1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitReader_2_7.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/Support/ManagedStatic.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/MemoryBuffer.h"
33
34 using namespace llvm;
35 using namespace llvm_2_7;
36
37 #define METADATA_NODE_2_7 2
38 #define METADATA_FN_NODE_2_7 3
39 #define METADATA_NAMED_NODE_2_7 5
40 #define METADATA_ATTACHMENT_2_7 7
41 #define FUNC_CODE_INST_UNWIND_2_7 14
42 #define FUNC_CODE_INST_MALLOC_2_7 17
43 #define FUNC_CODE_INST_FREE_2_7 18
44 #define FUNC_CODE_INST_STORE_2_7 21
45 #define FUNC_CODE_INST_CALL_2_7 22
46 #define FUNC_CODE_INST_GETRESULT_2_7 25
47 #define FUNC_CODE_DEBUG_LOC_2_7 32
48
49 #define TYPE_BLOCK_ID_OLD_3_0 10
50 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
51 #define TYPE_CODE_STRUCT_OLD_3_0 10
52
53 namespace {
54
StripDebugInfoOfFunction(Module * M,const char * name)55 void StripDebugInfoOfFunction(Module* M, const char* name) {
56 if (Function* FuncStart = M->getFunction(name)) {
57 while (!FuncStart->use_empty()) {
58 cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
59 }
60 FuncStart->eraseFromParent();
61 }
62 }
63
64 /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
65 /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
66 /// strips that use.
CheckDebugInfoIntrinsics(Module * M)67 void CheckDebugInfoIntrinsics(Module *M) {
68 StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
69 StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
70 StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
71 StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
72
73 if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
74 if (!Declare->use_empty()) {
75 DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
76 if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
77 !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
78 while (!Declare->use_empty()) {
79 CallInst *CI = cast<CallInst>(*Declare->use_begin());
80 CI->eraseFromParent();
81 }
82 Declare->eraseFromParent();
83 }
84 }
85 }
86 }
87
88 //===----------------------------------------------------------------------===//
89 // BitcodeReaderValueList Class
90 //===----------------------------------------------------------------------===//
91
92 class BitcodeReaderValueList {
93 std::vector<WeakVH> ValuePtrs;
94
95 /// ResolveConstants - As we resolve forward-referenced constants, we add
96 /// information about them to this vector. This allows us to resolve them in
97 /// bulk instead of resolving each reference at a time. See the code in
98 /// ResolveConstantForwardRefs for more information about this.
99 ///
100 /// The key of this vector is the placeholder constant, the value is the slot
101 /// number that holds the resolved value.
102 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
103 ResolveConstantsTy ResolveConstants;
104 LLVMContext &Context;
105 public:
BitcodeReaderValueList(LLVMContext & C)106 explicit BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()107 ~BitcodeReaderValueList() {
108 assert(ResolveConstants.empty() && "Constants not resolved?");
109 }
110
111 // vector compatibility methods
size() const112 unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)113 void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)114 void push_back(Value *V) {
115 ValuePtrs.push_back(V);
116 }
117
clear()118 void clear() {
119 assert(ResolveConstants.empty() && "Constants not resolved?");
120 ValuePtrs.clear();
121 }
122
operator [](unsigned i) const123 Value *operator[](unsigned i) const {
124 assert(i < ValuePtrs.size());
125 return ValuePtrs[i];
126 }
127
back() const128 Value *back() const { return ValuePtrs.back(); }
pop_back()129 void pop_back() { ValuePtrs.pop_back(); }
empty() const130 bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)131 void shrinkTo(unsigned N) {
132 assert(N <= size() && "Invalid shrinkTo request!");
133 ValuePtrs.resize(N);
134 }
135
136 Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
137 Value *getValueFwdRef(unsigned Idx, Type *Ty);
138
139 void AssignValue(Value *V, unsigned Idx);
140
141 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
142 /// resolves any forward references.
143 void ResolveConstantForwardRefs();
144 };
145
146
147 //===----------------------------------------------------------------------===//
148 // BitcodeReaderMDValueList Class
149 //===----------------------------------------------------------------------===//
150
151 class BitcodeReaderMDValueList {
152 unsigned NumFwdRefs;
153 bool AnyFwdRefs;
154 std::vector<TrackingMDRef> MDValuePtrs;
155
156 LLVMContext &Context;
157 public:
BitcodeReaderMDValueList(LLVMContext & C)158 explicit BitcodeReaderMDValueList(LLVMContext &C)
159 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
160
161 // vector compatibility methods
size() const162 unsigned size() const { return MDValuePtrs.size(); }
resize(unsigned N)163 void resize(unsigned N) { MDValuePtrs.resize(N); }
push_back(Metadata * MD)164 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()165 void clear() { MDValuePtrs.clear(); }
back() const166 Metadata *back() const { return MDValuePtrs.back(); }
pop_back()167 void pop_back() { MDValuePtrs.pop_back(); }
empty() const168 bool empty() const { return MDValuePtrs.empty(); }
169
operator [](unsigned i) const170 Metadata *operator[](unsigned i) const {
171 assert(i < MDValuePtrs.size());
172 return MDValuePtrs[i];
173 }
174
shrinkTo(unsigned N)175 void shrinkTo(unsigned N) {
176 assert(N <= size() && "Invalid shrinkTo request!");
177 MDValuePtrs.resize(N);
178 }
179
180 Metadata *getValueFwdRef(unsigned Idx);
181 void AssignValue(Metadata *MD, unsigned Idx);
182 void tryToResolveCycles();
183 };
184
185 class BitcodeReader : public GVMaterializer {
186 LLVMContext &Context;
187 DiagnosticHandlerFunction DiagnosticHandler;
188 Module *TheModule;
189 std::unique_ptr<MemoryBuffer> Buffer;
190 std::unique_ptr<BitstreamReader> StreamFile;
191 BitstreamCursor Stream;
192 std::unique_ptr<DataStreamer> LazyStreamer;
193 uint64_t NextUnreadBit;
194 bool SeenValueSymbolTable;
195
196 std::vector<Type*> TypeList;
197 BitcodeReaderValueList ValueList;
198 BitcodeReaderMDValueList MDValueList;
199 SmallVector<Instruction *, 64> InstructionList;
200
201 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
202 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
203
204 /// MAttributes - The set of attributes by index. Index zero in the
205 /// file is for null, and is thus not represented here. As such all indices
206 /// are off by one.
