1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitReader_2_7.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/MemoryBuffer.h"
33 
34 using namespace llvm;
35 using namespace llvm_2_7;
36 
37 #define METADATA_NODE_2_7             2
38 #define METADATA_FN_NODE_2_7          3
39 #define METADATA_NAMED_NODE_2_7       5
40 #define METADATA_ATTACHMENT_2_7       7
41 #define FUNC_CODE_INST_UNWIND_2_7     14
42 #define FUNC_CODE_INST_MALLOC_2_7     17
43 #define FUNC_CODE_INST_FREE_2_7       18
44 #define FUNC_CODE_INST_STORE_2_7      21
45 #define FUNC_CODE_INST_CALL_2_7       22
46 #define FUNC_CODE_INST_GETRESULT_2_7  25
47 #define FUNC_CODE_DEBUG_LOC_2_7       32
48 
49 #define TYPE_BLOCK_ID_OLD_3_0         10
50 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
51 #define TYPE_CODE_STRUCT_OLD_3_0      10
52 
53 namespace {
54 
StripDebugInfoOfFunction(Module * M,const char * name)55   void StripDebugInfoOfFunction(Module* M, const char* name) {
56     if (Function* FuncStart = M->getFunction(name)) {
57       while (!FuncStart->use_empty()) {
58         cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
59       }
60       FuncStart->eraseFromParent();
61     }
62   }
63 
64   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
65   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
66   /// strips that use.
CheckDebugInfoIntrinsics(Module * M)67   void CheckDebugInfoIntrinsics(Module *M) {
68     StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
69     StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
70     StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
71     StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
72 
73     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
74       if (!Declare->use_empty()) {
75         DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
76         if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
77             !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
78           while (!Declare->use_empty()) {
79             CallInst *CI = cast<CallInst>(*Declare->use_begin());
80             CI->eraseFromParent();
81           }
82           Declare->eraseFromParent();
83         }
84       }
85     }
86   }
87 
88 //===----------------------------------------------------------------------===//
89 //                          BitcodeReaderValueList Class
90 //===----------------------------------------------------------------------===//
91 
92 class BitcodeReaderValueList {
93   std::vector<WeakVH> ValuePtrs;
94 
95   /// ResolveConstants - As we resolve forward-referenced constants, we add
96   /// information about them to this vector.  This allows us to resolve them in
97   /// bulk instead of resolving each reference at a time.  See the code in
98   /// ResolveConstantForwardRefs for more information about this.
99   ///
100   /// The key of this vector is the placeholder constant, the value is the slot
101   /// number that holds the resolved value.
102   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
103   ResolveConstantsTy ResolveConstants;
104   LLVMContext &Context;
105 public:
BitcodeReaderValueList(LLVMContext & C)106   explicit BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()107   ~BitcodeReaderValueList() {
108     assert(ResolveConstants.empty() && "Constants not resolved?");
109   }
110 
111   // vector compatibility methods
size() const112   unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)113   void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)114   void push_back(Value *V) {
115     ValuePtrs.push_back(V);
116   }
117 
clear()118   void clear() {
119     assert(ResolveConstants.empty() && "Constants not resolved?");
120     ValuePtrs.clear();
121   }
122 
operator [](unsigned i) const123   Value *operator[](unsigned i) const {
124     assert(i < ValuePtrs.size());
125     return ValuePtrs[i];
126   }
127 
back() const128   Value *back() const { return ValuePtrs.back(); }
pop_back()129     void pop_back() { ValuePtrs.pop_back(); }
empty() const130   bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)131   void shrinkTo(unsigned N) {
132     assert(N <= size() && "Invalid shrinkTo request!");
133     ValuePtrs.resize(N);
134   }
135 
136   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
137   Value *getValueFwdRef(unsigned Idx, Type *Ty);
138 
139   void AssignValue(Value *V, unsigned Idx);
140 
141   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
142   /// resolves any forward references.
143   void ResolveConstantForwardRefs();
144 };
145 
146 
147 //===----------------------------------------------------------------------===//
148 //                          BitcodeReaderMDValueList Class
149 //===----------------------------------------------------------------------===//
150 
151 class BitcodeReaderMDValueList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   std::vector<TrackingMDRef> MDValuePtrs;
155 
156   LLVMContext &Context;
157 public:
BitcodeReaderMDValueList(LLVMContext & C)158   explicit BitcodeReaderMDValueList(LLVMContext &C)
159       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
160 
161   // vector compatibility methods
size() const162   unsigned size() const       { return MDValuePtrs.size(); }
resize(unsigned N)163   void resize(unsigned N)     { MDValuePtrs.resize(N); }
push_back(Metadata * MD)164   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()165   void clear()                { MDValuePtrs.clear();  }
back() const166   Metadata *back() const      { return MDValuePtrs.back(); }
pop_back()167   void pop_back()             { MDValuePtrs.pop_back(); }
empty() const168   bool empty() const          { return MDValuePtrs.empty(); }
169 
operator [](unsigned i) const170   Metadata *operator[](unsigned i) const {
171     assert(i < MDValuePtrs.size());
172     return MDValuePtrs[i];
173   }
174 
shrinkTo(unsigned N)175   void shrinkTo(unsigned N) {
176     assert(N <= size() && "Invalid shrinkTo request!");
177     MDValuePtrs.resize(N);
178   }
179 
180   Metadata *getValueFwdRef(unsigned Idx);
181   void AssignValue(Metadata *MD, unsigned Idx);
182   void tryToResolveCycles();
183 };
184 
185 class BitcodeReader : public GVMaterializer {
186   LLVMContext &Context;
187   DiagnosticHandlerFunction DiagnosticHandler;
188   Module *TheModule;
189   std::unique_ptr<MemoryBuffer> Buffer;
190   std::unique_ptr<BitstreamReader> StreamFile;
191   BitstreamCursor Stream;
192   std::unique_ptr<DataStreamer> LazyStreamer;
193   uint64_t NextUnreadBit;
194   bool SeenValueSymbolTable;
195 
196   std::vector<Type*> TypeList;
197   BitcodeReaderValueList ValueList;
198   BitcodeReaderMDValueList MDValueList;
199   SmallVector<Instruction *, 64> InstructionList;
200 
201   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
202   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
203 
204   /// MAttributes - The set of attributes by index.  Index zero in the
205   /// file is for null, and is thus not represented here.  As such all indices
206   /// are off by one.
207   std::vector<AttributeSet> MAttributes;
208 
209   /// \brief The set of attribute groups.
210   std::map<unsigned, AttributeSet> MAttributeGroups;
211 
212   /// FunctionBBs - While parsing a function body, this is a list of the basic
213   /// blocks for the function.
214   std::vector<BasicBlock*> FunctionBBs;
215 
216   // When reading the module header, this list is populated with functions that
217   // have bodies later in the file.
218   std::vector<Function*> FunctionsWithBodies;
219 
220   // When intrinsic functions are encountered which require upgrading they are
221   // stored here with their replacement function.
222   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
223   UpgradedIntrinsicMap UpgradedIntrinsics;
224 
225   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
226   DenseMap<unsigned, unsigned> MDKindMap;
227 
228   // Several operations happen after the module header has been read, but
229   // before function bodies are processed. This keeps track of whether
230   // we've done this yet.
231   bool SeenFirstFunctionBody;
232 
233   /// DeferredFunctionInfo - When function bodies are initially scanned, this
234   /// map contains info about where to find deferred function body in the
235   /// stream.
236   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
237 
238   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
239   /// are resolved lazily when functions are loaded.
240   typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
241   DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
242 
243   /// LLVM2_7MetadataDetected - True if metadata produced by LLVM 2.7 or
244   /// earlier was detected, in which case we behave slightly differently,
245   /// for compatibility.
246   /// FIXME: Remove in LLVM 3.0.
247   bool LLVM2_7MetadataDetected;
248   static const std::error_category &BitcodeErrorCategory();
249 
250 public:
251   std::error_code Error(BitcodeError E, const Twine &Message);
252   std::error_code Error(BitcodeError E);
253   std::error_code Error(const Twine &Message);
254 
255   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
256                          DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader()257   ~BitcodeReader() { FreeState(); }
258 
259   void FreeState();
260 
261   void releaseBuffer();
262 
263   bool isDematerializable(const GlobalValue *GV) const;
264   std::error_code materialize(GlobalValue *GV) override;
265   std::error_code materializeModule() override;
266   std::vector<StructType *> getIdentifiedStructTypes() const override;
267   void dematerialize(GlobalValue *GV);
268 
269   /// @brief Main interface to parsing a bitcode buffer.
270   /// @returns true if an error occurred.
271   std::error_code ParseBitcodeInto(Module *M);
272 
273   /// @brief Cheap mechanism to just extract module triple
274   /// @returns true if an error occurred.
275   llvm::ErrorOr<std::string> parseTriple();
276 
277   static uint64_t decodeSignRotatedValue(uint64_t V);
278 
279   /// Materialize any deferred Metadata block.
280   std::error_code materializeMetadata() override;
281 
282   void setStripDebugInfo() override;
283 
284 private:
285   std::vector<StructType *> IdentifiedStructTypes;
286   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
287   StructType *createIdentifiedStructType(LLVMContext &Context);
288 
289   Type *getTypeByID(unsigned ID);
290   Type *getTypeByIDOrNull(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
getFnMetadataByID(unsigned ID)296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MDValueList.getValueFwdRef(ID);
298   }
getBasicBlock(unsigned ID) const299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
getAttributes(unsigned i) const303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// getValueTypePair - Read a value/type pair out of the specified record from
310   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
311   /// Return true on failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     if (ValNo < InstNum) {
317       // If this is not a forward reference, just return the value we already
318       // have.
319       ResVal = getFnValueByID(ValNo, nullptr);
320       return ResVal == nullptr;
321     } else if (Slot == Record.size()) {
322       return true;
323     }
324 
325     unsigned TypeNo = (unsigned)Record[Slot++];
326     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
327     return ResVal == nullptr;
328   }
getValue(SmallVector<uint64_t,64> & Record,unsigned & Slot,Type * Ty,Value * & ResVal)329   bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
330                 Type *Ty, Value *&ResVal) {
331     if (Slot == Record.size()) return true;
332     unsigned ValNo = (unsigned)Record[Slot++];
333     ResVal = getFnValueByID(ValNo, Ty);
334     return ResVal == 0;
335   }
336 
337 
338   std::error_code ParseModule(bool Resume);
339   std::error_code ParseAttributeBlock();
340   std::error_code ParseTypeTable();
341   std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
342   std::error_code ParseTypeTableBody();
343 
344   std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
345   std::error_code ParseValueSymbolTable();
346   std::error_code ParseConstants();
347   std::error_code RememberAndSkipFunctionBody();
348   std::error_code ParseFunctionBody(Function *F);
349   std::error_code GlobalCleanup();
350   std::error_code ResolveGlobalAndAliasInits();
351   std::error_code ParseMetadata();
352   std::error_code ParseMetadataAttachment();
353   llvm::ErrorOr<std::string> parseModuleTriple();
354   std::error_code InitStream();
355   std::error_code InitStreamFromBuffer();
356   std::error_code InitLazyStream();
357 };
358 } // end anonymous namespace
359 
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC,const Twine & Message)360 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
361                              std::error_code EC, const Twine &Message) {
362   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
363   DiagnosticHandler(DI);
364   return EC;
365 }
366 
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC)367 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
368                              std::error_code EC) {
369   return Error(DiagnosticHandler, EC, EC.message());
370 }
371 
Error(BitcodeError E,const Twine & Message)372 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
373   return ::Error(DiagnosticHandler, make_error_code(E), Message);
374 }
375 
Error(const Twine & Message)376 std::error_code BitcodeReader::Error(const Twine &Message) {
377   return ::Error(DiagnosticHandler,
378                  make_error_code(BitcodeError::CorruptedBitcode), Message);
379 }
380 
Error(BitcodeError E)381 std::error_code BitcodeReader::Error(BitcodeError E) {
382   return ::Error(DiagnosticHandler, make_error_code(E));
383 }
384 
getDiagHandler(DiagnosticHandlerFunction F,LLVMContext & C)385 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
386                                                 LLVMContext &C) {
387   if (F)
388     return F;
389   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
390 }
391 
BitcodeReader(MemoryBuffer * buffer,LLVMContext & C,DiagnosticHandlerFunction DiagnosticHandler)392 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
393                              DiagnosticHandlerFunction DiagnosticHandler)
394     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
395       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
396       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
397       MDValueList(C), SeenFirstFunctionBody(false),
398       LLVM2_7MetadataDetected(false) {}
399 
400 
FreeState()401 void BitcodeReader::FreeState() {
402   Buffer = nullptr;
403   std::vector<Type*>().swap(TypeList);
404   ValueList.clear();
405   MDValueList.clear();
406 
407   std::vector<AttributeSet>().swap(MAttributes);
408   std::vector<BasicBlock*>().swap(FunctionBBs);
409   std::vector<Function*>().swap(FunctionsWithBodies);
410   DeferredFunctionInfo.clear();
411   MDKindMap.clear();
412 }
413 
414 //===----------------------------------------------------------------------===//
415 //  Helper functions to implement forward reference resolution, etc.
416 //===----------------------------------------------------------------------===//
417 
418 /// ConvertToString - Convert a string from a record into an std::string, return
419 /// true on failure.
420 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)421 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
422                             StrTy &Result) {
423   if (Idx > Record.size())
424     return true;
425 
426   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
427     Result += (char)Record[i];
428   return false;
429 }
430 
getDecodedLinkage(unsigned Val)431 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
432   switch (Val) {
433   default: // Map unknown/new linkages to external
434   case 0:
435     return GlobalValue::ExternalLinkage;
436   case 1:
437     return GlobalValue::WeakAnyLinkage;
438   case 2:
439     return GlobalValue::AppendingLinkage;
440   case 3:
441     return GlobalValue::InternalLinkage;
442   case 4:
443     return GlobalValue::LinkOnceAnyLinkage;
444   case 5:
445     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
446   case 6:
447     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
448   case 7:
449     return GlobalValue::ExternalWeakLinkage;
450   case 8:
451     return GlobalValue::CommonLinkage;
452   case 9:
453     return GlobalValue::PrivateLinkage;
454   case 10:
455     return GlobalValue::WeakODRLinkage;
456   case 11:
457     return GlobalValue::LinkOnceODRLinkage;
458   case 12:
459     return GlobalValue::AvailableExternallyLinkage;
460   case 13:
461     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
462   case 14:
463     return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
464   //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
465   case 15:
466     return GlobalValue::LinkOnceODRLinkage;
467   }
468 }
469 
GetDecodedVisibility(unsigned Val)470 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
471   switch (Val) {
472   default: // Map unknown visibilities to default.
