1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.hardware;
18 
19 import java.util.GregorianCalendar;
20 
21 /**
22  * Estimates magnetic field at a given point on
23  * Earth, and in particular, to compute the magnetic declination from true
24  * north.
25  *
26  * <p>This uses the World Magnetic Model produced by the United States National
27  * Geospatial-Intelligence Agency.  More details about the model can be found at
28  * <a href="http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml">http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml</a>.
29  * This class currently uses WMM-2015 which is valid until 2020, but should
30  * produce acceptable results for several years after that. Future versions of
31  * Android may use a newer version of the model.
32  */
33 public class GeomagneticField {
34     // The magnetic field at a given point, in nanoteslas in geodetic
35     // coordinates.
36     private float mX;
37     private float mY;
38     private float mZ;
39 
40     // Geocentric coordinates -- set by computeGeocentricCoordinates.
41     private float mGcLatitudeRad;
42     private float mGcLongitudeRad;
43     private float mGcRadiusKm;
44 
45     // Constants from WGS84 (the coordinate system used by GPS)
46     static private final float EARTH_SEMI_MAJOR_AXIS_KM = 6378.137f;
47     static private final float EARTH_SEMI_MINOR_AXIS_KM = 6356.7523142f;
48     static private final float EARTH_REFERENCE_RADIUS_KM = 6371.2f;
49 
50     // These coefficients and the formulae used below are from:
51     // NOAA Technical Report: The US/UK World Magnetic Model for 2015-2020
52     static private final float[][] G_COEFF = new float[][] {
53         { 0.0f },
54         { -29438.5f, -1501.1f },
55         { -2445.3f, 3012.5f, 1676.6f },
56         { 1351.1f, -2352.3f, 1225.6f, 581.9f },
57         { 907.2f, 813.7f, 120.3f, -335.0f, 70.3f },
58         { -232.6f, 360.1f, 192.4f, -141.0f, -157.4f, 4.3f },
59         { 69.5f, 67.4f, 72.8f, -129.8f, -29.0f, 13.2f, -70.9f },
60         { 81.6f, -76.1f, -6.8f, 51.9f, 15.0f, 9.3f, -2.8f, 6.7f },
61         { 24.0f, 8.6f, -16.9f, -3.2f, -20.6f, 13.3f, 11.7f, -16.0f, -2.0f },
62         { 5.4f, 8.8f, 3.1f, -3.1f, 0.6f, -13.3f, -0.1f, 8.7f, -9.1f, -10.5f },
63         { -1.9f, -6.5f, 0.2f, 0.6f, -0.6f, 1.7f, -0.7f, 2.1f, 2.3f, -1.8f, -3.6f },
64         { 3.1f, -1.5f, -2.3f, 2.1f, -0.9f, 0.6f, -0.7f, 0.2f, 1.7f, -0.2f, 0.4f, 3.5f },
65         { -2.0f, -0.3f, 0.4f, 1.3f, -0.9f, 0.9f, 0.1f, 0.5f, -0.4f, -0.4f, 0.2f, -0.9f, 0.0f } };
66 
67     static private final float[][] H_COEFF = new float[][] {
68         { 0.0f },
69         { 0.0f, 4796.2f },
70         { 0.0f, -2845.6f, -642.0f },
71         { 0.0f, -115.3f, 245.0f, -538.3f },
72         { 0.0f, 283.4f, -188.6f, 180.9f, -329.5f },
73         { 0.0f, 47.4f, 196.9f, -119.4f, 16.1f, 100.1f },
74         { 0.0f, -20.7f, 33.2f, 58.8f, -66.5f, 7.3f, 62.5f },
75         { 0.0f, -54.1f, -19.4f, 5.6f, 24.4f, 3.3f, -27.5f, -2.3f },
76         { 0.0f, 10.2f, -18.1f, 13.2f, -14.6f, 16.2f, 5.7f, -9.1f, 2.2f },
77         { 0.0f, -21.6f, 10.8f, 11.7f, -6.8f, -6.9f, 7.8f, 1.0f, -3.9f, 8.5f },