207 std::vector<AttributeSet> MAttributes;
208
209 /// \brief The set of attribute groups.
210 std::map<unsigned, AttributeSet> MAttributeGroups;
211
212 /// FunctionBBs - While parsing a function body, this is a list of the basic
213 /// blocks for the function.
214 std::vector<BasicBlock*> FunctionBBs;
215
216 // When reading the module header, this list is populated with functions that
217 // have bodies later in the file.
218 std::vector<Function*> FunctionsWithBodies;
219
220 // When intrinsic functions are encountered which require upgrading they are
221 // stored here with their replacement function.
222 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
223 UpgradedIntrinsicMap UpgradedIntrinsics;
224
225 // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
226 DenseMap<unsigned, unsigned> MDKindMap;
227
228 // Several operations happen after the module header has been read, but
229 // before function bodies are processed. This keeps track of whether
230 // we've done this yet.
231 bool SeenFirstFunctionBody;
232
233 /// DeferredFunctionInfo - When function bodies are initially scanned, this
234 /// map contains info about where to find deferred function body in the
235 /// stream.
236 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
237
238 /// BlockAddrFwdRefs - These are blockaddr references to basic blocks. These
239 /// are resolved lazily when functions are loaded.
240 typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
241 DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
242
243 /// LLVM2_7MetadataDetected - True if metadata produced by LLVM 2.7 or
244 /// earlier was detected, in which case we behave slightly differently,
245 /// for compatibility.
246 /// FIXME: Remove in LLVM 3.0.
247 bool LLVM2_7MetadataDetected;
248 static const std::error_category &BitcodeErrorCategory();
249
250 public:
251 std::error_code Error(BitcodeError E, const Twine &Message);
252 std::error_code Error(BitcodeError E);
253 std::error_code Error(const Twine &Message);
254
255 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
256 DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader()257 ~BitcodeReader() { FreeState(); }
258
259 void FreeState();
260
261 void releaseBuffer();
262
263 bool isDematerializable(const GlobalValue *GV) const;
264 std::error_code materialize(GlobalValue *GV) override;
265 std::error_code materializeModule() override;
266 std::vector<StructType *> getIdentifiedStructTypes() const override;
267 void dematerialize(GlobalValue *GV);
268
269 /// @brief Main interface to parsing a bitcode buffer.
270 /// @returns true if an error occurred.
271 std::error_code ParseBitcodeInto(Module *M);
272
273 /// @brief Cheap mechanism to just extract module triple
274 /// @returns true if an error occurred.
275 llvm::ErrorOr<std::string> parseTriple();
276
277 static uint64_t decodeSignRotatedValue(uint64_t V);
278
279 /// Materialize any deferred Metadata block.
280 std::error_code materializeMetadata() override;
281
282 void setStripDebugInfo() override;
283
284 private:
285 std::vector<StructType *> IdentifiedStructTypes;
286 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
287 StructType *createIdentifiedStructType(LLVMContext &Context);
288
289 Type *getTypeByID(unsigned ID);
290 Type *getTypeByIDOrNull(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)291 Value *getFnValueByID(unsigned ID, Type *Ty) {
292 if (Ty && Ty->isMetadataTy())
293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294 return ValueList.getValueFwdRef(ID, Ty);
295 }
getFnMetadataByID(unsigned ID)296 Metadata *getFnMetadataByID(unsigned ID) {
297 return MDValueList.getValueFwdRef(ID);
298 }
getBasicBlock(unsigned ID) const299 BasicBlock *getBasicBlock(unsigned ID) const {
300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301 return FunctionBBs[ID];
302 }
getAttributes(unsigned i) const303 AttributeSet getAttributes(unsigned i) const {
304 if (i-1 < MAttributes.size())
305 return MAttributes[i-1];
306 return AttributeSet();
307 }
308
309 /// getValueTypePair - Read a value/type pair out of the specified record from
310 /// slot 'Slot'. Increment Slot past the number of slots used in the record.
311 /// Return true on failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313 unsigned InstNum, Value *&ResVal) {
314 if (Slot == Record.size()) return true;
315 unsigned ValNo = (unsigned)Record[Slot++];
316 if (ValNo < InstNum) {
317 // If this is not a forward reference, just return the value we already
318 // have.