473   case 0: return GlobalValue::DefaultVisibility;
474   case 1: return GlobalValue::HiddenVisibility;
475   case 2: return GlobalValue::ProtectedVisibility;
476   }
477 }
478 
GetDecodedThreadLocalMode(unsigned Val)479 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
480   switch (Val) {
481     case 0: return GlobalVariable::NotThreadLocal;
482     default: // Map unknown non-zero value to general dynamic.
483     case 1: return GlobalVariable::GeneralDynamicTLSModel;
484     case 2: return GlobalVariable::LocalDynamicTLSModel;
485     case 3: return GlobalVariable::InitialExecTLSModel;
486     case 4: return GlobalVariable::LocalExecTLSModel;
487   }
488 }
489 
getDecodedUnnamedAddrType(unsigned Val)490 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
491   switch (Val) {
492     default: // Map unknown to UnnamedAddr::None.
493     case 0: return GlobalVariable::UnnamedAddr::None;
494     case 1: return GlobalVariable::UnnamedAddr::Global;
495     case 2: return GlobalVariable::UnnamedAddr::Local;
496   }
497 }
498 
GetDecodedCastOpcode(unsigned Val)499 static int GetDecodedCastOpcode(unsigned Val) {
500   switch (Val) {
501   default: return -1;
502   case bitc::CAST_TRUNC   : return Instruction::Trunc;
503   case bitc::CAST_ZEXT    : return Instruction::ZExt;
504   case bitc::CAST_SEXT    : return Instruction::SExt;
505   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
506   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
507   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
508   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
509   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
510   case bitc::CAST_FPEXT   : return Instruction::FPExt;
511   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
512   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
513   case bitc::CAST_BITCAST : return Instruction::BitCast;
514   }
515 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)516 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
517   switch (Val) {
518   default: return -1;
519   case bitc::BINOP_ADD:
520     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
521   case bitc::BINOP_SUB:
522     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
523   case bitc::BINOP_MUL:
524     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
525   case bitc::BINOP_UDIV: return Instruction::UDiv;
526   case bitc::BINOP_SDIV:
527     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
528   case bitc::BINOP_UREM: return Instruction::URem;
529   case bitc::BINOP_SREM:
530     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
531   case bitc::BINOP_SHL:  return Instruction::Shl;
532   case bitc::BINOP_LSHR: return Instruction::LShr;
533   case bitc::BINOP_ASHR: return Instruction::AShr;
534   case bitc::BINOP_AND:  return Instruction::And;
535   case bitc::BINOP_OR:   return Instruction::Or;
536   case bitc::BINOP_XOR:  return Instruction::Xor;
537   }
538 }
539 
540 namespace llvm {
541 namespace {
542   /// @brief A class for maintaining the slot number definition
543   /// as a placeholder for the actual definition for forward constants defs.
544   class ConstantPlaceHolder : public ConstantExpr {
545     void operator=(const ConstantPlaceHolder &) = delete;
546   public:
547     // allocate space for exactly one operand
operator new(size_t s)548     void *operator new(size_t s) {
549       return User::operator new(s, 1);
550     }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)551     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
552       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
553       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
554     }
555 
556     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)557     static bool classof(const Value *V) {
558       return isa<ConstantExpr>(V) &&
559              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
560     }
561 
562 
563     /// Provide fast operand accessors
564     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
565   };
566 }
567 
568 // FIXME: can we inherit this from ConstantExpr?
569 template <>
570 struct OperandTraits<ConstantPlaceHolder> :
571   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
572 };
573 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
574 }
575 
576 
AssignValue(Value * V,unsigned Idx)577 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
578   if (Idx == size()) {
579     push_back(V);
580     return;
581   }
582 
583   if (Idx >= size())
584     resize(Idx+1);
585 
586   WeakVH &OldV = ValuePtrs[Idx];
587   if (!OldV) {
588     OldV = V;
589     return;
590   }
591 
592   // Handle constants and non-constants (e.g. instrs) differently for
593   // efficiency.
594   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
595     ResolveConstants.push_back(std::make_pair(PHC, Idx));
596     OldV = V;
597   } else {
598     // If there was a forward reference to this value, replace it.
599     Value *PrevVal = OldV;
600     OldV->replaceAllUsesWith(V);
601     delete PrevVal;
602   }
603 }
604 
605 
getConstantFwdRef(unsigned Idx,Type * Ty)606 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
607                                                     Type *Ty) {
608   if (Idx >= size())
609     resize(Idx + 1);
610 
611   if (Value *V = ValuePtrs[Idx]) {
612     assert(Ty == V->getType() && "Type mismatch in constant table!");
613     return cast<Constant>(V);
614   }
615 
616   // Create and return a placeholder, which will later be RAUW'd.
617   Constant *C = new ConstantPlaceHolder(Ty, Context);
618   ValuePtrs[Idx] = C;
619   return C;
620 }
621 
getValueFwdRef(unsigned Idx,Type * Ty)622 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
623   if (Idx >= size())
624     resize(Idx + 1);
625 
626   if (Value *V = ValuePtrs[Idx]) {
627     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
628     return V;
629   }
630 
631   // No type specified, must be invalid reference.
632   if (!Ty) return nullptr;
633 
634   // Create and return a placeholder, which will later be RAUW'd.
635   Value *V = new Argument(Ty);
636   ValuePtrs[Idx] = V;
637   return V;
638 }
639 
640 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
641 /// resolves any forward references.  The idea behind this is that we sometimes
642 /// get constants (such as large arrays) which reference *many* forward ref
643 /// constants.  Replacing each of these causes a lot of thrashing when
644 /// building/reuniquing the constant.  Instead of doing this, we look at all the
645 /// uses and rewrite all the place holders at once for any constant that uses
646 /// a placeholder.
ResolveConstantForwardRefs()647 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
648   // Sort the values by-pointer so that they are efficient to look up with a
649   // binary search.
650   std::sort(ResolveConstants.begin(), ResolveConstants.end());
651 
652   SmallVector<Constant*, 64> NewOps;
653 
654   while (!ResolveConstants.empty()) {
655     Value *RealVal = operator[](ResolveConstants.back().second);
656     Constant *Placeholder = ResolveConstants.back().first;
657     ResolveConstants.pop_back();
658 
659     // Loop over all users of the placeholder, updating them to reference the
660     // new value.  If they reference more than one placeholder, update them all
661     // at once.
662     while (!Placeholder->use_empty()) {
663       auto UI = Placeholder->user_begin();
664       User *U = *UI;
665 
666       // If the using object isn't uniqued, just update the operands.  This
667       // handles instructions and initializers for global variables.
668       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
669         UI.getUse().set(RealVal);
670         continue;
671       }
672 
673       // Otherwise, we have a constant that uses the placeholder.  Replace that
674       // constant with a new constant that has *all* placeholder uses updated.
675       Constant *UserC = cast<Constant>(U);
676       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
677            I != E; ++I) {
678         Value *NewOp;
679         if (!isa<ConstantPlaceHolder>(*I)) {
680           // Not a placeholder reference.
681           NewOp = *I;
682         } else if (*I == Placeholder) {
683           // Common case is that it just references this one placeholder.
684           NewOp = RealVal;
685         } else {
686           // Otherwise, look up the placeholder in ResolveConstants.
687           ResolveConstantsTy::iterator It =
688             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
689                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
690                                                             0));
691           assert(It != ResolveConstants.end() && It->first == *I);
692           NewOp = operator[](It->second);
693         }
694 
695         NewOps.push_back(cast<Constant>(NewOp));
696       }
697 
698       // Make the new constant.
699       Constant *NewC;
700       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
701         NewC = ConstantArray::get(UserCA->getType(), NewOps);
702       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
703         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
704       } else if (isa<ConstantVector>(UserC)) {
705         NewC = ConstantVector::get(NewOps);
706       } else {
707         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
708         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
709       }
710 
711       UserC->replaceAllUsesWith(NewC);
712       UserC->destroyConstant();
713       NewOps.clear();
714     }
715 
716     // Update all ValueHandles, they should be the only users at this point.
717     Placeholder->replaceAllUsesWith(RealVal);
718     delete Placeholder;
719   }
720 }
721 
AssignValue(Metadata * MD,unsigned Idx)722 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
723   if (Idx == size()) {
724     push_back(MD);
725     return;
726   }
727 
728   if (Idx >= size())
729     resize(Idx+1);
730 
731   TrackingMDRef &OldMD = MDValuePtrs[Idx];
732   if (!OldMD) {
733     OldMD.reset(MD);
734     return;
735   }
736 
737   // If there was a forward reference to this value, replace it.
738   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
739   PrevMD->replaceAllUsesWith(MD);
740   --NumFwdRefs;
741 }
742 
getValueFwdRef(unsigned Idx)743 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
744   if (Idx >= size())
745     resize(Idx + 1);
746 
747   if (Metadata *MD = MDValuePtrs[Idx])
748     return MD;
749 
750   // Create and return a placeholder, which will later be RAUW'd.
751   AnyFwdRefs = true;
752   ++NumFwdRefs;
753   Metadata *MD = MDNode::getTemporary(Context, None).release();
754   MDValuePtrs[Idx].reset(MD);
755   return MD;
756 }
757 
tryToResolveCycles()758 void BitcodeReaderMDValueList::tryToResolveCycles() {
759   if (!AnyFwdRefs)
760     // Nothing to do.
761     return;
762 
763   if (NumFwdRefs)
764     // Still forward references... can't resolve cycles.
765     return;
766 
767   // Resolve any cycles.
768   for (auto &MD : MDValuePtrs) {
769     auto *N = dyn_cast_or_null<MDNode>(MD);
770     if (!N)
771       continue;
772 
773     assert(!N->isTemporary() && "Unexpected forward reference");
774     N->resolveCycles();
775   }
776 }
777 
getTypeByID(unsigned ID)778 Type *BitcodeReader::getTypeByID(unsigned ID) {
779   // The type table size is always specified correctly.
780   if (ID >= TypeList.size())
781     return nullptr;
782 
783   if (Type *Ty = TypeList[ID])
784     return Ty;
785 
786   // If we have a forward reference, the only possible case is when it is to a
787   // named struct.  Just create a placeholder for now.
788   return TypeList[ID] = createIdentifiedStructType(Context);
789 }
790 
createIdentifiedStructType(LLVMContext & Context,StringRef Name)791 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
792                                                       StringRef Name) {
793   auto *Ret = StructType::create(Context, Name);
794   IdentifiedStructTypes.push_back(Ret);
795   return Ret;
796 }
797 
createIdentifiedStructType(LLVMContext & Context)798 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
799   auto *Ret = StructType::create(Context);
800   IdentifiedStructTypes.push_back(Ret);
801   return Ret;
802 }
803 
804 
805 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)806 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
807   if (ID >= TypeList.size())
808     TypeList.resize(ID+1);
809 
810   return TypeList[ID];
811 }
812 
813 //===----------------------------------------------------------------------===//
814 //  Functions for parsing blocks from the bitcode file
815 //===----------------------------------------------------------------------===//
816 
817 
818 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
819 /// been decoded from the given integer. This function must stay in sync with
820 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)821 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
822                                            uint64_t EncodedAttrs) {
823   // FIXME: Remove in 4.0.
824 
825   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
826   // the bits above 31 down by 11 bits.
827   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
828   assert((!Alignment || isPowerOf2_32(Alignment)) &&
829          "Alignment must be a power of two.");
830 
831   if (Alignment)
832     B.addAlignmentAttr(Alignment);
833   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
834                 (EncodedAttrs & 0xffff));
835 }
836 
ParseAttributeBlock()837 std::error_code BitcodeReader::ParseAttributeBlock() {
838   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
839     return Error("Invalid record");
840 
841   if (!MAttributes.empty())
842     return Error("Invalid multiple blocks");
843 
844   SmallVector<uint64_t, 64> Record;
845 
846   SmallVector<AttributeSet, 8> Attrs;
847 
848   // Read all the records.
849   while (1) {
850     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
851 
852     switch (Entry.Kind) {
853     case BitstreamEntry::SubBlock: // Handled for us already.
854     case BitstreamEntry::Error:
855       return Error("Malformed block");
856     case BitstreamEntry::EndBlock:
857       return std::error_code();
858     case BitstreamEntry::Record:
859       // The interesting case.
860       break;
861     }
862 
863     // Read a record.
864     Record.clear();
865     switch (Stream.readRecord(Entry.ID, Record)) {
866     default:  // Default behavior: ignore.
867       break;
868     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
869       if (Record.size() & 1)
870         return Error("Invalid record");
871 
872       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
873         AttrBuilder B;
874         decodeLLVMAttributesForBitcode(B, Record[i+1]);
875         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
876       }
877 
878       MAttributes.push_back(AttributeSet::get(Context, Attrs));
879       Attrs.clear();
880       break;
881     }
882     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
883       for (unsigned i = 0, e = Record.size(); i != e; ++i)
884         Attrs.push_back(MAttributeGroups[Record[i]]);
885 
886       MAttributes.push_back(AttributeSet::get(Context, Attrs));
887       Attrs.clear();
888       break;
889     }
890     }
891   }
892 }
893 
894 
ParseTypeTable()895 std::error_code BitcodeReader::ParseTypeTable() {
896   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
897     return Error("Invalid record");
898 
899   return ParseTypeTableBody();
900 }
901 
ParseTypeTableBody()902 std::error_code BitcodeReader::ParseTypeTableBody() {
903   if (!TypeList.empty())
904     return Error("Invalid multiple blocks");
905 
906   SmallVector<uint64_t, 64> Record;
907   unsigned NumRecords = 0;
908 
909   SmallString<64> TypeName;
910 
911   // Read all the records for this type table.
