start running inside this loop a lot, we would perhaps 189 // be better off with the Katajainen algorithm. 190 assert(tree_size_orig <= (1 << (tree_depth_limit - 1))); 191 for (count_min = 1; ; count_min *= 2) { 192 int tree_size = tree_size_orig; 193 // We need to pack the Huffman tree in tree_depth_limit bits. 194 // So, we try by faking histogram entries to be at least 'count_min'. 195 int idx = 0; 196 int j; 197 for (j = 0; j < histogram_size; ++j) { 198 if (histogram[j] != 0) { 199 const uint32_t count = 200 (histogram[j] < count_min) ? count_min : histogram[j]; 201 tree[idx].total_count_ = count; 202 tree[idx].value_ = j; 203 tree[idx].pool_index_left_ = -1; 204 tree[idx].pool_index_right_ = -1; 205 ++idx; 206 } 207 } 208 209 // Build the Huffman tree. 210 qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees); 211 212 if (tree_size > 1) { // Normal case. 213 int tree_pool_size = 0; 214 while (tree_size > 1) { // Finish when we have only one root. 215 uint32_t count; 216 tree_pool[tree_pool_size++] = tree[tree_size - 1]; 217 tree_pool[tree_pool_size++] = tree[tree_size - 2]; 218 count = tree_pool[tree_pool_size - 1].total_count_ + 219 tree_pool[tree_pool_size - 2].total_count_; 220 tree_size -= 2; 221 { 222 // Search for the insertion point. 223 int k; 224 for (k = 0; k < tree_size; ++k) { 225 if (tree[k].total_count_ <= count) { 226 break; 227 } 228 } 229 memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree)); 230 tree[k].total_count_ = count; 231 tree[k].value_ = -1; 232 233 tree[k].pool_index_left_ = tree_pool_size - 1; 234 tree[k].pool_index_right_ = tree_pool_size - 2; 235 tree_size = tree_size + 1; 236 } 237 } 238 SetBitDepths(&tree[0], tree_pool, bit_depths, 0); 239 } else if (tree_size == 1) { // Trivial case: only one element. 240 bit_depths[tree[0].value_] = 1; 241 } 242 243 { 244 // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria. 245 int max_depth = bit_depths[0]; 246 for (j = 1; j < histogram_size; ++j) { 247 if (max_depth < bit_depths[j]) { 248 max_depth = bit_depths[j]; 249 } 250 } 251 if (max_depth <= tree_depth_limit) { 252 break; 253 } 254 } 255 } 256 } 257 258 // ----------------------------------------------------------------------------- 259 // Coding of the Huffman tree values 260 261 static HuffmanTreeToken* CodeRepeatedValues(int repetitions, 262 HuffmanTreeToken* tokens, 263 int value, int prev_value) { 264 assert(value <= MAX_ALLOWED_CODE_LENGTH); 265 if (value != prev_value) { 266 tokens->code = value; 267 tokens->extra_bits = 0; 268 ++tokens; 269 --repetitions; 270 } 271 while (repetitions >= 1) { 272 if (repetitions < 3) { 273 int i; 274 for (i = 0; i < repetitions; ++i) { 275 tokens->code = value; 276 tokens->extra_bits = 0; 277 ++tokens; 278 } 279 break; 280 } else if (repetitions < 7) { 281 tokens->code = 16; 282 tokens->extra_bits = repetitions - 3; 283 ++tokens; 284 break; 285 } else { 286 tokens->code = 16; 287 tokens->extra_bits = 3; 288 ++tokens; 289 repetitions -= 6; 290 } 291 } 292 return tokens; 293 } 294 295 static HuffmanTreeToken* CodeRepeatedZeros(int repetitions, 296 HuffmanTreeToken* tokens) { 297 while (repetitions >= 1) { 298 if (repetitions < 3) { 299 int i; 300 for (i = 0; i < repetitions; ++i) { 301 tokens->code = 0; // 0-value 302 tokens->extra_bits = 0; 303 ++tokens; 304 } 305 break; 306 } else if (repetitions < 11) { 307 tokens->code = 17; 308 tokens->extra_bits = repetitions - 3; 309 ++tokens; 310 break; 311 } else if (repetitions < 139) { 312 tokens->code = 18; 313 tokens->extra_bits = repetitions - 11; 314 ++tokens; 315 break; 316 } else { 317 tokens->code = 18; 318 tokens->extra_bits = 0x7f; // 138 repeated 0s 319 ++tokens; 320 repetitions -= 138; 321 } 322 } 323 return tokens; 324 } 325 326 int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree, 327 HuffmanTreeToken* tokens, int max_tokens) { 328 HuffmanTreeToken* const starting_token = tokens; 329 HuffmanTreeToken* const ending_token = tokens + max_tokens; 330 const int depth_size = tree->num_symbols; 331 int prev_value = 8; // 8 is the initial value for rle. 332 int i = 0; 333 assert(tokens != NULL); 334 while (i < depth_size) { 335 const int value = tree->code_lengths[i]; 336 int k = i + 1; 337 int runs; 338 while (k < depth_size && tree->code_lengths[k] == value) ++k; 339 runs = k - i; 340 if (value == 0) { 341 tokens = CodeRepeatedZeros(runs, tokens); 342 } else { 343 tokens = CodeRepeatedValues(runs, tokens, value, prev_value); 344 prev_value = value; 345 } 346 i += runs; 347 assert(tokens <= ending_token); 348 } 349 (void)ending_token; // suppress 'unused variable' warning 350 return (int)(tokens - starting_token); 351 } 352 353 // ----------------------------------------------------------------------------- 354 355 // Pre-reversed 4-bit values. 356 static const uint8_t kReversedBits[16] = { 357 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, 358 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf 359 }; 360 361 static uint32_t ReverseBits(int num_bits, uint32_t bits) { 362 uint32_t retval = 0; 363 int i = 0; 364 while (i < num_bits) { 365 i += 4; 366 retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i); 367 bits >>= 4; 368 } 369 retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits); 370 return retval; 371 } 372 373 // Get the actual bit values for a tree of bit depths. 374 static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) { 375 // 0 bit-depth means that the symbol does not exist. 376 int i; 377 int len; 378 uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1]; 379 int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; 380 381 assert(tree != NULL); 382 len = tree->num_symbols; 383 for (i = 0; i < len; ++i) { 384 const int code_length = tree->code_lengths[i]; 385 assert(code_length <= MAX_ALLOWED_CODE_LENGTH); 386 ++depth_count[code_length]; 387 } 388 depth_count[0] = 0; // ignore unused symbol 389 next_code[0] = 0; 390 { 391 uint32_t code = 0; 392 for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) { 393 code = (code + depth_count[i - 1]) << 1; 394 next_code[i] = code; 395 } 396 } 397 for (i = 0; i < len; ++i) { 398 const int code_length = tree->code_lengths[i]; 399 tree->codes[i] = ReverseBits(code_length, next_code[code_length]++); 400 } 401 } 402 403 // ----------------------------------------------------------------------------- 404 // Main entry point 405 406 void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit, 407 uint8_t* const buf_rle, 408 HuffmanTree* const huff_tree, 409 HuffmanTreeCode* const huff_code) { 410 const int num_symbols = huff_code->num_symbols; 411 memset(buf_rle, 0, num_symbols * sizeof(*buf_rle)); 412 OptimizeHuffmanForRle(num_symbols, buf_rle, histogram); 413 GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit, 414 huff_code->code_lengths); 415 // Create the actual bit codes for the bit lengths. 416 ConvertBitDepthsToSymbols(huff_code); 417 } 418