319 ResVal = getFnValueByID(ValNo, nullptr);
320 return ResVal == nullptr;
321 } else if (Slot == Record.size()) {
322 return true;
323 }
324
325 unsigned TypeNo = (unsigned)Record[Slot++];
326 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
327 return ResVal == nullptr;
328 }
getValue(SmallVector<uint64_t,64> & Record,unsigned & Slot,Type * Ty,Value * & ResVal)329 bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
330 Type *Ty, Value *&ResVal) {
331 if (Slot == Record.size()) return true;
332 unsigned ValNo = (unsigned)Record[Slot++];
333 ResVal = getFnValueByID(ValNo, Ty);
334 return ResVal == 0;
335 }
336
337
338 std::error_code ParseModule(bool Resume);
339 std::error_code ParseAttributeBlock();
340 std::error_code ParseTypeTable();
341 std::error_code ParseOldTypeTable(); // FIXME: Remove in LLVM 3.1
342 std::error_code ParseTypeTableBody();
343
344 std::error_code ParseOldTypeSymbolTable(); // FIXME: Remove in LLVM 3.1
345 std::error_code ParseValueSymbolTable();
346 std::error_code ParseConstants();
347 std::error_code RememberAndSkipFunctionBody();
348 std::error_code ParseFunctionBody(Function *F);
349 std::error_code GlobalCleanup();
350 std::error_code ResolveGlobalAndAliasInits();
351 std::error_code ParseMetadata();
352 std::error_code ParseMetadataAttachment();
353 llvm::ErrorOr<std::string> parseModuleTriple();
354 std::error_code InitStream();
355 std::error_code InitStreamFromBuffer();
356 std::error_code InitLazyStream();
357 };
358 } // end anonymous namespace
359
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC,const Twine & Message)360 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
361 std::error_code EC, const Twine &Message) {
362 BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
363 DiagnosticHandler(DI);
364 return EC;
365 }
366
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC)367 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
368 std::error_code EC) {
369 return Error(DiagnosticHandler, EC, EC.message());
370 }
371
Error(BitcodeError E,const Twine & Message)372 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
373 return ::Error(DiagnosticHandler, make_error_code(E), Message);
374 }
375
Error(const Twine & Message)376 std::error_code BitcodeReader::Error(const Twine &Message) {
377 return ::Error(DiagnosticHandler,
378 make_error_code(BitcodeError::CorruptedBitcode), Message);
379 }
380
Error(BitcodeError E)381 std::error_code BitcodeReader::Error(BitcodeError E) {
382 return ::Error(DiagnosticHandler, make_error_code(E));
383 }
384
getDiagHandler(DiagnosticHandlerFunction F,LLVMContext & C)385 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
386 LLVMContext &C) {
387 if (F)
388 return F;
389 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
390 }
391
BitcodeReader(MemoryBuffer * buffer,LLVMContext & C,DiagnosticHandlerFunction DiagnosticHandler)392 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
393 DiagnosticHandlerFunction DiagnosticHandler)
394 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
395 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
396 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
397 MDValueList(C), SeenFirstFunctionBody(false),
398 LLVM2_7MetadataDetected(false) {}
399
400
FreeState()401 void BitcodeReader::FreeState() {
402 Buffer = nullptr;
403 std::vector<Type*>().swap(TypeList);
404 ValueList.clear();
405 MDValueList.clear();
406
407 std::vector<AttributeSet>().swap(MAttributes);
408 std::vector<BasicBlock*>().swap(FunctionBBs);
409 std::vector<Function*>().swap(FunctionsWithBodies);
410 DeferredFunctionInfo.clear();
411 MDKindMap.clear();
412 }
413
414 //===----------------------------------------------------------------------===//
415 // Helper functions to implement forward reference resolution, etc.
416 //===----------------------------------------------------------------------===//
417
418 /// ConvertToString - Convert a string from a record into an std::string, return
419 /// true on failure.
420 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)421 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
422 StrTy &Result) {
423 if (Idx > Record.size())
424 return true;
425
426 for (unsigned i = Idx, e = Record.size(); i != e; ++i)
427 Result += (char)Record[i];
428 return false;
429 }
430
getDecodedLinkage(unsigned Val)431 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
432 switch (Val) {
433 default: // Map unknown/new linkages to external
434 case 0:
435 return GlobalValue::ExternalLinkage;
436 case 1:
437 return GlobalValue::WeakAnyLinkage;
438 case 2:
439 return GlobalValue::AppendingLinkage;
440 case 3:
441 return GlobalValue::InternalLinkage;
442 case 4:
443 return GlobalValue::LinkOnceAnyLinkage;
444 case 5:
445 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
446 case 6:
447 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
448 case 7:
449 return GlobalValue::ExternalWeakLinkage;
450 case 8:
451 return GlobalValue::CommonLinkage;
452 case 9:
453 return GlobalValue::PrivateLinkage;
454 case 10:
455 return GlobalValue::WeakODRLinkage;
456 case 11:
457 return GlobalValue::LinkOnceODRLinkage;
458 case 12:
459 return GlobalValue::AvailableExternallyLinkage;
460 case 13:
461 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
462 case 14:
463 return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
464 //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
465 case 15:
466 return GlobalValue::LinkOnceODRLinkage;
467 }
468 }
469
GetDecodedVisibility(unsigned Val)470 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
471 switch (Val) {
472 default: // Map unknown visibilities to default.
473 case 0: return GlobalValue::DefaultVisibility;
474 case 1: return GlobalValue::HiddenVisibility;
475 case 2: return GlobalValue::ProtectedVisibility;
476 }
477 }
478
GetDecodedThreadLocalMode(unsigned Val)479 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
480 switch (Val) {
481 case 0: return GlobalVariable::NotThreadLocal;
482 default: // Map unknown non-zero value to general dynamic.
483 case 1: return GlobalVariable::GeneralDynamicTLSModel;
484 case 2: return GlobalVariable::LocalDynamicTLSModel;
485 case 3: return GlobalVariable::InitialExecTLSModel;
486 case 4: return GlobalVariable::LocalExecTLSModel;
487 }
488 }
489
getDecodedUnnamedAddrType(unsigned Val)490 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
491 switch (Val) {
492 default: // Map unknown to UnnamedAddr::None.