912   while (1) {
913     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
914 
915     switch (Entry.Kind) {
916     case BitstreamEntry::SubBlock: // Handled for us already.
917     case BitstreamEntry::Error:
918       return Error("Malformed block");
919     case BitstreamEntry::EndBlock:
920       if (NumRecords != TypeList.size())
921         return Error("Malformed block");
922       return std::error_code();
923     case BitstreamEntry::Record:
924       // The interesting case.
925       break;
926     }
927 
928     // Read a record.
929     Record.clear();
930     Type *ResultTy = nullptr;
931     switch (Stream.readRecord(Entry.ID, Record)) {
932     default:
933       return Error("Invalid value");
934     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
935       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
936       // type list.  This allows us to reserve space.
937       if (Record.size() < 1)
938         return Error("Invalid record");
939       TypeList.resize(Record[0]);
940       continue;
941     case bitc::TYPE_CODE_VOID:      // VOID
942       ResultTy = Type::getVoidTy(Context);
943       break;
944     case bitc::TYPE_CODE_HALF:     // HALF
945       ResultTy = Type::getHalfTy(Context);
946       break;
947     case bitc::TYPE_CODE_FLOAT:     // FLOAT
948       ResultTy = Type::getFloatTy(Context);
949       break;
950     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
951       ResultTy = Type::getDoubleTy(Context);
952       break;
953     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
954       ResultTy = Type::getX86_FP80Ty(Context);
955       break;
956     case bitc::TYPE_CODE_FP128:     // FP128
957       ResultTy = Type::getFP128Ty(Context);
958       break;
959     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
960       ResultTy = Type::getPPC_FP128Ty(Context);
961       break;
962     case bitc::TYPE_CODE_LABEL:     // LABEL
963       ResultTy = Type::getLabelTy(Context);
964       break;
965     case bitc::TYPE_CODE_METADATA:  // METADATA
966       ResultTy = Type::getMetadataTy(Context);
967       break;
968     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
969       ResultTy = Type::getX86_MMXTy(Context);
970       break;
971     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
972       if (Record.size() < 1)
973         return Error("Invalid record");
974 
975       ResultTy = IntegerType::get(Context, Record[0]);
976       break;
977     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
978                                     //          [pointee type, address space]
979       if (Record.size() < 1)
980         return Error("Invalid record");
981       unsigned AddressSpace = 0;
982       if (Record.size() == 2)
983         AddressSpace = Record[1];
984       ResultTy = getTypeByID(Record[0]);
985       if (!ResultTy)
986         return Error("Invalid type");
987       ResultTy = PointerType::get(ResultTy, AddressSpace);
988       break;
989     }
990     case bitc::TYPE_CODE_FUNCTION_OLD: {
991       // FIXME: attrid is dead, remove it in LLVM 4.0
992       // FUNCTION: [vararg, attrid, retty, paramty x N]
993       if (Record.size() < 3)
994         return Error("Invalid record");
995       SmallVector<Type*, 8> ArgTys;
996       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
997         if (Type *T = getTypeByID(Record[i]))
998           ArgTys.push_back(T);
999         else
1000           break;
1001       }
1002 
1003       ResultTy = getTypeByID(Record[2]);
1004       if (!ResultTy || ArgTys.size() < Record.size()-3)
1005         return Error("Invalid type");
1006 
1007       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1008       break;
1009     }
1010     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1011       if (Record.size() < 1)
1012         return Error("Invalid record");
1013       SmallVector<Type*, 8> EltTys;
1014       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1015         if (Type *T = getTypeByID(Record[i]))
1016           EltTys.push_back(T);
1017         else
1018           break;
1019       }
1020       if (EltTys.size() != Record.size()-1)
1021         return Error("Invalid type");
1022       ResultTy = StructType::get(Context, EltTys, Record[0]);
1023       break;
1024     }
1025     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1026       if (ConvertToString(Record, 0, TypeName))
1027         return Error("Invalid record");
1028       continue;
1029 
1030     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1031       if (Record.size() < 1)
1032         return Error("Invalid record");
1033 
1034       if (NumRecords >= TypeList.size())
1035         return Error("Invalid TYPE table");
1036 
1037       // Check to see if this was forward referenced, if so fill in the temp.
1038       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1039       if (Res) {
1040         Res->setName(TypeName);
1041         TypeList[NumRecords] = nullptr;
1042       } else  // Otherwise, create a new struct.
1043         Res = createIdentifiedStructType(Context, TypeName);
1044       TypeName.clear();
1045 
1046       SmallVector<Type*, 8> EltTys;
1047       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1048         if (Type *T = getTypeByID(Record[i]))
1049           EltTys.push_back(T);
1050         else
1051           break;
1052       }
1053       if (EltTys.size() != Record.size()-1)
1054         return Error("Invalid record");
1055       Res->setBody(EltTys, Record[0]);
1056       ResultTy = Res;
1057       break;
1058     }
1059     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1060       if (Record.size() != 1)
1061         return Error("Invalid record");
1062 
1063       if (NumRecords >= TypeList.size())
1064         return Error("Invalid TYPE table");
1065 
1066       // Check to see if this was forward referenced, if so fill in the temp.
1067       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1068       if (Res) {
1069         Res->setName(TypeName);
1070         TypeList[NumRecords] = nullptr;
1071       } else  // Otherwise, create a new struct with no body.
1072         Res = createIdentifiedStructType(Context, TypeName);
1073       TypeName.clear();
1074       ResultTy = Res;
1075       break;
1076     }
1077     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1078       if (Record.size() < 2)
1079         return Error("Invalid record");
1080       if ((ResultTy = getTypeByID(Record[1])))
1081         ResultTy = ArrayType::get(ResultTy, Record[0]);
1082       else
1083         return Error("Invalid type");
1084       break;
1085     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1086       if (Record.size() < 2)
1087         return Error("Invalid record");
1088       if ((ResultTy = getTypeByID(Record[1])))
1089         ResultTy = VectorType::get(ResultTy, Record[0]);
1090       else
1091         return Error("Invalid type");
1092       break;
1093     }
1094 
1095     if (NumRecords >= TypeList.size())
1096       return Error("Invalid TYPE table");
1097     assert(ResultTy && "Didn't read a type?");
1098     assert(!TypeList[NumRecords] && "Already read type?");
1099     TypeList[NumRecords++] = ResultTy;
1100   }
1101 }
1102 
1103 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()1104 std::error_code BitcodeReader::ParseOldTypeTable() {
1105   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1106     return Error("Malformed block");
1107 
1108   if (!TypeList.empty())
1109     return Error("Invalid TYPE table");
1110 
1111 
1112   // While horrible, we have no good ordering of types in the bc file.  Just
1113   // iteratively parse types out of the bc file in multiple passes until we get
1114   // them all.  Do this by saving a cursor for the start of the type block.
1115   BitstreamCursor StartOfTypeBlockCursor(Stream);
1116 
1117   unsigned NumTypesRead = 0;
1118 
1119   SmallVector<uint64_t, 64> Record;
1120 RestartScan:
1121   unsigned NextTypeID = 0;
1122   bool ReadAnyTypes = false;
1123 
1124   // Read all the records for this type table.
1125   while (1) {
1126     unsigned Code = Stream.ReadCode();
1127     if (Code == bitc::END_BLOCK) {
1128       if (NextTypeID != TypeList.size())
1129         return Error("Invalid TYPE table");
1130 
1131       // If we haven't read all of the types yet, iterate again.
1132       if (NumTypesRead != TypeList.size()) {
1133         // If we didn't successfully read any types in this pass, then we must
1134         // have an unhandled forward reference.
1135         if (!ReadAnyTypes)
1136           return Error("Invalid TYPE table");
1137 
1138         Stream = StartOfTypeBlockCursor;
1139         goto RestartScan;
1140       }
1141 
1142       if (Stream.ReadBlockEnd())
1143         return Error("Invalid TYPE table");
1144       return std::error_code();
1145     }
1146 
1147     if (Code == bitc::ENTER_SUBBLOCK) {
1148       // No known subblocks, always skip them.
1149       Stream.ReadSubBlockID();
1150       if (Stream.SkipBlock())
1151         return Error("Malformed block");
1152       continue;
1153     }
1154 
1155     if (Code == bitc::DEFINE_ABBREV) {
1156       Stream.ReadAbbrevRecord();
1157       continue;
1158     }
1159 
1160     // Read a record.
1161     Record.clear();
1162     Type *ResultTy = nullptr;
1163     switch (Stream.readRecord(Code, Record)) {
1164     default: return Error("Invalid TYPE table");
1165     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1166       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1167       // type list.  This allows us to reserve space.
1168       if (Record.size() < 1)
1169         return Error("Invalid TYPE table");
1170       TypeList.resize(Record[0]);
1171       continue;
1172     case bitc::TYPE_CODE_VOID:      // VOID
1173       ResultTy = Type::getVoidTy(Context);
1174       break;
1175     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1176       ResultTy = Type::getFloatTy(Context);
1177       break;
1178     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1179       ResultTy = Type::getDoubleTy(Context);
1180       break;
1181     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1182       ResultTy = Type::getX86_FP80Ty(Context);
1183       break;
1184     case bitc::TYPE_CODE_FP128:     // FP128
1185       ResultTy = Type::getFP128Ty(Context);
1186       break;
1187     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1188       ResultTy = Type::getPPC_FP128Ty(Context);
1189       break;
1190     case bitc::TYPE_CODE_LABEL:     // LABEL
1191       ResultTy = Type::getLabelTy(Context);
1192       break;
1193     case bitc::TYPE_CODE_METADATA:  // METADATA
1194       ResultTy = Type::getMetadataTy(Context);
1195       break;
1196     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1197       ResultTy = Type::getX86_MMXTy(Context);
1198       break;
1199     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1200       if (Record.size() < 1)
1201         return Error("Invalid TYPE table");
1202       ResultTy = IntegerType::get(Context, Record[0]);
1203       break;
1204     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
1205       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1206         ResultTy = StructType::create(Context, "");
1207       break;
1208     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1209       if (NextTypeID >= TypeList.size()) break;
1210       // If we already read it, don't reprocess.
1211       if (TypeList[NextTypeID] &&
1212           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1213         break;
1214 
1215       // Set a type.
1216       if (TypeList[NextTypeID] == 0)
1217         TypeList[NextTypeID] = StructType::create(Context, "");
1218 
1219       std::vector<Type*> EltTys;
1220       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1221         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1222           EltTys.push_back(Elt);
1223         else
1224           break;
1225       }
1226 
1227       if (EltTys.size() != Record.size()-1)
1228         break;      // Not all elements are ready.
1229 
1230       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1231       ResultTy = TypeList[NextTypeID];
1232       TypeList[NextTypeID] = 0;
1233       break;
1234     }
1235     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1236       //          [pointee type, address space]
1237       if (Record.size() < 1)
1238         return Error("Invalid TYPE table");
1239       unsigned AddressSpace = 0;
1240       if (Record.size() == 2)
1241         AddressSpace = Record[1];
1242       if ((ResultTy = getTypeByIDOrNull(Record[0])))
1243         ResultTy = PointerType::get(ResultTy, AddressSpace);
1244       break;
1245     }
1246     case bitc::TYPE_CODE_FUNCTION_OLD: {
1247       // FIXME: attrid is dead, remove it in LLVM 3.0
1248       // FUNCTION: [vararg, attrid, retty, paramty x N]
1249       if (Record.size() < 3)
1250         return Error("Invalid TYPE table");
1251       std::vector<Type*> ArgTys;
1252       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1253         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1254           ArgTys.push_back(Elt);
1255         else
1256           break;
1257       }
1258       if (ArgTys.size()+3 != Record.size())
1259         break;  // Something was null.
1260       if ((ResultTy = getTypeByIDOrNull(Record[2])))
1261         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1262       break;
1263     }
1264     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1265       if (Record.size() < 2)
1266         return Error("Invalid TYPE table");
1267       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1268         ResultTy = ArrayType::get(ResultTy, Record[0]);
1269       break;
1270     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1271       if (Record.size() < 2)
1272         return Error("Invalid TYPE table");
1273       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1274         ResultTy = VectorType::get(ResultTy, Record[0]);
1275       break;
1276     }
1277 
1278     if (NextTypeID >= TypeList.size())
1279       return Error("Invalid TYPE table");
1280 
1281     if (ResultTy && TypeList[NextTypeID] == 0) {
1282       ++NumTypesRead;
1283       ReadAnyTypes = true;
1284 
1285       TypeList[NextTypeID] = ResultTy;
1286     }
1287 
1288     ++NextTypeID;
1289   }
1290 }
1291 
1292 
ParseOldTypeSymbolTable()1293 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1294   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1295     return Error("Malformed block");
1296 
1297   SmallVector<uint64_t, 64> Record;
1298 
1299   // Read all the records for this type table.
1300   std::string TypeName;
1301   while (1) {
1302     unsigned Code = Stream.ReadCode();
1303     if (Code == bitc::END_BLOCK) {
1304       if (Stream.ReadBlockEnd())
1305         return Error("Malformed block");
1306       return std::error_code();
1307     }
1308 
1309     if (Code == bitc::ENTER_SUBBLOCK) {
1310       // No known subblocks, always skip them.
1311       Stream.ReadSubBlockID();
1312       if (Stream.SkipBlock())
1313         return Error("Malformed block");
1314       continue;
1315     }
1316 
1317     if (Code == bitc::DEFINE_ABBREV) {
1318       Stream.ReadAbbrevRecord();
1319       continue;
1320     }
1321 
1322     // Read a record.
1323     Record.clear();
1324     switch (Stream.readRecord(Code, Record)) {
1325     default:  // Default behavior: unknown type.
1326       break;
1327     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
1328       if (ConvertToString(Record, 1, TypeName))
1329         return Error("Invalid record");
1330       unsigned TypeID = Record[0];
1331       if (TypeID >= TypeList.size())
1332         return Error("Invalid record");
1333 
1334       // Only apply the type name to a struct type with no name.