78         { 0.0f, 3.3f, -0.3f, 4.6f, 4.4f, -7.9f, -0.6f, -4.1f, -2.8f, -1.1f, -8.7f },
79         { 0.0f, -0.1f, 2.1f, -0.7f, -1.1f, 0.7f, -0.2f, -2.1f, -1.5f, -2.5f, -2.0f, -2.3f },
80         { 0.0f, -1.0f, 0.5f, 1.8f, -2.2f, 0.3f, 0.7f, -0.1f, 0.3f, 0.2f, -0.9f, -0.2f, 0.7f } };
81 
82     static private final float[][] DELTA_G = new float[][] {
83         { 0.0f },
84         { 10.7f, 17.9f },
85         { -8.6f, -3.3f, 2.4f },
86         { 3.1f, -6.2f, -0.4f, -10.4f },
87         { -0.4f, 0.8f, -9.2f, 4.0f, -4.2f },
88         { -0.2f, 0.1f, -1.4f, 0.0f, 1.3f, 3.8f },
89         { -0.5f, -0.2f, -0.6f, 2.4f, -1.1f, 0.3f, 1.5f },
90         { 0.2f, -0.2f, -0.4f, 1.3f, 0.2f, -0.4f, -0.9f, 0.3f },
91         { 0.0f, 0.1f, -0.5f, 0.5f, -0.2f, 0.4f, 0.2f, -0.4f, 0.3f },
92         { 0.0f, -0.1f, -0.1f, 0.4f, -0.5f, -0.2f, 0.1f, 0.0f, -0.2f, -0.1f },
93         { 0.0f, 0.0f, -0.1f, 0.3f, -0.1f, -0.1f, -0.1f, 0.0f, -0.2f, -0.1f, -0.2f },
94         { 0.0f, 0.0f, -0.1f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, -0.1f, -0.1f },
95         { 0.1f, 0.0f, 0.0f, 0.1f, -0.1f, 0.0f, 0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
96 
97     static private final float[][] DELTA_H = new float[][] {
98         { 0.0f },
99         { 0.0f, -26.8f },
100         { 0.0f, -27.1f, -13.3f },
101         { 0.0f, 8.4f, -0.4f, 2.3f },
102         { 0.0f, -0.6f, 5.3f, 3.0f, -5.3f },
103         { 0.0f, 0.4f, 1.6f, -1.1f, 3.3f, 0.1f },
104         { 0.0f, 0.0f, -2.2f, -0.7f, 0.1f, 1.0f, 1.3f },
105         { 0.0f, 0.7f, 0.5f, -0.2f, -0.1f, -0.7f, 0.1f, 0.1f },
106         { 0.0f, -0.3f, 0.3f, 0.3f, 0.6f, -0.1f, -0.2f, 0.3f, 0.0f },
107         { 0.0f, -0.2f, -0.1f, -0.2f, 0.1f, 0.1f, 0.0f, -0.2f, 0.4f, 0.3f },
108         { 0.0f, 0.1f, -0.1f, 0.0f, 0.0f, -0.2f, 0.1f, -0.1f, -0.2f, 0.1f, -0.1f },
109         { 0.0f, 0.0f, 0.1f, 0.0f, 0.1f, 0.0f, 0.0f, 0.1f, 0.0f, -0.1f, 0.0f, -0.1f },
110         { 0.0f, 0.0f, 0.0f, -0.1f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f } };
111 
112     static private final long BASE_TIME =
113             new GregorianCalendar(2015, 1, 1).getTimeInMillis();
114 
115     // The ratio between the Gauss-normalized associated Legendre functions and
116     // the Schmid quasi-normalized ones. Compute these once staticly since they
117     // don't depend on input variables at all.
118     static private final float[][] SCHMIDT_QUASI_NORM_FACTORS =
119         computeSchmidtQuasiNormFactors(G_COEFF.length);
120 
121     /**
122      * Estimate the magnetic field at a given point and time.
123      *
124      * @param gdLatitudeDeg
125      *            Latitude in WGS84 geodetic coordinates -- positive is east.
126      * @param gdLongitudeDeg
127      *            Longitude in WGS84 geodetic coordinates -- positive is north.
128      * @param altitudeMeters
129      *            Altitude in WGS84 geodetic coordinates, in meters.
130      * @param timeMillis
131      *            Time at which to evaluate the declination, in milliseconds
132      *            since January 1, 1970. (approximate is fine -- the declination
133      *            changes very slowly).