493 case 0: return GlobalVariable::UnnamedAddr::None;
494 case 1: return GlobalVariable::UnnamedAddr::Global;
495 case 2: return GlobalVariable::UnnamedAddr::Local;
496 }
497 }
498
GetDecodedCastOpcode(unsigned Val)499 static int GetDecodedCastOpcode(unsigned Val) {
500 switch (Val) {
501 default: return -1;
502 case bitc::CAST_TRUNC : return Instruction::Trunc;
503 case bitc::CAST_ZEXT : return Instruction::ZExt;
504 case bitc::CAST_SEXT : return Instruction::SExt;
505 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
506 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
507 case bitc::CAST_UITOFP : return Instruction::UIToFP;
508 case bitc::CAST_SITOFP : return Instruction::SIToFP;
509 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
510 case bitc::CAST_FPEXT : return Instruction::FPExt;
511 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
512 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
513 case bitc::CAST_BITCAST : return Instruction::BitCast;
514 }
515 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)516 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
517 switch (Val) {
518 default: return -1;
519 case bitc::BINOP_ADD:
520 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
521 case bitc::BINOP_SUB:
522 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
523 case bitc::BINOP_MUL:
524 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
525 case bitc::BINOP_UDIV: return Instruction::UDiv;
526 case bitc::BINOP_SDIV:
527 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
528 case bitc::BINOP_UREM: return Instruction::URem;
529 case bitc::BINOP_SREM:
530 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
531 case bitc::BINOP_SHL: return Instruction::Shl;
532 case bitc::BINOP_LSHR: return Instruction::LShr;
533 case bitc::BINOP_ASHR: return Instruction::AShr;
534 case bitc::BINOP_AND: return Instruction::And;
535 case bitc::BINOP_OR: return Instruction::Or;
536 case bitc::BINOP_XOR: return Instruction::Xor;
537 }
538 }
539
540 namespace llvm {
541 namespace {
542 /// @brief A class for maintaining the slot number definition
543 /// as a placeholder for the actual definition for forward constants defs.
544 class ConstantPlaceHolder : public ConstantExpr {
545 void operator=(const ConstantPlaceHolder &) = delete;
546 public:
547 // allocate space for exactly one operand
operator new(size_t s)548 void *operator new(size_t s) {
549 return User::operator new(s, 1);
550 }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)551 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
552 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
553 Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
554 }
555
556 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)557 static bool classof(const Value *V) {
558 return isa<ConstantExpr>(V) &&
559 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
560 }
561
562
563 /// Provide fast operand accessors
564 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
565 };
566 }
567
568 // FIXME: can we inherit this from ConstantExpr?
569 template <>
570 struct OperandTraits<ConstantPlaceHolder> :
571 public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
572 };
573 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
574 }
575
576
AssignValue(Value * V,unsigned Idx)577 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
578 if (Idx == size()) {
579 push_back(V);
580 return;
581 }
582
583 if (Idx >= size())
584 resize(Idx+1);
585
586 WeakVH &OldV = ValuePtrs[Idx];
587 if (!OldV) {
588 OldV = V;
589 return;
590 }
591
592 // Handle constants and non-constants (e.g. instrs) differently for
593 // efficiency.
594 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
595 ResolveConstants.push_back(std::make_pair(PHC, Idx));
596 OldV = V;
597 } else {
598 // If there was a forward reference to this value, replace it.
599 Value *PrevVal = OldV;
600 OldV->replaceAllUsesWith(V);
601 delete PrevVal;
602 }
603 }
604
605
getConstantFwdRef(unsigned Idx,Type * Ty)606 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
607 Type *Ty) {
608 if (Idx >= size())
609 resize(Idx + 1);
610
611 if (Value *V = ValuePtrs[Idx]) {
612 assert(Ty == V->getType() && "Type mismatch in constant table!");
613 return cast<Constant>(V);
614 }
615
616 // Create and return a placeholder, which will later be RAUW'd.
617 Constant *C = new ConstantPlaceHolder(Ty, Context);
618 ValuePtrs[Idx] = C;
619 return C;
620 }
621
getValueFwdRef(unsigned Idx,Type * Ty)622 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
623 if (Idx >= size())
624 resize(Idx + 1);
625
626 if (Value *V = ValuePtrs[Idx]) {
627 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
628 return V;
629 }
630
631 // No type specified, must be invalid reference.
632 if (!Ty) return nullptr;
633
634 // Create and return a placeholder, which will later be RAUW'd.
635 Value *V = new Argument(Ty);
636 ValuePtrs[Idx] = V;
637 return V;
638 }
639
640 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
641 /// resolves any forward references. The idea behind this is that we sometimes
642 /// get constants (such as large arrays) which reference *many* forward ref
643 /// constants. Replacing each of these causes a lot of thrashing when
644 /// building/reuniquing the constant. Instead of doing this, we look at all the
645 /// uses and rewrite all the place holders at once for any constant that uses
646 /// a placeholder.
ResolveConstantForwardRefs()647 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
648 // Sort the values by-pointer so that they are efficient to look up with a
649 // binary search.
650 std::sort(ResolveConstants.begin(), ResolveConstants.end());
651
652 SmallVector<Constant*, 64> NewOps;
653
654 while (!ResolveConstants.empty()) {
655 Value *RealVal = operator[](ResolveConstants.back().second);
656 Constant *Placeholder = ResolveConstants.back().first;
657 ResolveConstants.pop_back();
658
659 // Loop over all users of the placeholder, updating them to reference the
660 // new value. If they reference more than one placeholder, update them all
661 // at once.
662 while (!Placeholder->use_empty()) {
663 auto UI = Placeholder->user_begin();
664 User *U = *UI;
665
666 // If the using object isn't uniqued, just update the operands. This
667 // handles instructions and initializers for global variables.
668 if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
669 UI.getUse().set(RealVal);
670 continue;
671 }
672
673 // Otherwise, we have a constant that uses the placeholder. Replace that
674 // constant with a new constant that has *all* placeholder uses updated.
675 Constant *UserC = cast<Constant>(U);
676 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
677 I != E; ++I) {
678 Value *NewOp;
679 if (!isa<ConstantPlaceHolder>(*I)) {
680 // Not a placeholder reference.
681 NewOp = *I;
682 } else if (*I == Placeholder) {
683 // Common case is that it just references this one placeholder.
684 NewOp = RealVal;
685 } else {
686 // Otherwise, look up the placeholder in ResolveConstants.
687 ResolveConstantsTy::iterator It =
688 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
689 std::pair<Constant*, unsigned>(cast<Constant>(*I),
690 0));
691 assert(It != ResolveConstants.end() && It->first == *I);
692 NewOp = operator[](It->second);
693 }
694
695 NewOps.push_back(cast<Constant>(NewOp));
696 }
697
698 // Make the new constant.