1335       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1336         if (!STy->isLiteral() && !STy->hasName())
1337           STy->setName(TypeName);
1338       TypeName.clear();
1339       break;
1340     }
1341   }
1342 }
1343 
ParseValueSymbolTable()1344 std::error_code BitcodeReader::ParseValueSymbolTable() {
1345   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1346     return Error("Invalid record");
1347 
1348   SmallVector<uint64_t, 64> Record;
1349 
1350   // Read all the records for this value table.
1351   SmallString<128> ValueName;
1352   while (1) {
1353     unsigned Code = Stream.ReadCode();
1354     if (Code == bitc::END_BLOCK) {
1355       if (Stream.ReadBlockEnd())
1356         return Error("Malformed block");
1357       return std::error_code();
1358     }
1359     if (Code == bitc::ENTER_SUBBLOCK) {
1360       // No known subblocks, always skip them.
1361       Stream.ReadSubBlockID();
1362       if (Stream.SkipBlock())
1363         return Error("Malformed block");
1364       continue;
1365     }
1366 
1367     if (Code == bitc::DEFINE_ABBREV) {
1368       Stream.ReadAbbrevRecord();
1369       continue;
1370     }
1371 
1372     // Read a record.
1373     Record.clear();
1374     switch (Stream.readRecord(Code, Record)) {
1375     default:  // Default behavior: unknown type.
1376       break;
1377     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1378       if (ConvertToString(Record, 1, ValueName))
1379         return Error("Invalid record");
1380       unsigned ValueID = Record[0];
1381       if (ValueID >= ValueList.size())
1382         return Error("Invalid record");
1383       Value *V = ValueList[ValueID];
1384 
1385       V->setName(StringRef(ValueName.data(), ValueName.size()));
1386       ValueName.clear();
1387       break;
1388     }
1389     case bitc::VST_CODE_BBENTRY: {
1390       if (ConvertToString(Record, 1, ValueName))
1391         return Error("Invalid record");
1392       BasicBlock *BB = getBasicBlock(Record[0]);
1393       if (!BB)
1394         return Error("Invalid record");
1395 
1396       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1397       ValueName.clear();
1398       break;
1399     }
1400     }
1401   }
1402 }
1403 
ParseMetadata()1404 std::error_code BitcodeReader::ParseMetadata() {
1405   unsigned NextMDValueNo = MDValueList.size();
1406 
1407   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1408     return Error("Invalid record");
1409 
1410   SmallVector<uint64_t, 64> Record;
1411 
1412   // Read all the records.
1413   while (1) {
1414     unsigned Code = Stream.ReadCode();
1415     if (Code == bitc::END_BLOCK) {
1416       if (Stream.ReadBlockEnd())
1417         return Error("Malformed block");
1418       return std::error_code();
1419     }
1420 
1421     if (Code == bitc::ENTER_SUBBLOCK) {
1422       // No known subblocks, always skip them.
1423       Stream.ReadSubBlockID();
1424       if (Stream.SkipBlock())
1425         return Error("Malformed block");
1426       continue;
1427     }
1428 
1429     if (Code == bitc::DEFINE_ABBREV) {
1430       Stream.ReadAbbrevRecord();
1431       continue;
1432     }
1433 
1434     bool IsFunctionLocal = false;
1435     // Read a record.
1436     Record.clear();
1437     Code = Stream.readRecord(Code, Record);
1438     switch (Code) {
1439     default:  // Default behavior: ignore.
1440       break;
1441     case bitc::METADATA_NAME: {
1442       // Read named of the named metadata.
1443       unsigned NameLength = Record.size();
1444       SmallString<8> Name;
1445       Name.resize(NameLength);
1446       for (unsigned i = 0; i != NameLength; ++i)
1447         Name[i] = Record[i];
1448       Record.clear();
1449       Code = Stream.ReadCode();
1450 
1451       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1452       unsigned NextBitCode = Stream.readRecord(Code, Record);
1453       if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1454         LLVM2_7MetadataDetected = true;
1455       } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1456         assert(!"Invalid Named Metadata record.");  (void)NextBitCode;
1457       }
1458 
1459       // Read named metadata elements.
1460       unsigned Size = Record.size();
1461       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1462       for (unsigned i = 0; i != Size; ++i) {
1463         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1464         if (!MD)
1465           return Error("Invalid record");
1466         NMD->addOperand(MD);
1467       }
1468 
1469       if (LLVM2_7MetadataDetected) {
1470         MDValueList.AssignValue(0, NextMDValueNo++);
1471       }
1472       break;
1473     }
1474     case METADATA_FN_NODE_2_7:
1475     case bitc::METADATA_OLD_FN_NODE:
1476       IsFunctionLocal = true;
1477       // fall-through
1478     case METADATA_NODE_2_7:
1479     case bitc::METADATA_OLD_NODE: {
1480       if (Code == METADATA_FN_NODE_2_7 ||
1481           Code == METADATA_NODE_2_7) {
1482         LLVM2_7MetadataDetected = true;
1483       }
1484 
1485       if (Record.size() % 2 == 1)
1486         return Error("Invalid record");
1487 
1488       unsigned Size = Record.size();
1489       SmallVector<Metadata *, 8> Elts;
1490       for (unsigned i = 0; i != Size; i += 2) {
1491         Type *Ty = getTypeByID(Record[i]);
1492         if (!Ty)
1493           return Error("Invalid record");
1494         if (Ty->isMetadataTy())
1495           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1496         else if (!Ty->isVoidTy()) {
1497           auto *MD =
1498               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1499           assert(isa<ConstantAsMetadata>(MD) &&
1500                  "Expected non-function-local metadata");
1501           Elts.push_back(MD);
1502         } else
1503           Elts.push_back(nullptr);
1504       }
1505       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1506       break;
1507     }
1508     case bitc::METADATA_STRING_OLD: {
1509       std::string String(Record.begin(), Record.end());
1510 
1511       // Test for upgrading !llvm.loop.
1512       mayBeOldLoopAttachmentTag(String);
1513 
1514       Metadata *MD = MDString::get(Context, String);
1515       MDValueList.AssignValue(MD, NextMDValueNo++);
1516       break;
1517     }
1518     case bitc::METADATA_KIND: {
1519       if (Record.size() < 2)
1520         return Error("Invalid record");
1521 
1522       unsigned Kind = Record[0];
1523       SmallString<8> Name(Record.begin()+1, Record.end());
1524 
1525       unsigned NewKind = TheModule->getMDKindID(Name.str());
1526       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1527         return Error("Conflicting METADATA_KIND records");
1528       break;
1529     }
1530     }
1531   }
1532 }
1533 
1534 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1535 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1536 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1537   if ((V & 1) == 0)
1538     return V >> 1;
1539   if (V != 1)
1540     return -(V >> 1);
1541   // There is no such thing as -0 with integers.  "-0" really means MININT.
1542   return 1ULL << 63;
1543 }
1544 
1545 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1546 // GlobalObject.
1547 static GlobalObject &
getGlobalObjectInExpr(const DenseMap<GlobalAlias *,Constant * > & Map,Constant & C)1548 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1549                       Constant &C) {
1550   auto *GO = dyn_cast<GlobalObject>(&C);
1551   if (GO)
1552     return *GO;
1553 
1554   auto *GA = dyn_cast<GlobalAlias>(&C);
1555   if (GA)
1556     return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1557 
1558   auto &CE = cast<ConstantExpr>(C);
1559   assert(CE.getOpcode() == Instruction::BitCast ||
1560          CE.getOpcode() == Instruction::GetElementPtr ||
1561          CE.getOpcode() == Instruction::AddrSpaceCast);
1562   if (CE.getOpcode() == Instruction::GetElementPtr)
1563     assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1564   return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1565 }
1566 
1567 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1568 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1569 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1570   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1571   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1572 
1573   GlobalInitWorklist.swap(GlobalInits);
1574   AliasInitWorklist.swap(AliasInits);
1575 
1576   while (!GlobalInitWorklist.empty()) {
1577     unsigned ValID = GlobalInitWorklist.back().second;
1578     if (ValID >= ValueList.size()) {
1579       // Not ready to resolve this yet, it requires something later in the file.
1580       GlobalInits.push_back(GlobalInitWorklist.back());
1581     } else {
1582       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1583         GlobalInitWorklist.back().first->setInitializer(C);
1584       else
1585         return Error("Expected a constant");
1586     }
1587     GlobalInitWorklist.pop_back();
1588   }
1589 
1590   // FIXME: Delete this in LLVM 4.0
1591   // Older versions of llvm could write an alias pointing to another. We cannot
1592   // construct those aliases, so we first collect an alias to aliasee expression
1593   // and then compute the actual aliasee.
1594   DenseMap<GlobalAlias *, Constant *> AliasInit;
1595 
1596   while (!AliasInitWorklist.empty()) {
1597     unsigned ValID = AliasInitWorklist.back().second;
1598     if (ValID >= ValueList.size()) {
1599       AliasInits.push_back(AliasInitWorklist.back());
1600     } else {
1601       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1602         AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1603       else
1604         return Error("Expected a constant");
1605     }
1606     AliasInitWorklist.pop_back();
1607   }
1608 
1609   for (auto &Pair : AliasInit) {
1610     auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1611     Pair.first->setAliasee(&GO);
1612   }
1613 
1614   return std::error_code();
1615 }
1616 
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1617 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1618   SmallVector<uint64_t, 8> Words(Vals.size());
1619   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1620                  BitcodeReader::decodeSignRotatedValue);
1621 
1622   return APInt(TypeBits, Words);
1623 }
1624 
ParseConstants()1625 std::error_code BitcodeReader::ParseConstants() {
1626   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1627     return Error("Invalid record");
1628 
1629   SmallVector<uint64_t, 64> Record;
1630 
1631   // Read all the records for this value table.
1632   Type *CurTy = Type::getInt32Ty(Context);
1633   unsigned NextCstNo = ValueList.size();
1634   while (1) {
1635     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1636 
1637     switch (Entry.Kind) {
1638     case BitstreamEntry::SubBlock: // Handled for us already.
1639     case BitstreamEntry::Error:
1640       return Error("Malformed block");
1641     case BitstreamEntry::EndBlock:
1642       if (NextCstNo != ValueList.size())
1643         return Error("Invalid constant reference");
1644 
1645       // Once all the constants have been read, go through and resolve forward
1646       // references.
1647       ValueList.ResolveConstantForwardRefs();
1648       return std::error_code();
1649     case BitstreamEntry::Record:
1650       // The interesting case.
1651       break;
1652     }
1653 
1654     // Read a record.
1655     Record.clear();
1656     Value *V = nullptr;
1657     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1658     switch (BitCode) {
1659     default:  // Default behavior: unknown constant
1660     case bitc::CST_CODE_UNDEF:     // UNDEF
1661       V = UndefValue::get(CurTy);
1662       break;
1663     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1664       if (Record.empty())
1665         return Error("Invalid record");
1666       if (Record[0] >= TypeList.size())
1667         return Error("Invalid record");
1668       CurTy = TypeList[Record[0]];
1669       continue;  // Skip the ValueList manipulation.
1670     case bitc::CST_CODE_NULL:      // NULL
1671       V = Constant::getNullValue(CurTy);
1672       break;
1673     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1674       if (!CurTy->isIntegerTy() || Record.empty())
1675         return Error("Invalid record");
1676       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1677       break;
1678     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1679       if (!CurTy->isIntegerTy() || Record.empty())
1680         return Error("Invalid record");
1681 
1682       APInt VInt = ReadWideAPInt(Record,
1683                                  cast<IntegerType>(CurTy)->getBitWidth());
1684       V = ConstantInt::get(Context, VInt);
1685 
1686       break;
1687     }
1688     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1689       if (Record.empty())
1690         return Error("Invalid record");
1691       if (CurTy->isHalfTy())
1692         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1693                                              APInt(16, (uint16_t)Record[0])));
1694       else if (CurTy->isFloatTy())
1695         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1696                                              APInt(32, (uint32_t)Record[0])));
1697       else if (CurTy->isDoubleTy())
1698         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1699                                              APInt(64, Record[0])));
1700       else if (CurTy->isX86_FP80Ty()) {
1701         // Bits are not stored the same way as a normal i80 APInt, compensate.
1702         uint64_t Rearrange[2];
1703         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1704         Rearrange[1] = Record[0] >> 48;
1705         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1706                                              APInt(80, Rearrange)));
1707       } else if (CurTy->isFP128Ty())
1708         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1709                                              APInt(128, Record)));
1710       else if (CurTy->isPPC_FP128Ty())
1711         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1712                                              APInt(128, Record)));
1713       else
1714         V = UndefValue::get(CurTy);
1715       break;
1716     }
1717 
1718     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1719       if (Record.empty())
1720         return Error("Invalid record");
1721 
1722       unsigned Size = Record.size();
1723       SmallVector<Constant*, 16> Elts;
1724 
1725       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1726         for (unsigned i = 0; i != Size; ++i)
1727           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1728                                                      STy->getElementType(i)));
1729         V = ConstantStruct::get(STy, Elts);
1730       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1731         Type *EltTy = ATy->getElementType();
1732         for (unsigned i = 0; i != Size; ++i)
1733           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1734         V = ConstantArray::get(ATy, Elts);
1735       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1736         Type *EltTy = VTy->getElementType();
1737         for (unsigned i = 0; i != Size; ++i)
1738           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1739         V = ConstantVector::get(Elts);
1740       } else {
1741         V = UndefValue::get(CurTy);
1742       }
1743       break;
1744     }
1745     case bitc::CST_CODE_STRING: { // STRING: [values]
1746       if (Record.empty())
1747         return Error("Invalid record");
1748 
1749       ArrayType *ATy = cast<ArrayType>(CurTy);
1750       Type *EltTy = ATy->getElementType();
1751 
1752       unsigned Size = Record.size();
1753       std::vector<Constant*> Elts;
1754       for (unsigned i = 0; i != Size; ++i)
1755         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1756       V = ConstantArray::get(ATy, Elts);
1757       break;
1758     }
1759     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1760       if (Record.empty())
1761         return Error("Invalid record");
1762 
1763       ArrayType *ATy = cast<ArrayType>(CurTy);
1764       Type *EltTy = ATy->getElementType();
1765 
1766       unsigned Size = Record.size();
1767       std::vector<Constant*> Elts;
1768       for (unsigned i = 0; i != Size; ++i)
1769         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1770       Elts.push_back(Constant::getNullValue(EltTy));
1771       V = ConstantArray::get(ATy, Elts);
1772       break;
1773     }
1774     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1775       if (Record.size() < 3)
1776         return Error("Invalid record");
1777       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1778       if (Opc < 0) {