134      */
GeomagneticField(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters, long timeMillis)135     public GeomagneticField(float gdLatitudeDeg,
136                             float gdLongitudeDeg,
137                             float altitudeMeters,
138                             long timeMillis) {
139         final int MAX_N = G_COEFF.length; // Maximum degree of the coefficients.
140 
141         // We don't handle the north and south poles correctly -- pretend that
142         // we're not quite at them to avoid crashing.
143         gdLatitudeDeg = Math.min(90.0f - 1e-5f,
144                                  Math.max(-90.0f + 1e-5f, gdLatitudeDeg));
145         computeGeocentricCoordinates(gdLatitudeDeg,
146                                      gdLongitudeDeg,
147                                      altitudeMeters);
148 
149         assert G_COEFF.length == H_COEFF.length;
150 
151         // Note: LegendreTable computes associated Legendre functions for
152         // cos(theta).  We want the associated Legendre functions for
153         // sin(latitude), which is the same as cos(PI/2 - latitude), except the
154         // derivate will be negated.
155         LegendreTable legendre =
156             new LegendreTable(MAX_N - 1,
157                               (float) (Math.PI / 2.0 - mGcLatitudeRad));
158 
159         // Compute a table of (EARTH_REFERENCE_RADIUS_KM / radius)^n for i in
160         // 0..MAX_N-2 (this is much faster than calling Math.pow MAX_N+1 times).
161         float[] relativeRadiusPower = new float[MAX_N + 2];
162         relativeRadiusPower[0] = 1.0f;
163         relativeRadiusPower[1] = EARTH_REFERENCE_RADIUS_KM / mGcRadiusKm;
164         for (int i = 2; i < relativeRadiusPower.length; ++i) {
165             relativeRadiusPower[i] = relativeRadiusPower[i - 1] *
166                 relativeRadiusPower[1];
167         }
168 
169         // Compute tables of sin(lon * m) and cos(lon * m) for m = 0..MAX_N --
170         // this is much faster than calling Math.sin and Math.com MAX_N+1 times.
171         float[] sinMLon = new float[MAX_N];
172         float[] cosMLon = new float[MAX_N];
173         sinMLon[0] = 0.0f;
174         cosMLon[0] = 1.0f;
175         sinMLon[1] = (float) Math.sin(mGcLongitudeRad);
176         cosMLon[1] = (float) Math.cos(mGcLongitudeRad);
177 
178         for (int m = 2; m < MAX_N; ++m) {
179             // Standard expansions for sin((m-x)*theta + x*theta) and
180             // cos((m-x)*theta + x*theta).
181             int x = m >> 1;
182             sinMLon[m] = sinMLon[m-x] * cosMLon[x] + cosMLon[m-x] * sinMLon[x];
183             cosMLon[m] = cosMLon[m-x] * cosMLon[x] - sinMLon[m-x] * sinMLon[x];
184         }
185 
186         float inverseCosLatitude = 1.0f / (float) Math.cos(mGcLatitudeRad);
187         float yearsSinceBase =
188             (timeMillis - BASE_TIME) / (365f * 24f * 60f * 60f * 1000f);
189 
190         // We now compute the magnetic field strength given the geocentric
191         // location. The magnetic field is the derivative of the potential
192         // function defined by the model. See NOAA Technical Report: The US/UK
193         // World Magnetic Model for 2015-2020 for the derivation.
194         float gcX = 0.0f;  // Geocentric northwards component.
195         float gcY = 0.0f;  // Geocentric eastwards component.
196         float gcZ = 0.0f;  // Geocentric downwards component.
197 
198         for (int n = 1; n < MAX_N; n++) {
199             for (int m = 0; m <= n; m++) {
200                 // Adjust the coefficients for the current date.
201                 float g = G_COEFF[n][m] + yearsSinceBase * DELTA_G[n][m];
202                 float h = H_COEFF[n][m] + yearsSinceBase * DELTA_H[n][m];
203 
204                 // Negative derivative with respect to latitude, divided by
205                 // radius.  This looks like the negation of the version in the
206                 // NOAA Techincal report because that report used
207                 // P_n^m(sin(theta)) and we use P_n^m(cos(90 - theta)), so the
208                 // derivative with respect to theta is negated.
209                 gcX += relativeRadiusPower[n+2]
210                     * (g * cosMLon[m] + h * sinMLon[m])
211                     * legendre.mPDeriv[n][m]
212                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
213 
214                 // Negative derivative with respect to longitude, divided by
215                 // radius.