699 Constant *NewC;
700 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
701 NewC = ConstantArray::get(UserCA->getType(), NewOps);
702 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
703 NewC = ConstantStruct::get(UserCS->getType(), NewOps);
704 } else if (isa<ConstantVector>(UserC)) {
705 NewC = ConstantVector::get(NewOps);
706 } else {
707 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
708 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
709 }
710
711 UserC->replaceAllUsesWith(NewC);
712 UserC->destroyConstant();
713 NewOps.clear();
714 }
715
716 // Update all ValueHandles, they should be the only users at this point.
717 Placeholder->replaceAllUsesWith(RealVal);
718 delete Placeholder;
719 }
720 }
721
AssignValue(Metadata * MD,unsigned Idx)722 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
723 if (Idx == size()) {
724 push_back(MD);
725 return;
726 }
727
728 if (Idx >= size())
729 resize(Idx+1);
730
731 TrackingMDRef &OldMD = MDValuePtrs[Idx];
732 if (!OldMD) {
733 OldMD.reset(MD);
734 return;
735 }
736
737 // If there was a forward reference to this value, replace it.
738 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
739 PrevMD->replaceAllUsesWith(MD);
740 --NumFwdRefs;
741 }
742
getValueFwdRef(unsigned Idx)743 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
744 if (Idx >= size())
745 resize(Idx + 1);
746
747 if (Metadata *MD = MDValuePtrs[Idx])
748 return MD;
749
750 // Create and return a placeholder, which will later be RAUW'd.
751 AnyFwdRefs = true;
752 ++NumFwdRefs;
753 Metadata *MD = MDNode::getTemporary(Context, None).release();
754 MDValuePtrs[Idx].reset(MD);
755 return MD;
756 }
757
tryToResolveCycles()758 void BitcodeReaderMDValueList::tryToResolveCycles() {
759 if (!AnyFwdRefs)
760 // Nothing to do.
761 return;
762
763 if (NumFwdRefs)
764 // Still forward references... can't resolve cycles.
765 return;
766
767 // Resolve any cycles.
768 for (auto &MD : MDValuePtrs) {
769 auto *N = dyn_cast_or_null<MDNode>(MD);
770 if (!N)
771 continue;
772
773 assert(!N->isTemporary() && "Unexpected forward reference");
774 N->resolveCycles();
775 }
776 }
777
getTypeByID(unsigned ID)778 Type *BitcodeReader::getTypeByID(unsigned ID) {
779 // The type table size is always specified correctly.
780 if (ID >= TypeList.size())
781 return nullptr;
782
783 if (Type *Ty = TypeList[ID])
784 return Ty;
785
786 // If we have a forward reference, the only possible case is when it is to a
787 // named struct. Just create a placeholder for now.
788 return TypeList[ID] = createIdentifiedStructType(Context);
789 }
790
createIdentifiedStructType(LLVMContext & Context,StringRef Name)791 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
792 StringRef Name) {
793 auto *Ret = StructType::create(Context, Name);
794 IdentifiedStructTypes.push_back(Ret);
795 return Ret;
796 }
797
createIdentifiedStructType(LLVMContext & Context)798 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
799 auto *Ret = StructType::create(Context);
800 IdentifiedStructTypes.push_back(Ret);
801 return Ret;
802 }
803
804
805 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)806 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
807 if (ID >= TypeList.size())
808 TypeList.resize(ID+1);
809
810 return TypeList[ID];
811 }
812
813 //===----------------------------------------------------------------------===//
814 // Functions for parsing blocks from the bitcode file
815 //===----------------------------------------------------------------------===//
816
817
818 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
819 /// been decoded from the given integer. This function must stay in sync with
820 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)821 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
822 uint64_t EncodedAttrs) {
823 // FIXME: Remove in 4.0.
824
825 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
826 // the bits above 31 down by 11 bits.
827 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
828 assert((!Alignment || isPowerOf2_32(Alignment)) &&
829 "Alignment must be a power of two.");
830
831 if (Alignment)
832 B.addAlignmentAttr(Alignment);
833 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
834 (EncodedAttrs & 0xffff));
835 }
836
ParseAttributeBlock()837 std::error_code BitcodeReader::ParseAttributeBlock() {
838 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
839 return Error("Invalid record");
840
841 if (!MAttributes.empty())
842 return Error("Invalid multiple blocks");
843
844 SmallVector<uint64_t, 64> Record;
845
846 SmallVector<AttributeSet, 8> Attrs;
847
848 // Read all the records.
849 while (1) {
850 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
851
852 switch (Entry.Kind) {
853 case BitstreamEntry::SubBlock: // Handled for us already.
854 case BitstreamEntry::Error:
855 return Error("Malformed block");
856 case BitstreamEntry::EndBlock:
857 return std::error_code();
858 case BitstreamEntry::Record:
859 // The interesting case.
860 break;
861 }
862
863 // Read a record.
864 Record.clear();
865 switch (Stream.readRecord(Entry.ID, Record)) {
866 default: // Default behavior: ignore.
867 break;
868 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
869 if (Record.size() & 1)
870 return Error("Invalid record");
871
872 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
873 AttrBuilder B;
874 decodeLLVMAttributesForBitcode(B, Record[i+1]);
875 Attrs.push_back(AttributeSet::get(Context, Record[i], B));
876 }
877
878 MAttributes.push_back(AttributeSet::get(Context, Attrs));
879 Attrs.clear();
880 break;
881 }
882 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
883 for (unsigned i = 0, e = Record.size(); i != e; ++i)
884 Attrs.push_back(MAttributeGroups[Record[i]]);
885
886 MAttributes.push_back(AttributeSet::get(Context, Attrs));
887 Attrs.clear();
888 break;
889 }
890 }
891 }
892 }
893
894
ParseTypeTable()895 std::error_code BitcodeReader::ParseTypeTable() {
896 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
897 return Error("Invalid record");
898
899 return ParseTypeTableBody();
900 }
901
ParseTypeTableBody()902 std::error_code BitcodeReader::ParseTypeTableBody() {
903 if (!TypeList.empty())
904 return Error("Invalid multiple blocks");
905
906 SmallVector<uint64_t, 64> Record;
907 unsigned NumRecords = 0;
908
909 SmallString<64> TypeName;
910
911 // Read all the records for this type table.