1779         V = UndefValue::get(CurTy);  // Unknown binop.
1780       } else {
1781         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1782         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1783         unsigned Flags = 0;
1784         if (Record.size() >= 4) {
1785           if (Opc == Instruction::Add ||
1786               Opc == Instruction::Sub ||
1787               Opc == Instruction::Mul ||
1788               Opc == Instruction::Shl) {
1789             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1790               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1791             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1792               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1793           } else if (Opc == Instruction::SDiv ||
1794                      Opc == Instruction::UDiv ||
1795                      Opc == Instruction::LShr ||
1796                      Opc == Instruction::AShr) {
1797             if (Record[3] & (1 << bitc::PEO_EXACT))
1798               Flags |= SDivOperator::IsExact;
1799           }
1800         }
1801         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1802       }
1803       break;
1804     }
1805     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1806       if (Record.size() < 3)
1807         return Error("Invalid record");
1808       int Opc = GetDecodedCastOpcode(Record[0]);
1809       if (Opc < 0) {
1810         V = UndefValue::get(CurTy);  // Unknown cast.
1811       } else {
1812         Type *OpTy = getTypeByID(Record[1]);
1813         if (!OpTy)
1814           return Error("Invalid record");
1815         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1816         V = ConstantExpr::getCast(Opc, Op, CurTy);
1817       }
1818       break;
1819     }
1820     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1821     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1822       Type *PointeeType = nullptr;
1823       if (Record.size() & 1)
1824         return Error("Invalid record");
1825       SmallVector<Constant*, 16> Elts;
1826       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1827         Type *ElTy = getTypeByID(Record[i]);
1828         if (!ElTy)
1829           return Error("Invalid record");
1830         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1831       }
1832       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1833       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
1834                                          BitCode ==
1835                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1836       break;
1837     }
1838     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1839       if (Record.size() < 3)
1840         return Error("Invalid record");
1841       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1842                                                               Type::getInt1Ty(Context)),
1843                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1844                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1845       break;
1846     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1847       if (Record.size() < 3)
1848         return Error("Invalid record");
1849       VectorType *OpTy =
1850         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1851       if (!OpTy)
1852         return Error("Invalid record");
1853       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1854       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1855       V = ConstantExpr::getExtractElement(Op0, Op1);
1856       break;
1857     }
1858     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1859       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1860       if (Record.size() < 3 || !OpTy)
1861         return Error("Invalid record");
1862       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1863       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1864                                                   OpTy->getElementType());
1865       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1866       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1867       break;
1868     }
1869     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1870       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1871       if (Record.size() < 3 || !OpTy)
1872         return Error("Invalid record");
1873       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1874       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1875       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1876                                                  OpTy->getNumElements());
1877       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1878       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1879       break;
1880     }
1881     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1882       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1883       VectorType *OpTy =
1884         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1885       if (Record.size() < 4 || !RTy || !OpTy)
1886         return Error("Invalid record");
1887       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1888       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1889       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1890                                                  RTy->getNumElements());
1891       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1892       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1893       break;
1894     }
1895     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1896       if (Record.size() < 4)
1897         return Error("Invalid record");
1898       Type *OpTy = getTypeByID(Record[0]);
1899       if (!OpTy)
1900         return Error("Invalid record");
1901       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1902       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1903 
1904       if (OpTy->isFPOrFPVectorTy())
1905         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1906       else
1907         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1908       break;
1909     }
1910     case bitc::CST_CODE_INLINEASM:
1911     case bitc::CST_CODE_INLINEASM_OLD: {
1912       if (Record.size() < 2)
1913         return Error("Invalid record");
1914       std::string AsmStr, ConstrStr;
1915       bool HasSideEffects = Record[0] & 1;
1916       bool IsAlignStack = Record[0] >> 1;
1917       unsigned AsmStrSize = Record[1];
1918       if (2+AsmStrSize >= Record.size())
1919         return Error("Invalid record");
1920       unsigned ConstStrSize = Record[2+AsmStrSize];
1921       if (3+AsmStrSize+ConstStrSize > Record.size())
1922         return Error("Invalid record");
1923 
1924       for (unsigned i = 0; i != AsmStrSize; ++i)
1925         AsmStr += (char)Record[2+i];
1926       for (unsigned i = 0; i != ConstStrSize; ++i)
1927         ConstrStr += (char)Record[3+AsmStrSize+i];
1928       PointerType *PTy = cast<PointerType>(CurTy);
1929       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1930                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1931       break;
1932     }
1933     case bitc::CST_CODE_BLOCKADDRESS:{
1934       if (Record.size() < 3)
1935         return Error("Invalid record");
1936       Type *FnTy = getTypeByID(Record[0]);
1937       if (!FnTy)
1938         return Error("Invalid record");
1939       Function *Fn =
1940         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1941       if (!Fn)
1942         return Error("Invalid record");
1943 
1944       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1945                                                   Type::getInt8Ty(Context),
1946                                             false, GlobalValue::InternalLinkage,
1947                                                   0, "");
1948       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1949       V = FwdRef;
1950       break;
1951     }
1952     }
1953 
1954     ValueList.AssignValue(V, NextCstNo);
1955     ++NextCstNo;
1956   }
1957 
1958   if (NextCstNo != ValueList.size())
1959     return Error("Invalid constant reference");
1960 
1961   if (Stream.ReadBlockEnd())
1962     return Error("Expected a constant");
1963 
1964   // Once all the constants have been read, go through and resolve forward
1965   // references.
1966   ValueList.ResolveConstantForwardRefs();
1967   return std::error_code();
1968 }
1969 
materializeMetadata()1970 std::error_code BitcodeReader::materializeMetadata() {
1971   return std::error_code();
1972 }
1973 
setStripDebugInfo()1974 void BitcodeReader::setStripDebugInfo() { }
1975 
1976 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1977 /// remember where it is and then skip it.  This lets us lazily deserialize the
1978 /// functions.
RememberAndSkipFunctionBody()1979 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1980   // Get the function we are talking about.
1981   if (FunctionsWithBodies.empty())
1982     return Error("Insufficient function protos");
1983 
1984   Function *Fn = FunctionsWithBodies.back();
1985   FunctionsWithBodies.pop_back();
1986 
1987   // Save the current stream state.
1988   uint64_t CurBit = Stream.GetCurrentBitNo();
1989   DeferredFunctionInfo[Fn] = CurBit;
1990 
1991   // Skip over the function block for now.
1992   if (Stream.SkipBlock())
1993     return Error("Invalid record");
1994   return std::error_code();
1995 }
1996 
GlobalCleanup()1997 std::error_code BitcodeReader::GlobalCleanup() {
1998   // Patch the initializers for globals and aliases up.
1999   ResolveGlobalAndAliasInits();
2000   if (!GlobalInits.empty() || !AliasInits.empty())
2001     return Error("Malformed global initializer set");
2002 
2003   // Look for intrinsic functions which need to be upgraded at some point
2004   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2005        FI != FE; ++FI) {
2006     Function *NewFn;
2007     if (UpgradeIntrinsicFunction(&*FI, NewFn))
2008       UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2009   }
2010 
2011   // Look for global variables which need to be renamed.
2012   for (Module::global_iterator
2013          GI = TheModule->global_begin(), GE = TheModule->global_end();
2014        GI != GE; GI++) {
2015     GlobalVariable *GV = &*GI;
2016     UpgradeGlobalVariable(&*GV);
2017   }
2018 
2019   // Force deallocation of memory for these vectors to favor the client that
2020   // want lazy deserialization.
2021   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2022   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2023   return std::error_code();
2024 }
2025 
ParseModule(bool Resume)2026 std::error_code BitcodeReader::ParseModule(bool Resume) {
2027   if (Resume)
2028     Stream.JumpToBit(NextUnreadBit);
2029   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2030     return Error("Invalid record");
2031 
2032   SmallVector<uint64_t, 64> Record;
2033   std::vector<std::string> SectionTable;
2034   std::vector<std::string> GCTable;
2035 
2036   // Read all the records for this module.
2037   while (!Stream.AtEndOfStream()) {
2038     unsigned Code = Stream.ReadCode();
2039     if (Code == bitc::END_BLOCK) {
2040       if (Stream.ReadBlockEnd())
2041         return Error("Malformed block");
2042 
2043       // Patch the initializers for globals and aliases up.
2044       ResolveGlobalAndAliasInits();
2045       if (!GlobalInits.empty() || !AliasInits.empty())
2046         return Error("Malformed global initializer set");
2047       if (!FunctionsWithBodies.empty())
2048         return Error("Insufficient function protos");
2049 
2050       // Look for intrinsic functions which need to be upgraded at some point
2051       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2052            FI != FE; ++FI) {
2053         Function* NewFn;
2054         if (UpgradeIntrinsicFunction(&*FI, NewFn))
2055           UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2056       }
2057 
2058       // Look for global variables which need to be renamed.
2059       for (Module::global_iterator
2060              GI = TheModule->global_begin(), GE = TheModule->global_end();
2061            GI != GE; ++GI)
2062         UpgradeGlobalVariable(&*GI);
2063 
2064       // Force deallocation of memory for these vectors to favor the client that
2065       // want lazy deserialization.
2066       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2067       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2068       std::vector<Function*>().swap(FunctionsWithBodies);
2069       return std::error_code();
2070     }
2071 
2072     if (Code == bitc::ENTER_SUBBLOCK) {
2073       switch (Stream.ReadSubBlockID()) {
2074       default:  // Skip unknown content.
2075         if (Stream.SkipBlock())
2076           return Error("Invalid record");
2077         break;
2078       case bitc::BLOCKINFO_BLOCK_ID:
2079         if (Stream.ReadBlockInfoBlock())
2080           return Error("Malformed block");
2081         break;
2082       case bitc::PARAMATTR_BLOCK_ID:
2083         if (std::error_code EC = ParseAttributeBlock())
2084           return EC;
2085         break;
2086       case bitc::TYPE_BLOCK_ID_NEW:
2087         if (std::error_code EC = ParseTypeTable())
2088           return EC;
2089         break;
2090       case TYPE_BLOCK_ID_OLD_3_0:
2091         if (std::error_code EC = ParseOldTypeTable())
2092           return EC;
2093         break;
2094       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2095         if (std::error_code EC = ParseOldTypeSymbolTable())
2096           return EC;
2097         break;
2098       case bitc::VALUE_SYMTAB_BLOCK_ID:
2099         if (std::error_code EC = ParseValueSymbolTable())
2100           return EC;
2101         SeenValueSymbolTable = true;
2102         break;
2103       case bitc::CONSTANTS_BLOCK_ID:
2104         if (std::error_code EC = ParseConstants())
2105           return EC;
2106         if (std::error_code EC = ResolveGlobalAndAliasInits())
2107           return EC;
2108         break;
2109       case bitc::METADATA_BLOCK_ID:
2110         if (std::error_code EC = ParseMetadata())
2111           return EC;
2112         break;
2113       case bitc::FUNCTION_BLOCK_ID:
2114         // If this is the first function body we've seen, reverse the
2115         // FunctionsWithBodies list.
2116         if (!SeenFirstFunctionBody) {
2117           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2118           if (std::error_code EC = GlobalCleanup())
2119             return EC;
2120           SeenFirstFunctionBody = true;
2121         }
2122 
2123         if (std::error_code EC = RememberAndSkipFunctionBody())
2124           return EC;
2125         // For streaming bitcode, suspend parsing when we reach the function
2126         // bodies. Subsequent materialization calls will resume it when
2127         // necessary. For streaming, the function bodies must be at the end of
2128         // the bitcode. If the bitcode file is old, the symbol table will be
2129         // at the end instead and will not have been seen yet. In this case,
2130         // just finish the parse now.
2131         if (LazyStreamer && SeenValueSymbolTable) {
2132           NextUnreadBit = Stream.GetCurrentBitNo();
2133           return std::error_code();
2134         }
2135         break;
2136         break;
2137       }
2138       continue;
2139     }
2140 
2141     if (Code == bitc::DEFINE_ABBREV) {
2142       Stream.ReadAbbrevRecord();
2143       continue;
2144     }
2145 
2146     // Read a record.
2147     switch (Stream.readRecord(Code, Record)) {
2148     default: break;  // Default behavior, ignore unknown content.
2149     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2150       if (Record.size() < 1)
2151         return Error("Invalid record");
2152       // Only version #0 is supported so far.
2153       if (Record[0] != 0)
2154         return Error("Invalid value");
2155       break;
2156     }
2157     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2158       std::string S;
2159       if (ConvertToString(Record, 0, S))
2160         return Error("Invalid record");
2161       TheModule->setTargetTriple(S);
2162       break;
2163     }
2164     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2165       std::string S;
2166       if (ConvertToString(Record, 0, S))
2167         return Error("Invalid record");
2168       TheModule->setDataLayout(S);
2169       break;
2170     }
2171     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2172       std::string S;
2173       if (ConvertToString(Record, 0, S))
2174         return Error("Invalid record");
2175       TheModule->setModuleInlineAsm(S);
2176       break;
2177     }
2178     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2179       std::string S;
2180       if (ConvertToString(Record, 0, S))
2181         return Error("Invalid record");
2182       // ANDROID: Ignore value, since we never used it anyways.