216                 gcY += relativeRadiusPower[n+2] * m
217                     * (g * sinMLon[m] - h * cosMLon[m])
218                     * legendre.mP[n][m]
219                     * SCHMIDT_QUASI_NORM_FACTORS[n][m]
220                     * inverseCosLatitude;
221 
222                 // Negative derivative with respect to radius.
223                 gcZ -= (n + 1) * relativeRadiusPower[n+2]
224                     * (g * cosMLon[m] + h * sinMLon[m])
225                     * legendre.mP[n][m]
226                     * SCHMIDT_QUASI_NORM_FACTORS[n][m];
227             }
228         }
229 
230         // Convert back to geodetic coordinates.  This is basically just a
231         // rotation around the Y-axis by the difference in latitudes between the
232         // geocentric frame and the geodetic frame.
233         double latDiffRad = Math.toRadians(gdLatitudeDeg) - mGcLatitudeRad;
234         mX = (float) (gcX * Math.cos(latDiffRad)
235                       + gcZ * Math.sin(latDiffRad));
236         mY = gcY;
237         mZ = (float) (- gcX * Math.sin(latDiffRad)
238                       + gcZ * Math.cos(latDiffRad));
239     }
240 
241     /**
242      * @return The X (northward) component of the magnetic field in nanoteslas.
243      */
getX()244     public float getX() {
245         return mX;
246     }
247 
248     /**
249      * @return The Y (eastward) component of the magnetic field in nanoteslas.
250      */
getY()251     public float getY() {
252         return mY;
253     }
254 
255     /**
256      * @return The Z (downward) component of the magnetic field in nanoteslas.
257      */
getZ()258     public float getZ() {
259         return mZ;
260     }
261 
262     /**
263      * @return The declination of the horizontal component of the magnetic
264      *         field from true north, in degrees (i.e. positive means the
265      *         magnetic field is rotated east that much from true north).
266      */
getDeclination()267     public float getDeclination() {
268         return (float) Math.toDegrees(Math.atan2(mY, mX));
269     }
270 
271     /**
272      * @return The inclination of the magnetic field in degrees -- positive
273      *         means the magnetic field is rotated downwards.
274      */
getInclination()275     public float getInclination() {
276         return (float) Math.toDegrees(Math.atan2(mZ,
277                                                  getHorizontalStrength()));
278     }
279 
280     /**
281      * @return  Horizontal component of the field strength in nanoteslas.
282      */
getHorizontalStrength()283     public float getHorizontalStrength() {
284         return (float) Math.hypot(mX, mY);
285     }
286 
287     /**
288      * @return  Total field strength in nanoteslas.
289      */
getFieldStrength()290     public float getFieldStrength() {
291         return (float) Math.sqrt(mX * mX + mY * mY + mZ * mZ);
292     }
293 
294     /**
295      * @param gdLatitudeDeg
296      *            Latitude in WGS84 geodetic coordinates.
297      * @param gdLongitudeDeg
298      *            Longitude in WGS84 geodetic coordinates.
299      * @param altitudeMeters
300      *            Altitude above sea level in WGS84 geodetic coordinates.
301      * @return Geocentric latitude (i.e. angle between closest point on the
302      *         equator and this point, at the center of the earth.
303      */
computeGeocentricCoordinates(float gdLatitudeDeg, float gdLongitudeDeg, float altitudeMeters)304     private void computeGeocentricCoordinates(float gdLatitudeDeg,
305                                               float gdLongitudeDeg,
306                                               float altitudeMeters) {
307         float altitudeKm = altitudeMeters / 1000.0f;
308         float a2 = EARTH_SEMI_MAJOR_AXIS_KM * EARTH_SEMI_MAJOR_AXIS_KM;
309         float b2 = EARTH_SEMI_MINOR_AXIS_KM * EARTH_SEMI_MINOR_AXIS_KM;
310         double gdLatRad = Math.toRadians(gdLatitudeDeg);
311         float clat = (float) Math.cos(gdLatRad);
312         float slat = (float) Math.sin(gdLatRad);
313         float tlat = slat / clat;
314         float latRad =
315             (float) Math.sqrt(a2 * clat * clat + b2 * slat * slat);
316 
317         mGcLatitudeRad = (float) Math.atan(tlat * (latRad * altitudeKm + b2)
318                                            / (latRad * altitudeKm + a2));
319 
320         mGcLongitudeRad = (float) Math.toRadians(gdLongitudeDeg);
321 
322         float radSq = altitudeKm * altitudeKm
323             + 2 * altitudeKm * (float) Math.sqrt(a2 * clat * clat +
324                                                  b2 * slat * slat)
325             + (a2 * a2 * clat * clat + b2 * b2 * slat * slat)
326             / (a2 * clat * clat + b2 * slat * slat);
327         mGcRadiusKm = (float) Math.sqrt(radSq);
328     }
329 
330 
331     /**
332      * Utility class to compute a table of Gauss-normalized associated Legendre
333      * functions P_n^m(cos(theta))
334      */
335     static private class LegendreTable {
336         // These are the Gauss-normalized associated Legendre functions -- that
337         // is, they are normal Legendre functions multiplied by
338         // (n-m)!/(2n-1)!! (where (2n-1)!! = 1*3*5*...*2n-1)
339         public final float[][] mP;
340 
341         // Derivative of mP, with respect to theta.