912 while (1) {
913 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
914
915 switch (Entry.Kind) {
916 case BitstreamEntry::SubBlock: // Handled for us already.
917 case BitstreamEntry::Error:
918 return Error("Malformed block");
919 case BitstreamEntry::EndBlock:
920 if (NumRecords != TypeList.size())
921 return Error("Malformed block");
922 return std::error_code();
923 case BitstreamEntry::Record:
924 // The interesting case.
925 break;
926 }
927
928 // Read a record.
929 Record.clear();
930 Type *ResultTy = nullptr;
931 switch (Stream.readRecord(Entry.ID, Record)) {
932 default:
933 return Error("Invalid value");
934 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
935 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
936 // type list. This allows us to reserve space.
937 if (Record.size() < 1)
938 return Error("Invalid record");
939 TypeList.resize(Record[0]);
940 continue;
941 case bitc::TYPE_CODE_VOID: // VOID
942 ResultTy = Type::getVoidTy(Context);
943 break;
944 case bitc::TYPE_CODE_HALF: // HALF
945 ResultTy = Type::getHalfTy(Context);
946 break;
947 case bitc::TYPE_CODE_FLOAT: // FLOAT
948 ResultTy = Type::getFloatTy(Context);
949 break;
950 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
951 ResultTy = Type::getDoubleTy(Context);
952 break;
953 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
954 ResultTy = Type::getX86_FP80Ty(Context);
955 break;
956 case bitc::TYPE_CODE_FP128: // FP128
957 ResultTy = Type::getFP128Ty(Context);
958 break;
959 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
960 ResultTy = Type::getPPC_FP128Ty(Context);
961 break;
962 case bitc::TYPE_CODE_LABEL: // LABEL
963 ResultTy = Type::getLabelTy(Context);
964 break;
965 case bitc::TYPE_CODE_METADATA: // METADATA
966 ResultTy = Type::getMetadataTy(Context);
967 break;
968 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
969 ResultTy = Type::getX86_MMXTy(Context);
970 break;
971 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
972 if (Record.size() < 1)
973 return Error("Invalid record");
974
975 ResultTy = IntegerType::get(Context, Record[0]);
976 break;
977 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
978 // [pointee type, address space]
979 if (Record.size() < 1)
980 return Error("Invalid record");
981 unsigned AddressSpace = 0;
982 if (Record.size() == 2)
983 AddressSpace = Record[1];
984 ResultTy = getTypeByID(Record[0]);
985 if (!ResultTy)
986 return Error("Invalid type");
987 ResultTy = PointerType::get(ResultTy, AddressSpace);
988 break;
989 }
990 case bitc::TYPE_CODE_FUNCTION_OLD: {
991 // FIXME: attrid is dead, remove it in LLVM 4.0
992 // FUNCTION: [vararg, attrid, retty, paramty x N]
993 if (Record.size() < 3)
994 return Error("Invalid record");
995 SmallVector<Type*, 8> ArgTys;
996 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
997 if (Type *T = getTypeByID(Record[i]))
998 ArgTys.push_back(T);
999 else
1000 break;
1001 }
1002
1003 ResultTy = getTypeByID(Record[2]);
1004 if (!ResultTy || ArgTys.size() < Record.size()-3)
1005 return Error("Invalid type");
1006
1007 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1008 break;
1009 }
1010 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1011 if (Record.size() < 1)
1012 return Error("Invalid record");
1013 SmallVector<Type*, 8> EltTys;
1014 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1015 if (Type *T = getTypeByID(Record[i]))
1016 EltTys.push_back(T);
1017 else
1018 break;
1019 }
1020 if (EltTys.size() != Record.size()-1)
1021 return Error("Invalid type");
1022 ResultTy = StructType::get(Context, EltTys, Record[0]);
1023 break;
1024 }
1025 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1026 if (ConvertToString(Record, 0, TypeName))
1027 return Error("Invalid record");
1028 continue;
1029
1030 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1031 if (Record.size() < 1)
1032 return Error("Invalid record");
1033
1034 if (NumRecords >= TypeList.size())
1035 return Error("Invalid TYPE table");
1036
1037 // Check to see if this was forward referenced, if so fill in the temp.
1038 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1039 if (Res) {
1040 Res->setName(TypeName);
1041 TypeList[NumRecords] = nullptr;
1042 } else // Otherwise, create a new struct.
1043 Res = createIdentifiedStructType(Context, TypeName);
1044 TypeName.clear();
1045
1046 SmallVector<Type*, 8> EltTys;
1047 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1048 if (Type *T = getTypeByID(Record[i]))
1049 EltTys.push_back(T);
1050 else
1051 break;
1052 }
1053 if (EltTys.size() != Record.size()-1)
1054 return Error("Invalid record");
1055 Res->setBody(EltTys, Record[0]);
1056 ResultTy = Res;
1057 break;
1058 }
1059 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1060 if (Record.size() != 1)
1061 return Error("Invalid record");
1062
1063 if (NumRecords >= TypeList.size())
1064 return Error("Invalid TYPE table");
1065
1066 // Check to see if this was forward referenced, if so fill in the temp.
1067 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1068 if (Res) {
1069 Res->setName(TypeName);
1070 TypeList[NumRecords] = nullptr;
1071 } else // Otherwise, create a new struct with no body.