2183       // TheModule->addLibrary(S);
2184       break;
2185     }
2186     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2187       std::string S;
2188       if (ConvertToString(Record, 0, S))
2189         return Error("Invalid record");
2190       SectionTable.push_back(S);
2191       break;
2192     }
2193     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2194       std::string S;
2195       if (ConvertToString(Record, 0, S))
2196         return Error("Invalid record");
2197       GCTable.push_back(S);
2198       break;
2199     }
2200     // GLOBALVAR: [pointer type, isconst, initid,
2201     //             linkage, alignment, section, visibility, threadlocal,
2202     //             unnamed_addr]
2203     case bitc::MODULE_CODE_GLOBALVAR: {
2204       if (Record.size() < 6)
2205         return Error("Invalid record");
2206       Type *Ty = getTypeByID(Record[0]);
2207       if (!Ty)
2208         return Error("Invalid record");
2209       if (!Ty->isPointerTy())
2210         return Error("Invalid type for value");
2211       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2212       Ty = cast<PointerType>(Ty)->getElementType();
2213 
2214       bool isConstant = Record[1];
2215       uint64_t RawLinkage = Record[3];
2216       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2217       unsigned Alignment = (1 << Record[4]) >> 1;
2218       std::string Section;
2219       if (Record[5]) {
2220         if (Record[5]-1 >= SectionTable.size())
2221           return Error("Invalid ID");
2222         Section = SectionTable[Record[5]-1];
2223       }
2224       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2225       if (Record.size() > 6)
2226         Visibility = GetDecodedVisibility(Record[6]);
2227 
2228       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2229       if (Record.size() > 7)
2230         TLM = GetDecodedThreadLocalMode(Record[7]);
2231 
2232       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2233       if (Record.size() > 8)
2234         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2235 
2236       GlobalVariable *NewGV =
2237         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2238                            TLM, AddressSpace);
2239       NewGV->setAlignment(Alignment);
2240       if (!Section.empty())
2241         NewGV->setSection(Section);
2242       NewGV->setVisibility(Visibility);
2243       NewGV->setUnnamedAddr(UnnamedAddr);
2244 
2245       ValueList.push_back(NewGV);
2246 
2247       // Remember which value to use for the global initializer.
2248       if (unsigned InitID = Record[2])
2249         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2250       break;
2251     }
2252     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2253     //             alignment, section, visibility, gc, unnamed_addr]
2254     case bitc::MODULE_CODE_FUNCTION: {
2255       if (Record.size() < 8)
2256         return Error("Invalid record");
2257       Type *Ty = getTypeByID(Record[0]);
2258       if (!Ty)
2259         return Error("Invalid record");
2260       if (!Ty->isPointerTy())
2261         return Error("Invalid type for value");
2262       FunctionType *FTy =
2263         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2264       if (!FTy)
2265         return Error("Invalid type for value");
2266 
2267       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2268                                         "", TheModule);
2269 
2270       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2271       bool isProto = Record[2];
2272       uint64_t RawLinkage = Record[3];
2273       Func->setLinkage(getDecodedLinkage(RawLinkage));
2274       Func->setAttributes(getAttributes(Record[4]));
2275 
2276       Func->setAlignment((1 << Record[5]) >> 1);
2277       if (Record[6]) {
2278         if (Record[6]-1 >= SectionTable.size())
2279           return Error("Invalid ID");
2280         Func->setSection(SectionTable[Record[6]-1]);
2281       }
2282       Func->setVisibility(GetDecodedVisibility(Record[7]));
2283       if (Record.size() > 8 && Record[8]) {
2284         if (Record[8]-1 > GCTable.size())
2285           return Error("Invalid ID");
2286         Func->setGC(GCTable[Record[8]-1].c_str());
2287       }
2288       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2289       if (Record.size() > 9)
2290         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2291       Func->setUnnamedAddr(UnnamedAddr);
2292       ValueList.push_back(Func);
2293 
2294       // If this is a function with a body, remember the prototype we are
2295       // creating now, so that we can match up the body with them later.
2296       if (!isProto) {
2297         Func->setIsMaterializable(true);
2298         FunctionsWithBodies.push_back(Func);
2299         if (LazyStreamer)
2300           DeferredFunctionInfo[Func] = 0;
2301       }
2302       break;
2303     }
2304     // ALIAS: [alias type, aliasee val#, linkage]
2305     // ALIAS: [alias type, aliasee val#, linkage, visibility]
2306     case bitc::MODULE_CODE_ALIAS_OLD: {
2307       if (Record.size() < 3)
2308         return Error("Invalid record");
2309       Type *Ty = getTypeByID(Record[0]);
2310       if (!Ty)
2311         return Error("Invalid record");
2312       auto *PTy = dyn_cast<PointerType>(Ty);
2313       if (!PTy)
2314         return Error("Invalid type for value");
2315 
2316       auto *NewGA =
2317           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2318                               getDecodedLinkage(Record[2]), "", TheModule);
2319       // Old bitcode files didn't have visibility field.
2320       if (Record.size() > 3)
2321         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2322       ValueList.push_back(NewGA);
2323       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2324       break;
2325     }
2326     /// MODULE_CODE_PURGEVALS: [numvals]
2327     case bitc::MODULE_CODE_PURGEVALS:
2328       // Trim down the value list to the specified size.
2329       if (Record.size() < 1 || Record[0] > ValueList.size())
2330         return Error("Invalid record");
2331       ValueList.shrinkTo(Record[0]);
2332       break;
2333     }
2334     Record.clear();
2335   }
2336 
2337   return Error("Invalid bitcode signature");
2338 }
2339 
ParseBitcodeInto(Module * M)2340 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2341   TheModule = nullptr;
2342 
2343   if (std::error_code EC = InitStream())
2344     return EC;
2345 
2346   // Sniff for the signature.
2347   if (Stream.Read(8) != 'B' ||
2348       Stream.Read(8) != 'C' ||
2349       Stream.Read(4) != 0x0 ||
2350       Stream.Read(4) != 0xC ||
2351       Stream.Read(4) != 0xE ||
2352       Stream.Read(4) != 0xD)
2353     return Error("Invalid bitcode signature");
2354 
2355   // We expect a number of well-defined blocks, though we don't necessarily
2356   // need to understand them all.
2357   while (1) {
2358     if (Stream.AtEndOfStream())
2359       return std::error_code();
2360 
2361     BitstreamEntry Entry =
2362       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2363 
2364     switch (Entry.Kind) {
2365     case BitstreamEntry::Error:
2366       return Error("Malformed block");
2367     case BitstreamEntry::EndBlock:
2368       return std::error_code();
2369 
2370     case BitstreamEntry::SubBlock:
2371       switch (Entry.ID) {
2372       case bitc::BLOCKINFO_BLOCK_ID:
2373         if (Stream.ReadBlockInfoBlock())
2374           return Error("Malformed block");
2375         break;
2376       case bitc::MODULE_BLOCK_ID:
2377         // Reject multiple MODULE_BLOCK's in a single bitstream.
2378         if (TheModule)
2379           return Error("Invalid multiple blocks");
2380         TheModule = M;
2381         if (std::error_code EC = ParseModule(false))
2382           return EC;
2383         if (LazyStreamer)
2384           return std::error_code();
2385         break;
2386       default:
2387         if (Stream.SkipBlock())
2388           return Error("Invalid record");
2389         break;
2390       }
2391       continue;
2392     case BitstreamEntry::Record:
2393       // There should be no records in the top-level of blocks.
2394 
2395       // The ranlib in Xcode 4 will align archive members by appending newlines
2396       // to the end of them. If this file size is a multiple of 4 but not 8, we
2397       // have to read and ignore these final 4 bytes :-(
2398       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2399           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2400           Stream.AtEndOfStream())
2401         return std::error_code();
2402 
2403       return Error("Invalid record");
2404     }
2405   }
2406 }
2407 
parseModuleTriple()2408 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2409   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2410     return Error("Invalid record");
2411 
2412   SmallVector<uint64_t, 64> Record;
2413 
2414   std::string Triple;
2415   // Read all the records for this module.
2416   while (1) {
2417     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2418 
2419     switch (Entry.Kind) {
2420     case BitstreamEntry::SubBlock: // Handled for us already.
2421     case BitstreamEntry::Error:
2422       return Error("Malformed block");
2423     case BitstreamEntry::EndBlock:
2424       return Triple;
2425     case BitstreamEntry::Record:
2426       // The interesting case.
2427       break;
2428     }
2429 
2430     // Read a record.
2431     switch (Stream.readRecord(Entry.ID, Record)) {
2432     default: break;  // Default behavior, ignore unknown content.
2433     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2434       if (Record.size() < 1)
2435         return Error("Invalid record");
2436       // Only version #0 is supported so far.
2437       if (Record[0] != 0)
2438         return Error("Invalid record");
2439       break;
2440     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2441       std::string S;
2442       if (ConvertToString(Record, 0, S))
2443         return Error("Invalid record");
2444       Triple = S;
2445       break;
2446     }
2447     }
2448     Record.clear();
2449   }
2450 
2451   return Error("Invalid bitcode signature");
2452 }
2453 
parseTriple()2454 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2455   if (std::error_code EC = InitStream())
2456     return EC;
2457 
2458   // Sniff for the signature.
2459   if (Stream.Read(8) != 'B' ||
2460       Stream.Read(8) != 'C' ||
2461       Stream.Read(4) != 0x0 ||
2462       Stream.Read(4) != 0xC ||
2463       Stream.Read(4) != 0xE ||
2464       Stream.Read(4) != 0xD)
2465     return Error("Invalid bitcode signature");
2466 
2467   // We expect a number of well-defined blocks, though we don't necessarily
2468   // need to understand them all.
2469   while (1) {
2470     BitstreamEntry Entry = Stream.advance();
2471 
2472     switch (Entry.Kind) {
2473     case BitstreamEntry::Error:
2474       return Error("Malformed block");
2475     case BitstreamEntry::EndBlock:
2476       return std::error_code();
2477 
2478     case BitstreamEntry::SubBlock:
2479       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2480         return parseModuleTriple();
2481 
2482       // Ignore other sub-blocks.
2483       if (Stream.SkipBlock())
2484         return Error("Malformed block");
2485       continue;
2486 
2487     case BitstreamEntry::Record:
2488       Stream.skipRecord(Entry.ID);
2489       continue;
2490     }
2491   }
2492 }
2493 
2494 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2495 std::error_code BitcodeReader::ParseMetadataAttachment() {
2496   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2497     return Error("Invalid record");
2498 
2499   SmallVector<uint64_t, 64> Record;
2500   while (1) {
2501     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2502 
2503     switch (Entry.Kind) {
2504     case BitstreamEntry::SubBlock: // Handled for us already.
2505     case BitstreamEntry::Error:
2506       return Error("Malformed block");
2507     case BitstreamEntry::EndBlock:
2508       return std::error_code();
2509     case BitstreamEntry::Record:
2510       // The interesting case.
2511       break;
2512     }
2513 
2514     // Read a metadata attachment record.
2515     Record.clear();
2516     switch (Stream.readRecord(Entry.ID, Record)) {
2517     default:  // Default behavior: ignore.
2518       break;
2519     case METADATA_ATTACHMENT_2_7:
2520       LLVM2_7MetadataDetected = true;
2521     case bitc::METADATA_ATTACHMENT: {
2522       unsigned RecordLength = Record.size();
2523       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2524         return Error("Invalid record");
2525       Instruction *Inst = InstructionList[Record[0]];
2526       for (unsigned i = 1; i != RecordLength; i = i+2) {
2527         unsigned Kind = Record[i];
2528         DenseMap<unsigned, unsigned>::iterator I =
2529           MDKindMap.find(Kind);
2530         if (I == MDKindMap.end())
2531           return Error("Invalid ID");
2532         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2533         Inst->setMetadata(I->second, cast<MDNode>(Node));
2534       }
2535       break;
2536     }
2537     }
2538   }
2539 }
2540 
2541 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2542 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2543   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2544     return Error("Invalid record");
2545 
2546   InstructionList.clear();
2547   unsigned ModuleValueListSize = ValueList.size();
2548   unsigned ModuleMDValueListSize = MDValueList.size();
2549 
2550   // Add all the function arguments to the value table.
2551   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2552     ValueList.push_back(&*I);
2553 
2554   unsigned NextValueNo = ValueList.size();
2555   BasicBlock *CurBB = nullptr;
2556   unsigned CurBBNo = 0;
2557 
2558   DebugLoc LastLoc;
2559 
2560   // Read all the records.
2561   SmallVector<uint64_t, 64> Record;
2562   while (1) {
2563     unsigned Code = Stream.ReadCode();
2564     if (Code == bitc::END_BLOCK) {
2565       if (Stream.ReadBlockEnd())
2566         return Error("Malformed block");
2567       break;
2568     }
2569 
2570     if (Code == bitc::ENTER_SUBBLOCK) {
2571       switch (Stream.ReadSubBlockID()) {
2572       default:  // Skip unknown content.
2573         if (Stream.SkipBlock())
2574           return Error("Invalid record");
2575         break;
2576       case bitc::CONSTANTS_BLOCK_ID:
2577         if (std::error_code EC = ParseConstants())
2578           return EC;
2579         NextValueNo = ValueList.size();
2580         break;
2581       case bitc::VALUE_SYMTAB_BLOCK_ID:
2582         if (std::error_code EC = ParseValueSymbolTable())
2583           return EC;
2584         break;
2585       case bitc::METADATA_ATTACHMENT_ID:
2586         if (std::error_code EC = ParseMetadataAttachment())
2587           return EC;
2588         break;
2589       case bitc::METADATA_BLOCK_ID:
2590         if (std::error_code EC = ParseMetadata())
2591           return EC;
2592         break;
2593       }
2594       continue;
2595     }
2596 
2597     if (Code == bitc::DEFINE_ABBREV) {
2598       Stream.ReadAbbrevRecord();
2599       continue;
2600     }
2601 
2602     // Read a record.
2603     Record.clear();
2604     Instruction *I = nullptr;
2605     unsigned BitCode = Stream.readRecord(Code, Record);
2606     switch (BitCode) {
2607     default: // Default behavior: reject
2608       return Error("Invalid value");
2609     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2610       if (Record.size() < 1 || Record[0] == 0)
2611         return Error("Invalid record");
2612       // Create all the basic blocks for the function.
2613       FunctionBBs.resize(Record[0]);
2614       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2615         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2616       CurBB = FunctionBBs[0];
2617       continue;
2618 
2619     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2620       // This record indicates that the last instruction is at the same
2621       // location as the previous instruction with a location.
2622       I = nullptr;
2623 
2624       // Get the last instruction emitted.