342         public final float[][] mPDeriv;
343 
344         /**
345          * @param maxN
346          *            The maximum n- and m-values to support
347          * @param thetaRad
348          *            Returned functions will be Gauss-normalized
349          *            P_n^m(cos(thetaRad)), with thetaRad in radians.
350          */
LegendreTable(int maxN, float thetaRad)351         public LegendreTable(int maxN, float thetaRad) {
352             // Compute the table of Gauss-normalized associated Legendre
353             // functions using standard recursion relations. Also compute the
354             // table of derivatives using the derivative of the recursion
355             // relations.
356             float cos = (float) Math.cos(thetaRad);
357             float sin = (float) Math.sin(thetaRad);
358 
359             mP = new float[maxN + 1][];
360             mPDeriv = new float[maxN + 1][];
361             mP[0] = new float[] { 1.0f };
362             mPDeriv[0] = new float[] { 0.0f };
363             for (int n = 1; n <= maxN; n++) {
364                 mP[n] = new float[n + 1];
365                 mPDeriv[n] = new float[n + 1];
366                 for (int m = 0; m <= n; m++) {
367                     if (n == m) {
368                         mP[n][m] = sin * mP[n - 1][m - 1];
369                         mPDeriv[n][m] = cos * mP[n - 1][m - 1]
370                             + sin * mPDeriv[n - 1][m - 1];
371                     } else if (n == 1 || m == n - 1) {
372                         mP[n][m] = cos * mP[n - 1][m];
373                         mPDeriv[n][m] = -sin * mP[n - 1][m]
374                             + cos * mPDeriv[n - 1][m];
375                     } else {
376                         assert n > 1 && m < n - 1;
377                         float k = ((n - 1) * (n - 1) - m * m)
378                             / (float) ((2 * n - 1) * (2 * n - 3));
379                         mP[n][m] = cos * mP[n - 1][m] - k * mP[n - 2][m];
380                         mPDeriv[n][m] = -sin * mP[n - 1][m]
381                             + cos * mPDeriv[n - 1][m] - k * mPDeriv[n - 2][m];
382                     }
383                 }
384             }
385         }
386     }
387 
388     /**
389      * Compute the ration between the Gauss-normalized associated Legendre
390      * functions and the Schmidt quasi-normalized version. This is equivalent to
391      * sqrt((m==0?1:2)*(n-m)!/(n+m!))*(2n-1)!!/(n-m)!
392      */
393     private static float[][] computeSchmidtQuasiNormFactors(int maxN) {
394         float[][] schmidtQuasiNorm = new float[maxN + 1][];
395         schmidtQuasiNorm[0] = new float[] { 1.0f };
396         for (int n = 1; n <= maxN; n++) {
397             schmidtQuasiNorm[n] = new float[n + 1];
398             schmidtQuasiNorm[n][0] =
399                 schmidtQuasiNorm[n - 1][0] * (2 * n - 1) / (float) n;
400             for (int m = 1; m <= n; m++) {
401                 schmidtQuasiNorm[n][m] = schmidtQuasiNorm[n][m - 1]
402                     * (float) Math.sqrt((n - m + 1) * (m == 1 ? 2 : 1)
403                                 / (float) (n + m));
404             }
405         }
406         return schmidtQuasiNorm;
407     }
408 }
409