1072 Res = createIdentifiedStructType(Context, TypeName);
1073 TypeName.clear();
1074 ResultTy = Res;
1075 break;
1076 }
1077 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1078 if (Record.size() < 2)
1079 return Error("Invalid record");
1080 if ((ResultTy = getTypeByID(Record[1])))
1081 ResultTy = ArrayType::get(ResultTy, Record[0]);
1082 else
1083 return Error("Invalid type");
1084 break;
1085 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1086 if (Record.size() < 2)
1087 return Error("Invalid record");
1088 if ((ResultTy = getTypeByID(Record[1])))
1089 ResultTy = VectorType::get(ResultTy, Record[0]);
1090 else
1091 return Error("Invalid type");
1092 break;
1093 }
1094
1095 if (NumRecords >= TypeList.size())
1096 return Error("Invalid TYPE table");
1097 assert(ResultTy && "Didn't read a type?");
1098 assert(!TypeList[NumRecords] && "Already read type?");
1099 TypeList[NumRecords++] = ResultTy;
1100 }
1101 }
1102
1103 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()1104 std::error_code BitcodeReader::ParseOldTypeTable() {
1105 if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1106 return Error("Malformed block");
1107
1108 if (!TypeList.empty())
1109 return Error("Invalid TYPE table");
1110
1111
1112 // While horrible, we have no good ordering of types in the bc file. Just
1113 // iteratively parse types out of the bc file in multiple passes until we get
1114 // them all. Do this by saving a cursor for the start of the type block.
1115 BitstreamCursor StartOfTypeBlockCursor(Stream);
1116
1117 unsigned NumTypesRead = 0;
1118
1119 SmallVector<uint64_t, 64> Record;
1120 RestartScan:
1121 unsigned NextTypeID = 0;
1122 bool ReadAnyTypes = false;
1123
1124 // Read all the records for this type table.
1125 while (1) {
1126 unsigned Code = Stream.ReadCode();
1127 if (Code == bitc::END_BLOCK) {
1128 if (NextTypeID != TypeList.size())
1129 return Error("Invalid TYPE table");
1130
1131 // If we haven't read all of the types yet, iterate again.
1132 if (NumTypesRead != TypeList.size()) {
1133 // If we didn't successfully read any types in this pass, then we must
1134 // have an unhandled forward reference.
1135 if (!ReadAnyTypes)
1136 return Error("Invalid TYPE table");
1137
1138 Stream = StartOfTypeBlockCursor;
1139 goto RestartScan;
1140 }
1141
1142 if (Stream.ReadBlockEnd())
1143 return Error("Invalid TYPE table");
1144 return std::error_code();
1145 }
1146
1147 if (Code == bitc::ENTER_SUBBLOCK) {
1148 // No known subblocks, always skip them.
1149 Stream.ReadSubBlockID();
1150 if (Stream.SkipBlock())
1151 return Error("Malformed block");
1152 continue;
1153 }
1154
1155 if (Code == bitc::DEFINE_ABBREV) {
1156 Stream.ReadAbbrevRecord();
1157 continue;
1158 }
1159
1160 // Read a record.
1161 Record.clear();
1162 Type *ResultTy = nullptr;
1163 switch (Stream.readRecord(Code, Record)) {
1164 default: return Error("Invalid TYPE table");
1165 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1166 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1167 // type list. This allows us to reserve space.
1168 if (Record.size() < 1)
1169 return Error("Invalid TYPE table");
1170 TypeList.resize(Record[0]);
1171 continue;
1172 case bitc::TYPE_CODE_VOID: // VOID
1173 ResultTy = Type::getVoidTy(Context);
1174 break;
1175 case bitc::TYPE_CODE_FLOAT: // FLOAT
1176 ResultTy = Type::getFloatTy(Context);
1177 break;
1178 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1179 ResultTy = Type::getDoubleTy(Context);
1180 break;
1181 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1182 ResultTy = Type::getX86_FP80Ty(Context);
1183 break;
1184 case bitc::TYPE_CODE_FP128: // FP128
1185 ResultTy = Type::getFP128Ty(Context);
1186 break;
1187 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1188 ResultTy = Type::getPPC_FP128Ty(Context);
1189 break;
1190 case bitc::TYPE_CODE_LABEL: // LABEL
1191 ResultTy = Type::getLabelTy(Context);
1192 break;
1193 case bitc::TYPE_CODE_METADATA: // METADATA
1194 ResultTy = Type::getMetadataTy(Context);
1195 break;
1196 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1197 ResultTy = Type::getX86_MMXTy(Context);
1198 break;
1199 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
1200 if (Record.size() < 1)
1201 return Error("Invalid TYPE table");
1202 ResultTy = IntegerType::get(Context, Record[0]);
1203 break;
1204 case bitc::TYPE_CODE_OPAQUE: // OPAQUE
1205 if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1206 ResultTy = StructType::create(Context, "");
1207 break;
1208 case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1209 if (NextTypeID >= TypeList.size()) break;
1210 // If we already read it, don't reprocess.
1211 if (TypeList[NextTypeID] &&
1212 !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1213 break;
1214
1215 // Set a type.
1216 if (TypeList[NextTypeID] == 0)
1217 TypeList[NextTypeID] = StructType::create(Context, "");
1218
1219 std::vector<Type*> EltTys;
1220 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1221 if (Type *Elt = getTypeByIDOrNull(Record[i]))
1222 EltTys.push_back(Elt);
1223 else
1224 break;
1225 }
1226
1227 if (EltTys.size() != Record.size()-1)
1228 break; // Not all elements are ready.