2625       if (CurBB && !CurBB->empty())
2626         I = &CurBB->back();
2627       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2628                !FunctionBBs[CurBBNo-1]->empty())
2629         I = &FunctionBBs[CurBBNo-1]->back();
2630 
2631       if (!I)
2632         return Error("Invalid record");
2633       I->setDebugLoc(LastLoc);
2634       I = nullptr;
2635       continue;
2636 
2637     case FUNC_CODE_DEBUG_LOC_2_7:
2638       LLVM2_7MetadataDetected = true;
2639     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2640       I = nullptr;     // Get the last instruction emitted.
2641       if (CurBB && !CurBB->empty())
2642         I = &CurBB->back();
2643       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2644                !FunctionBBs[CurBBNo-1]->empty())
2645         I = &FunctionBBs[CurBBNo-1]->back();
2646       if (!I || Record.size() < 4)
2647         return Error("Invalid record");
2648 
2649       unsigned Line = Record[0], Col = Record[1];
2650       unsigned ScopeID = Record[2], IAID = Record[3];
2651 
2652       MDNode *Scope = nullptr, *IA = nullptr;
2653       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2654       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2655       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2656       I->setDebugLoc(LastLoc);
2657       I = nullptr;
2658       continue;
2659     }
2660 
2661     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2662       unsigned OpNum = 0;
2663       Value *LHS, *RHS;
2664       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2665           getValue(Record, OpNum, LHS->getType(), RHS) ||
2666           OpNum+1 > Record.size())
2667         return Error("Invalid record");
2668 
2669       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2670       if (Opc == -1)
2671         return Error("Invalid record");
2672       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2673       InstructionList.push_back(I);
2674       if (OpNum < Record.size()) {
2675         if (Opc == Instruction::Add ||
2676             Opc == Instruction::Sub ||
2677             Opc == Instruction::Mul ||
2678             Opc == Instruction::Shl) {
2679           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2680             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2681           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2682             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2683         } else if (Opc == Instruction::SDiv ||
2684                    Opc == Instruction::UDiv ||
2685                    Opc == Instruction::LShr ||
2686                    Opc == Instruction::AShr) {
2687           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2688             cast<BinaryOperator>(I)->setIsExact(true);
2689         }
2690       }
2691       break;
2692     }
2693     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2694       unsigned OpNum = 0;
2695       Value *Op;
2696       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2697           OpNum+2 != Record.size())
2698         return Error("Invalid record");
2699 
2700       Type *ResTy = getTypeByID(Record[OpNum]);
2701       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2702       if (Opc == -1 || !ResTy)
2703         return Error("Invalid record");
2704       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2705       InstructionList.push_back(I);
2706       break;
2707     }
2708     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2709     case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2710     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2711       unsigned OpNum = 0;
2712 
2713       Type *Ty;
2714       bool InBounds;
2715 
2716       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2717         InBounds = Record[OpNum++];
2718         Ty = getTypeByID(Record[OpNum++]);
2719       } else {
2720         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2721         Ty = nullptr;
2722       }
2723 
2724       Value *BasePtr;
2725       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2726         return Error("Invalid record");
2727 
2728       if (Ty &&
2729           Ty !=
2730               cast<SequentialType>(BasePtr->getType()->getScalarType())
2731                   ->getElementType())
2732         return Error(
2733             "Explicit gep type does not match pointee type of pointer operand");
2734 
2735       SmallVector<Value*, 16> GEPIdx;
2736       while (OpNum != Record.size()) {
2737         Value *Op;
2738         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2739           return Error("Invalid record");
2740         GEPIdx.push_back(Op);
2741       }
2742 
2743       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
2744 
2745       InstructionList.push_back(I);
2746       if (InBounds)
2747         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2748       break;
2749     }
2750 
2751     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2752                                        // EXTRACTVAL: [opty, opval, n x indices]
2753       unsigned OpNum = 0;
2754       Value *Agg;
2755       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2756         return Error("Invalid record");
2757 
2758       SmallVector<unsigned, 4> EXTRACTVALIdx;
2759       for (unsigned RecSize = Record.size();
2760            OpNum != RecSize; ++OpNum) {
2761         uint64_t Index = Record[OpNum];
2762         if ((unsigned)Index != Index)
2763           return Error("Invalid value");
2764         EXTRACTVALIdx.push_back((unsigned)Index);
2765       }
2766 
2767       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2768       InstructionList.push_back(I);
2769       break;
2770     }
2771 
2772     case bitc::FUNC_CODE_INST_INSERTVAL: {
2773                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2774       unsigned OpNum = 0;
2775       Value *Agg;
2776       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2777         return Error("Invalid record");
2778       Value *Val;
2779       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2780         return Error("Invalid record");
2781 
2782       SmallVector<unsigned, 4> INSERTVALIdx;
2783       for (unsigned RecSize = Record.size();
2784            OpNum != RecSize; ++OpNum) {
2785         uint64_t Index = Record[OpNum];
2786         if ((unsigned)Index != Index)
2787           return Error("Invalid value");
2788         INSERTVALIdx.push_back((unsigned)Index);
2789       }
2790 
2791       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2792       InstructionList.push_back(I);
2793       break;
2794     }
2795 
2796     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2797       // obsolete form of select
2798       // handles select i1 ... in old bitcode
2799       unsigned OpNum = 0;
2800       Value *TrueVal, *FalseVal, *Cond;
2801       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2802           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2803           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2804         return Error("Invalid record");
2805 
2806       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2807       InstructionList.push_back(I);
2808       break;
2809     }
2810 
2811     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2812       // new form of select
2813       // handles select i1 or select [N x i1]
2814       unsigned OpNum = 0;
2815       Value *TrueVal, *FalseVal, *Cond;
2816       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2817           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2818           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2819         return Error("Invalid record");
2820 
2821       // select condition can be either i1 or [N x i1]
2822       if (VectorType* vector_type =
2823           dyn_cast<VectorType>(Cond->getType())) {
2824         // expect <n x i1>
2825         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2826           return Error("Invalid type for value");
2827       } else {
2828         // expect i1
2829         if (Cond->getType() != Type::getInt1Ty(Context))
2830           return Error("Invalid type for value");
2831       }
2832 
2833       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2834       InstructionList.push_back(I);
2835       break;
2836     }
2837 
2838     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2839       unsigned OpNum = 0;
2840       Value *Vec, *Idx;
2841       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2842           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2843         return Error("Invalid record");
2844       I = ExtractElementInst::Create(Vec, Idx);
2845       InstructionList.push_back(I);
2846       break;
2847     }
2848 
2849     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2850       unsigned OpNum = 0;
2851       Value *Vec, *Elt, *Idx;
2852       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2853           getValue(Record, OpNum,
2854                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2855           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2856         return Error("Invalid record");
2857       I = InsertElementInst::Create(Vec, Elt, Idx);
2858       InstructionList.push_back(I);
2859       break;
2860     }
2861 
2862     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2863       unsigned OpNum = 0;
2864       Value *Vec1, *Vec2, *Mask;
2865       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2866           getValue(Record, OpNum, Vec1->getType(), Vec2))
2867         return Error("Invalid record");
2868 
2869       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2870         return Error("Invalid record");
2871       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2872       InstructionList.push_back(I);
2873       break;
2874     }
2875 
2876     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2877       // Old form of ICmp/FCmp returning bool
2878       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2879       // both legal on vectors but had different behaviour.
2880     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2881       // FCmp/ICmp returning bool or vector of bool
2882 
2883       unsigned OpNum = 0;
2884       Value *LHS, *RHS;
2885       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2886           getValue(Record, OpNum, LHS->getType(), RHS) ||
2887           OpNum+1 != Record.size())
2888         return Error("Invalid record");
2889 
2890       if (LHS->getType()->isFPOrFPVectorTy())
2891         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2892       else
2893         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2894       InstructionList.push_back(I);
2895       break;
2896     }
2897 
2898     case FUNC_CODE_INST_GETRESULT_2_7: {
2899       if (Record.size() != 2) {
2900         return Error("Invalid record");
2901       }
2902       unsigned OpNum = 0;
2903       Value *Op;
2904       getValueTypePair(Record, OpNum, NextValueNo, Op);
2905       unsigned Index = Record[1];
2906       I = ExtractValueInst::Create(Op, Index);
2907       InstructionList.push_back(I);
2908       break;
2909     }
2910 
2911     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2912       {
2913         unsigned Size = Record.size();
2914         if (Size == 0) {
2915           I = ReturnInst::Create(Context);
2916           InstructionList.push_back(I);
2917           break;
2918         }
2919 
2920         unsigned OpNum = 0;
2921         Value *Op = nullptr;
2922         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2923           return Error("Invalid record");
2924         if (OpNum != Record.size())
2925           return Error("Invalid record");
2926 
2927         I = ReturnInst::Create(Context, Op);
2928         InstructionList.push_back(I);
2929         break;
2930       }
2931     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2932       if (Record.size() != 1 && Record.size() != 3)
2933         return Error("Invalid record");
2934       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2935       if (!TrueDest)
2936         return Error("Invalid record");
2937 
2938       if (Record.size() == 1) {
2939         I = BranchInst::Create(TrueDest);
2940         InstructionList.push_back(I);
2941       }
2942       else {
2943         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2944         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2945         if (!FalseDest || !Cond)
2946           return Error("Invalid record");
2947         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2948         InstructionList.push_back(I);
2949       }
2950       break;
2951     }
2952     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2953       if (Record.size() < 3 || (Record.size() & 1) == 0)
2954         return Error("Invalid record");
2955       Type *OpTy = getTypeByID(Record[0]);
2956       Value *Cond = getFnValueByID(Record[1], OpTy);
2957       BasicBlock *Default = getBasicBlock(Record[2]);
2958       if (!OpTy || !Cond || !Default)
2959         return Error("Invalid record");
2960       unsigned NumCases = (Record.size()-3)/2;
2961       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2962       InstructionList.push_back(SI);
2963       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2964         ConstantInt *CaseVal =
2965           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2966         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2967         if (!CaseVal || !DestBB) {
2968           delete SI;
2969           return Error("Invalid record");
2970         }
2971         SI->addCase(CaseVal, DestBB);
2972       }
2973       I = SI;
2974       break;
2975     }
2976     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2977       if (Record.size() < 2)
2978         return Error("Invalid record");
2979       Type *OpTy = getTypeByID(Record[0]);
2980       Value *Address = getFnValueByID(Record[1], OpTy);
2981       if (!OpTy || !Address)
2982         return Error("Invalid record");
2983       unsigned NumDests = Record.size()-2;
2984       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2985       InstructionList.push_back(IBI);
2986       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2987         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2988           IBI->addDestination(DestBB);
2989         } else {
2990           delete IBI;
2991           return Error("Invalid record");
2992         }
2993       }
2994       I = IBI;
2995       break;
2996     }
2997 
2998     case bitc::FUNC_CODE_INST_INVOKE: {
2999       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3000       if (Record.size() < 4)
3001         return Error("Invalid record");
3002       AttributeSet PAL = getAttributes(Record[0]);
3003       unsigned CCInfo = Record[1];
3004       BasicBlock *NormalBB = getBasicBlock(Record[2]);
3005       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3006 
3007       unsigned OpNum = 4;
3008       Value *Callee;
3009       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3010         return Error("Invalid record");
3011 
3012       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3013       FunctionType *FTy = !CalleeTy ? nullptr :
3014         dyn_cast<FunctionType>(CalleeTy->getElementType());
3015 
3016       // Check that the right number of fixed parameters are here.
3017       if (!FTy || !NormalBB || !UnwindBB ||
3018           Record.size() < OpNum+FTy->getNumParams())
3019         return Error("Invalid record");
3020 
3021       SmallVector<Value*, 16> Ops;
3022       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3023         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3024         if (!Ops.back())
3025           return Error("Invalid record");
3026       }
3027 
3028       if (!FTy->isVarArg()) {
3029         if (Record.size() != OpNum)
3030           return Error("Invalid record");
3031       } else {
3032         // Read type/value pairs for varargs params.
3033         while (OpNum != Record.size()) {
3034           Value *Op;
3035           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3036             return Error("Invalid record");
3037           Ops.push_back(Op);
3038         }
3039       }
3040 
3041       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3042       InstructionList.push_back(I);
3043       cast<InvokeInst>(I)->setCallingConv(
3044         static_cast<CallingConv::ID>(CCInfo));
3045       cast<InvokeInst>(I)->setAttributes(PAL);
3046       break;
3047     }
3048     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3049       // 'unwind' instruction has been removed in LLVM 3.1
3050       // Replace 'unwind' with 'landingpad' and 'resume'.
3051       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3052                                     Type::getInt32Ty(Context), nullptr);
3053 
3054       LandingPadInst *LP = LandingPadInst::Create(ExnTy, 1);
3055       LP->setCleanup(true);
3056 
3057       CurBB->getInstList().push_back(LP);
3058       I = ResumeInst::Create(LP);
3059       InstructionList.push_back(I);
3060       break;
3061     }
3062     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3063       I = new UnreachableInst(Context);
3064       InstructionList.push_back(I);
3065       break;
3066     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3067       if (Record.size() < 1 || ((Record.size()-1)&1))
3068         return Error("Invalid record");
3069       Type *Ty = getTypeByID(Record[0]);
3070       if (!Ty)
3071         return Error("Invalid record");
3072 
3073       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3074       InstructionList.push_back(PN);
3075 
3076       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3077         Value *V = getFnValueByID(Record[1+i], Ty);
3078         BasicBlock *BB = getBasicBlock(Record[2+i]);
3079         if (!V || !BB)
3080           return Error("Invalid record");
3081         PN->addIncoming(V, BB);
3082       }
3083       I = PN;
3084       break;
3085     }
3086 
3087     case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
3088       // Autoupgrade malloc instruction to malloc call.
3089       // FIXME: Remove in LLVM 3.0.
3090       if (Record.size() < 3) {
3091         return Error("Invalid record");
3092       }
3093       PointerType *Ty =
3094           dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3095       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
3096       if (!Ty || !Size)
3097         return Error("Invalid record");
3098       if (!CurBB)
3099         return Error("Invalid instruction with no BB");
3100       Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
3101       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
3102       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
3103       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
3104                                  AllocSize, Size, nullptr);
3105       InstructionList.push_back(I);
3106       break;
3107     }
3108     case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
3109       unsigned OpNum = 0;
3110       Value *Op;
3111       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3112           OpNum != Record.size()) {
3113         return Error("Invalid record");
3114       }
3115       if (!CurBB)
3116         return Error("Invalid instruction with no BB");
3117       I = CallInst::CreateFree(Op, CurBB);
3118       InstructionList.push_back(I);
3119       break;
3120     }
3121 
3122     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3123       // For backward compatibility, tolerate a lack of an opty, and use i32.
