1 // Copyright 2013 Google Inc. All Rights Reserved. 2 // 3 // Use of this source code is governed by a BSD-style license 4 // that can be found in the COPYING file in the root of the source 5 // tree. An additional intellectual property rights grant can be found 6 // in the file PATENTS. All contributing project authors may 7 // be found in the AUTHORS file in the root of the source tree. 8 // ----------------------------------------------------------------------------- 9 // 10 // Implement gradient smoothing: we replace a current alpha value by its 11 // surrounding average if it's close enough (that is: the change will be less 12 // than the minimum distance between two quantized level). 13 // We use sliding window for computing the 2d moving average. 14 // 15 // Author: Skal (pascal.massimino@gmail.com) 16 17 #include "src/utils/quant_levels_dec_utils.h" 18 19 #include <string.h> // for memset 20 21 #include "src/utils/utils.h" 22 23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital) 24 25 #define FIX 16 // fix-point precision for averaging 26 #define LFIX 2 // extra precision for look-up table 27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size 28 29 #if defined(USE_DITHERING) 30 31 #define DFIX 4 // extra precision for ordered dithering 32 #define DSIZE 4 // dithering size (must be a power of two) 33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering 34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = { 35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision 36 { 12, 4, 14, 6 }, 37 { 3, 11, 1, 9 }, 38 { 15, 7, 13, 5 } 39 }; 40 41 #else 42 #define DFIX 0 43 #endif 44 45 typedef struct { 46 int width_, height_; // dimension 47 int stride_; // stride in bytes 48 int row_; // current input row being processed 49 uint8_t* src_; // input pointer 50 uint8_t* dst_; // output pointer 51 52 int radius_; // filter radius (=delay) 53 int scale_; // normalization factor, in FIX bits precision 54 55 void* mem_; // all memory 56 57 // various scratch buffers 58 uint16_t* start_; 59 uint16_t* cur_; 60 uint16_t* end_; 61 uint16_t* top_; 62 uint16_t* average_; 63 64 // input levels distribution 65 int num_levels_; // number of quantized levels 66 int min_, max_; // min and max level values 67 int min_level_dist_; // smallest distance between two consecutive levels 68 69 int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory 70 } SmoothParams; 71 72 //------------------------------------------------------------------------------ 73 74 #define CLIP_8b_MASK (int)(~0U << (8 + DFIX)) 75 static WEBP_INLINE uint8_t clip_8b(int v) { 76 return (!(v & CLIP_8b_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u; 77 } 78 #undef CLIP_8b_MASK 79 80 // vertical accumulation 81 static void VFilter(SmoothParams* const p) { 82 const uint8_t* src = p->src_; 83 const int w = p->width_; 84 uint16_t* const cur = p->cur_; 85 const uint16_t* const top = p->top_; 86 uint16_t* const out = p->end_; 87 uint16_t sum = 0; // all arithmetic is modulo 16bit 88 int x; 89 90 for (x = 0; x < w; ++x) { 91 uint16_t new_value; 92 sum += src[x]; 93 new_value = top[x] + sum; 94 out[x] = new_value - cur[x]; // vertical sum of 'r' pixels. 95 cur[x] = new_value; 96 } 97 // move input pointers one row down 98 p->top_ = p->cur_; 99 p->cur_ += w; 100 if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over 101 // We replicate edges, as it's somewhat easier as a boundary condition. 102 // That's why we don't update the 'src' pointer on top/bottom area: 103 if (p->row_ >= 0 && p->row_ < p->height_ - 1) { 104 p->src_ += p->stride_; 105 } 106 } 107 108 // horizontal accumulation. We use mirror replication of missing pixels, as it's 109 // a little easier to implement (surprisingly). 110 static void HFilter(SmoothParams* const p) { 111 const uint16_t* const in = p->end_; 112 uint16_t* const out = p->average_; 113 const uint32_t scale = p->scale_; 114 const int w = p->width_; 115 const int r = p->radius_; 116 117 int x; 118 for (x = 0; x <= r; ++x) { // left mirroring 119 const uint16_t delta = in[x + r - 1] + in[r - x]; 120 out[x] = (delta * scale) >> FIX; 121 } 122 for (; x < w - r; ++x) { // bulk middle run 123 const uint16_t delta = in[x + r] - in[x - r - 1]; 124 out[x] = (delta * scale) >> FIX; 125 } 126 for (; x < w; ++x) { // right mirroring 127 const uint16_t delta = 128 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1]; 129 out[x] = (delta * scale) >> FIX; 130 } 131 } 132 133 // emit one filtered output row 134 static void ApplyFilter(SmoothParams* const p) { 135 const uint16_t* const average = p->average_; 136 const int w = p->width_; 137 const int16_t* const correction = p->correction_; 138 #if defined(USE_DITHERING) 139 const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE]; 140 #endif 141 uint8_t* const dst = p->dst_; 142 int x; 143 for (x = 0; x < w; ++x) { 144 const int v = dst[x]; 145 if (v < p->max_ && v > p->min_) { 146 const int c = (v << DFIX) + correction[average[x] - (v << LFIX)]; 147 #if defined(USE_DITHERING) 148 dst[x] = clip_8b(c + dither[x % DSIZE]); 149 #else 150 dst[x] = clip_8b(c); 151 #endif 152 } 153 } 154 p->dst_ += p->stride_; // advance output pointer 155 } 156 157 //------------------------------------------------------------------------------ 158 // Initialize correction table 159 160 static void InitCorrectionLUT(int16_t* const lut, int min_dist) { 161 // The correction curve is: 162 // f(x) = x for x <= threshold2 163 // f(x) = 0 for x >= threshold1 164 // and a linear interpolation for range x=[threshold2, threshold1] 165 // (along with f(-x) = -f(x) symmetry). 166 // Note that: threshold2 = 3/4 * threshold1 167 const int threshold1 = min_dist << LFIX; 168 const int threshold2 = (3 * threshold1) >> 2; 169 const int max_threshold = threshold2 << DFIX; 170 const int delta = threshold1 - threshold2; 171 int i; 172 for (i = 1; i <= LUT_SIZE; ++i) { 173 int c = (i <= threshold2) ? (i << DFIX) 174 : (i < threshold1) ? max_threshold * (threshold1 - i) / delta 175 : 0; 176 c >>= LFIX; 177 lut[+i] = +c; 178 lut[-i] = -c; 179 } 180 lut[0] = 0; 181 } 182 183 static void CountLevels(SmoothParams* const p) { 184 int i, j, last_level; 185 uint8_t used_levels[256] = { 0 }; 186 const uint8_t* data = p->src_; 187 p->min_ = 255; 188 p->max_ = 0; 189 for (j = 0; j < p->height_; ++j) { 190 for (i = 0; i < p->width_; ++i) { 191 const int v = data[i]; 192 if (v < p->min_) p->min_ = v; 193 if (v > p->max_) p->max_ = v; 194 used_levels[v] = 1; 195 } 196 data += p->stride_; 197 } 198 // Compute the mininum distance between two non-zero levels. 199 p->min_level_dist_ = p->max_ - p->min_; 200 last_level = -1; 201 for (i = 0; i < 256; ++i) { 202 if (used_levels[i]) { 203 ++p->num_levels_; 204 if (last_level >= 0) { 205 const int level_dist = i - last_level; 206 if (level_dist < p->min_level_dist_) { 207 p->min_level_dist_ = level_dist; 208 } 209 } 210 last_level = i; 211 } 212 } 213 } 214 215 // Initialize all params. 216 static int InitParams(uint8_t* const data, int width, int height, int stride, 217 int radius, SmoothParams* const p) { 218 const int R = 2 * radius + 1; // total size of the kernel 219 220 const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_); 221 const size_t size_m = width * sizeof(*p->average_); 222 const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_); 223 const size_t total_size = size_scratch_m + size_m + size_lut; 224 uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size); 225 226 if (mem == NULL) return 0; 227 p->mem_ = (void*)mem; 228 229 p->start_ = (uint16_t*)mem; 230 p->cur_ = p->start_; 231 p->end_ = p->start_ + R * width; 232 p->top_ = p->end_ - width; 233 memset(p->top_, 0, width * sizeof(*p->top_)); 234 mem += size_scratch_m; 235 236 p->average_ = (uint16_t*)mem; 237 mem += size_m; 238 239 p->width_ = width; 240 p->height_ = height; 241 p->stride_ = stride; 242 p->src_ = data; 243 p->dst_ = data; 244 p->radius_ = radius; 245 p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant 246 p->row_ = -radius; 247 248 // analyze the input distribution so we can best-fit the threshold 249 CountLevels(p); 250 251 // correction table 252 p->correction_ = ((int16_t*)mem) + LUT_SIZE; 253 InitCorrectionLUT(p->correction_, p->min_level_dist_); 254 255 return 1; 256 } 257 258 static void CleanupParams(SmoothParams* const p) { 259 WebPSafeFree(p->mem_); 260 } 261 262 int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride, 263 int strength) { 264 int radius = 4 * strength / 100; 265 266 if (strength < 0 || strength > 100) return 0; 267 if (data == NULL || width <= 0 || height <= 0) return 0; // bad params 268 269 // limit the filter size to not exceed the image dimensions 270 if (2 * radius + 1 > width) radius = (width - 1) >> 1; 271 if (2 * radius + 1 > height) radius = (height - 1) >> 1; 272 273 if (radius > 0) { 274 SmoothParams p; 275 memset(&p, 0, sizeof(p)); 276 if (!InitParams(data, width, height, stride, radius, &p)) return 0; 277 if (p.num_levels_ > 2) { 278 for (; p.row_ < p.height_; ++p.row_) { 279 VFilter(&p); // accumulate average of input 280 // Need to wait few rows in order to prime the filter, 281 // before emitting some output. 282 if (p.row_ >= p.radius_) { 283 HFilter(&p); 284 ApplyFilter(&p); 285 } 286 } 287 } 288 CleanupParams(&p); 289 } 290 return 1; 291 } 292