3124       // Remove this in LLVM 3.0.
3125       if (Record.size() < 3 || Record.size() > 4) {
3126         return Error("Invalid record");
3127       }
3128       unsigned OpNum = 0;
3129       PointerType *Ty =
3130         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
3131       Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
3132                                               Type::getInt32Ty(Context);
3133       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
3134       unsigned Align = Record[OpNum++];
3135       if (!Ty || !Size)
3136         return Error("Invalid record");
3137       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3138       InstructionList.push_back(I);
3139       break;
3140     }
3141     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3142       unsigned OpNum = 0;
3143       Value *Op;
3144       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3145           OpNum+2 != Record.size())
3146         return Error("Invalid record");
3147 
3148       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3149       InstructionList.push_back(I);
3150       break;
3151     }
3152     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
3153       unsigned OpNum = 0;
3154       Value *Val, *Ptr;
3155       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3156           getValue(Record, OpNum,
3157                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3158           OpNum+2 != Record.size())
3159         return Error("Invalid record");
3160 
3161       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3162       InstructionList.push_back(I);
3163       break;
3164     }
3165     case FUNC_CODE_INST_STORE_2_7: {
3166       unsigned OpNum = 0;
3167       Value *Val, *Ptr;
3168       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
3169           getValue(Record, OpNum,
3170                    PointerType::getUnqual(Val->getType()), Ptr)||
3171           OpNum+2 != Record.size()) {
3172         return Error("Invalid record");
3173       }
3174       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3175       InstructionList.push_back(I);
3176       break;
3177     }
3178     case FUNC_CODE_INST_CALL_2_7:
3179       LLVM2_7MetadataDetected = true;
3180     case bitc::FUNC_CODE_INST_CALL: {
3181       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3182       if (Record.size() < 3)
3183         return Error("Invalid record");
3184 
3185       AttributeSet PAL = getAttributes(Record[0]);
3186       unsigned CCInfo = Record[1];
3187 
3188       unsigned OpNum = 2;
3189       Value *Callee;
3190       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3191         return Error("Invalid record");
3192 
3193       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3194       FunctionType *FTy = nullptr;
3195       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3196       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3197         return Error("Invalid record");
3198 
3199       SmallVector<Value*, 16> Args;
3200       // Read the fixed params.
3201       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3202         if (FTy->getParamType(i)->isLabelTy())
3203           Args.push_back(getBasicBlock(Record[OpNum]));
3204         else
3205           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3206         if (!Args.back())
3207           return Error("Invalid record");
3208       }
3209 
3210       // Read type/value pairs for varargs params.
3211       if (!FTy->isVarArg()) {
3212         if (OpNum != Record.size())
3213           return Error("Invalid record");
3214       } else {
3215         while (OpNum != Record.size()) {
3216           Value *Op;
3217           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3218             return Error("Invalid record");
3219           Args.push_back(Op);
3220         }
3221       }
3222 
3223       I = CallInst::Create(Callee, Args);
3224       InstructionList.push_back(I);
3225       cast<CallInst>(I)->setCallingConv(
3226         static_cast<CallingConv::ID>(CCInfo>>1));
3227       cast<CallInst>(I)->setTailCall(CCInfo & 1);
3228       cast<CallInst>(I)->setAttributes(PAL);
3229       break;
3230     }
3231     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3232       if (Record.size() < 3)
3233         return Error("Invalid record");
3234       Type *OpTy = getTypeByID(Record[0]);
3235       Value *Op = getFnValueByID(Record[1], OpTy);
3236       Type *ResTy = getTypeByID(Record[2]);
3237       if (!OpTy || !Op || !ResTy)
3238         return Error("Invalid record");
3239       I = new VAArgInst(Op, ResTy);
3240       InstructionList.push_back(I);
3241       break;
3242     }
3243     }
3244 
3245     // Add instruction to end of current BB.  If there is no current BB, reject
3246     // this file.
3247     if (!CurBB) {
3248       delete I;
3249       return Error("Invalid instruction with no BB");
3250     }
3251     CurBB->getInstList().push_back(I);
3252 
3253     // If this was a terminator instruction, move to the next block.
3254     if (isa<TerminatorInst>(I)) {
3255       ++CurBBNo;
3256       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3257     }
3258 
3259     // Non-void values get registered in the value table for future use.
3260     if (I && !I->getType()->isVoidTy())
3261       ValueList.AssignValue(I, NextValueNo++);
3262   }
3263 
3264   // Check the function list for unresolved values.
3265   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3266     if (!A->getParent()) {
3267       // We found at least one unresolved value.  Nuke them all to avoid leaks.
3268       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3269         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3270           A->replaceAllUsesWith(UndefValue::get(A->getType()));
3271           delete A;
3272         }
3273       }
3274       return Error("Never resolved value found in function");
3275     }
3276   }
3277 
3278   // FIXME: Check for unresolved forward-declared metadata references
3279   // and clean up leaks.
3280 
3281   // See if anything took the address of blocks in this function.  If so,
3282   // resolve them now.
3283   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3284     BlockAddrFwdRefs.find(F);
3285   if (BAFRI != BlockAddrFwdRefs.end()) {
3286     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3287     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3288       unsigned BlockIdx = RefList[i].first;
3289       if (BlockIdx >= FunctionBBs.size())
3290         return Error("Invalid ID");
3291 
3292       GlobalVariable *FwdRef = RefList[i].second;
3293       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3294       FwdRef->eraseFromParent();
3295     }
3296 
3297     BlockAddrFwdRefs.erase(BAFRI);
3298   }
3299 
3300   unsigned NewMDValueListSize = MDValueList.size();
3301   // Trim the value list down to the size it was before we parsed this function.
3302   ValueList.shrinkTo(ModuleValueListSize);
3303   MDValueList.shrinkTo(ModuleMDValueListSize);
3304 
3305   if (LLVM2_7MetadataDetected) {
3306     MDValueList.resize(NewMDValueListSize);
3307   }
3308 
3309   std::vector<BasicBlock*>().swap(FunctionBBs);
3310   return std::error_code();
3311 }
3312 
3313 //===----------------------------------------------------------------------===//
3314 // GVMaterializer implementation
3315 //===----------------------------------------------------------------------===//
3316 
releaseBuffer()3317 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3318 
materialize(GlobalValue * GV)3319 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3320   if (std::error_code EC = materializeMetadata())
3321     return EC;
3322 
3323   Function *F = dyn_cast<Function>(GV);
3324   // If it's not a function or is already material, ignore the request.
3325   if (!F || !F->isMaterializable())
3326     return std::error_code();
3327 
3328   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3329   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3330 
3331   // Move the bit stream to the saved position of the deferred function body.
3332   Stream.JumpToBit(DFII->second);
3333 
3334   if (std::error_code EC = ParseFunctionBody(F))
3335     return EC;
3336   F->setIsMaterializable(false);
3337 
3338   // Upgrade any old intrinsic calls in the function.
3339   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3340        E = UpgradedIntrinsics.end(); I != E; ++I) {
3341     if (I->first != I->second) {
3342       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3343            UI != UE;) {
3344         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3345           UpgradeIntrinsicCall(CI, I->second);
3346       }
3347     }
3348   }
3349 
3350   return std::error_code();
3351 }
3352 
isDematerializable(const GlobalValue * GV) const3353 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3354   const Function *F = dyn_cast<Function>(GV);
3355   if (!F || F->isDeclaration())
3356     return false;
3357   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3358 }
3359 
dematerialize(GlobalValue * GV)3360 void BitcodeReader::dematerialize(GlobalValue *GV) {
3361   Function *F = dyn_cast<Function>(GV);
3362   // If this function isn't dematerializable, this is a noop.
3363   if (!F || !isDematerializable(F))
3364     return;
3365 
3366   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3367 
3368   // Just forget the function body, we can remat it later.
3369   F->deleteBody();
3370   F->setIsMaterializable(true);
3371 }
3372 
materializeModule()3373 std::error_code BitcodeReader::materializeModule() {
3374   // Iterate over the module, deserializing any functions that are still on
3375   // disk.
3376   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3377        F != E; ++F) {
3378     if (std::error_code EC = materialize(&*F))
3379       return EC;
3380   }
3381   // At this point, if there are any function bodies, the current bit is
3382   // pointing to the END_BLOCK record after them. Now make sure the rest
3383   // of the bits in the module have been read.
3384   if (NextUnreadBit)
3385     ParseModule(true);
3386 
3387   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3388   // delete the old functions to clean up. We can't do this unless the entire
3389   // module is materialized because there could always be another function body
3390   // with calls to the old function.
3391   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3392        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3393     if (I->first != I->second) {
3394       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3395            UI != UE;) {
3396         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3397           UpgradeIntrinsicCall(CI, I->second);
3398       }
3399       if (!I->first->use_empty())
3400         I->first->replaceAllUsesWith(I->second);
3401       I->first->eraseFromParent();
3402     }
3403   }
3404   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3405 
3406   // Check debug info intrinsics.
3407   CheckDebugInfoIntrinsics(TheModule);
3408 
3409   return std::error_code();
3410 }
3411 
getIdentifiedStructTypes() const3412 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3413   return IdentifiedStructTypes;
3414 }
3415 
InitStream()3416 std::error_code BitcodeReader::InitStream() {
3417   if (LazyStreamer)
3418     return InitLazyStream();
3419   return InitStreamFromBuffer();
3420 }
3421 
InitStreamFromBuffer()3422 std::error_code BitcodeReader::InitStreamFromBuffer() {
3423   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3424   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3425 
3426   if (Buffer->getBufferSize() & 3)
3427     return Error("Invalid bitcode signature");
3428 
3429   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3430   // The magic number is 0x0B17C0DE stored in little endian.
3431   if (isBitcodeWrapper(BufPtr, BufEnd))
3432     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3433       return Error("Invalid bitcode wrapper header");
3434 
3435   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3436   Stream.init(&*StreamFile);
3437 
3438   return std::error_code();
3439 }
3440 
InitLazyStream()3441 std::error_code BitcodeReader::InitLazyStream() {
3442   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3443   // see it.
3444   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(
3445       std::move(LazyStreamer));
3446   StreamingMemoryObject &Bytes = *OwnedBytes;
3447   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3448   Stream.init(&*StreamFile);
3449 
3450   unsigned char buf[16];
3451   if (Bytes.readBytes(buf, 16, 0) != 16)
3452     return Error("Invalid bitcode signature");
3453 
3454   if (!isBitcode(buf, buf + 16))
3455     return Error("Invalid bitcode signature");
3456 
3457   if (isBitcodeWrapper(buf, buf + 4)) {
3458     const unsigned char *bitcodeStart = buf;
3459     const unsigned char *bitcodeEnd = buf + 16;
3460     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3461     Bytes.dropLeadingBytes(bitcodeStart - buf);
3462     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3463   }
3464   return std::error_code();
3465 }
3466 
3467 namespace {
3468 class BitcodeErrorCategoryType : public std::error_category {
name() const3469   const char *name() const LLVM_NOEXCEPT override {
3470     return "llvm.bitcode";
3471   }
message(int IE) const3472   std::string message(int IE) const override {
3473     BitcodeError E = static_cast<BitcodeError>(IE);
3474     switch (E) {
3475     case BitcodeError::InvalidBitcodeSignature:
3476       return "Invalid bitcode signature";
3477     case BitcodeError::CorruptedBitcode:
3478       return "Corrupted bitcode";
3479     }
3480     llvm_unreachable("Unknown error type!");
3481   }
3482 };
3483 }
3484 
3485 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3486 
BitcodeErrorCategory()3487 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3488   return *ErrorCategory;
3489 }
3490 
3491 //===----------------------------------------------------------------------===//
3492 // External interface
3493 //===----------------------------------------------------------------------===//
3494 
3495 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3496 ///
3497 static llvm::ErrorOr<llvm::Module *>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool WillMaterializeAll,const DiagnosticHandlerFunction & DiagnosticHandler)3498 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3499                          LLVMContext &Context, bool WillMaterializeAll,
3500                          const DiagnosticHandlerFunction &DiagnosticHandler) {
3501   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3502   BitcodeReader *R =
3503       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3504   M->setMaterializer(R);
3505 
3506   auto cleanupOnError = [&](std::error_code EC) {
3507     R->releaseBuffer(); // Never take ownership on error.
3508     delete M;  // Also deletes R.
3509     return EC;
3510   };
3511 
3512   if (std::error_code EC = R->ParseBitcodeInto(M))
3513     return cleanupOnError(EC);
3514 
3515   Buffer.release(); // The BitcodeReader owns it now.
3516   return M;
3517 }
3518 
3519 llvm::ErrorOr<Module *>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3520 llvm_2_7::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3521                            LLVMContext &Context,
3522                            const DiagnosticHandlerFunction &DiagnosticHandler) {
3523   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3524                                   DiagnosticHandler);
3525 }
3526 
3527 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3528 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3529 llvm::ErrorOr<llvm::Module *>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3530 llvm_2_7::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3531                        const DiagnosticHandlerFunction &DiagnosticHandler) {
3532   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3533   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3534       std::move(Buf), Context, true, DiagnosticHandler);
3535   if (!ModuleOrErr)
3536     return ModuleOrErr;
3537   Module *M = ModuleOrErr.get();
3538   // Read in the entire module, and destroy the BitcodeReader.
3539   if (std::error_code EC = M->materializeAll()) {
3540     delete M;
3541     return EC;
3542   }
3543 
3544   return M;
3545 }
3546 
3547 std::string
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3548 llvm_2_7::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3549                              DiagnosticHandlerFunction DiagnosticHandler) {
3550   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3551   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3552                                             DiagnosticHandler);
3553   ErrorOr<std::string> Triple = R->parseTriple();
3554   if (Triple.getError())
3555     return "";
3556   return Triple.get();
3557 }
3558