1229
1230 cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1231 ResultTy = TypeList[NextTypeID];
1232 TypeList[NextTypeID] = 0;
1233 break;
1234 }
1235 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1236 // [pointee type, address space]
1237 if (Record.size() < 1)
1238 return Error("Invalid TYPE table");
1239 unsigned AddressSpace = 0;
1240 if (Record.size() == 2)
1241 AddressSpace = Record[1];
1242 if ((ResultTy = getTypeByIDOrNull(Record[0])))
1243 ResultTy = PointerType::get(ResultTy, AddressSpace);
1244 break;
1245 }
1246 case bitc::TYPE_CODE_FUNCTION_OLD: {
1247 // FIXME: attrid is dead, remove it in LLVM 3.0
1248 // FUNCTION: [vararg, attrid, retty, paramty x N]
1249 if (Record.size() < 3)
1250 return Error("Invalid TYPE table");
1251 std::vector<Type*> ArgTys;
1252 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1253 if (Type *Elt = getTypeByIDOrNull(Record[i]))
1254 ArgTys.push_back(Elt);
1255 else
1256 break;
1257 }
1258 if (ArgTys.size()+3 != Record.size())
1259 break; // Something was null.
1260 if ((ResultTy = getTypeByIDOrNull(Record[2])))
1261 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1262 break;
1263 }
1264 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1265 if (Record.size() < 2)
1266 return Error("Invalid TYPE table");
1267 if ((ResultTy = getTypeByIDOrNull(Record[1])))
1268 ResultTy = ArrayType::get(ResultTy, Record[0]);
1269 break;
1270 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1271 if (Record.size() < 2)
1272 return Error("Invalid TYPE table");
1273 if ((ResultTy = getTypeByIDOrNull(Record[1])))
1274 ResultTy = VectorType::get(ResultTy, Record[0]);
1275 break;
1276 }
1277
1278 if (NextTypeID >= TypeList.size())
1279 return Error("Invalid TYPE table");
1280
1281 if (ResultTy && TypeList[NextTypeID] == 0) {
1282 ++NumTypesRead;
1283 ReadAnyTypes = true;
1284
1285 TypeList[NextTypeID] = ResultTy;
1286 }
1287
1288 ++NextTypeID;
1289 }
1290 }
1291
1292
ParseOldTypeSymbolTable()1293 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1294 if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1295 return Error("Malformed block");
1296
1297 SmallVector<uint64_t, 64> Record;
1298
1299 // Read all the records for this type table.
1300 std::string TypeName;
1301 while (1) {
1302 unsigned Code = Stream.ReadCode();
1303 if (Code == bitc::END_BLOCK) {
1304 if (Stream.ReadBlockEnd())
1305 return Error("Malformed block");
1306 return std::error_code();
1307 }
1308
1309 if (Code == bitc::ENTER_SUBBLOCK) {
1310 // No known subblocks, always skip them.
1311 Stream.ReadSubBlockID();
1312 if (Stream.SkipBlock())
1313 return Error("Malformed block");
1314 continue;
1315 }
1316
1317 if (Code == bitc::DEFINE_ABBREV) {
1318 Stream.ReadAbbrevRecord();
1319 continue;
1320 }
1321
1322 // Read a record.
1323 Record.clear();
1324 switch (Stream.readRecord(Code, Record)) {
1325 default: // Default behavior: unknown type.
1326 break;
1327 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N]
1328 if (ConvertToString(Record, 1, TypeName))
1329 return Error("Invalid record");
1330 unsigned TypeID = Record[0];
1331 if (TypeID >= TypeList.size())
1332 return Error("Invalid record");
1333
1334 // Only apply the type name to a struct type with no name.
1335 if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1336 if (!STy->isLiteral() && !STy->hasName())
1337 STy->setName(TypeName);
1338 TypeName.clear();
1339 break;
1340 }
1341 }
1342 }
1343
ParseValueSymbolTable()1344 std::error_code BitcodeReader::ParseValueSymbolTable() {
1345 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1346 return Error("Invalid record");
1347
1348 SmallVector<uint64_t, 64> Record;
1349
1350 // Read all the records for this value table.
1351 SmallString<128> ValueName;
1352 while (1) {
1353 unsigned Code = Stream.ReadCode();
1354 if (Code == bitc::END_BLOCK) {
1355 if (Stream.ReadBlockEnd())
1356 return Error("Malformed block");
1357 return std::error_code();
1358 }
1359 if (Code == bitc::ENTER_SUBBLOCK) {
1360 // No known subblocks, always skip them.
1361 Stream.ReadSubBlockID();
1362 if (Stream.SkipBlock())
1363 return Error("Malformed block");
1364 continue;
1365 }
1366
1367 if (Code == bitc::DEFINE_ABBREV) {
1368 Stream.ReadAbbrevRecord();
1369 continue;
1370 }
1371
1372 // Read a record.
1373 Record.clear();
1374 switch (Stream.readRecord(Code, Record)) {
1375 default: // Default behavior: unknown type.
1376 break;
1377 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
1378 if (ConvertToString(Record, 1, ValueName))
1379 return Error("Invalid record");
1380 unsigned ValueID = Record[0];
1381 if (ValueID >= ValueList.size())
1382 return Error("Invalid record");
1383 Value *V = ValueList[ValueID];
1384
1385 V->setName(StringRef(ValueName.data(), ValueName.size()));
1386 ValueName.clear();
1387 break;
1388 }
1389 case bitc::VST_CODE_BBENTRY: {
1390 if (ConvertToString(Record, 1, ValueName))
1391 return Error("Invalid record");
1392 BasicBlock *BB = getBasicBlock(Record[0]);
1393 if (!BB)
1394 return Error("Invalid record");
1395
1396 BB->setName(StringRef(ValueName.data(), ValueName.size()));
1397 ValueName.clear();
1398 break;
1399 }
1400 }
1401 }
1402 }
1403
ParseMetadata()1404 std::error_code BitcodeReader::ParseMetadata() {
1405 unsigned NextMDValueNo = MDValueList.size();
1406
1407 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1408 return Error("Invalid record");
1409
1410 SmallVector<uint64_t, 64> Record;
1411
1412 // Read all the records.
1413 while (1) {
1414 unsigned Code = Stream.ReadCode();
1415 if (Code == bitc::END_BLOCK) {
1416 if (Stream.ReadBlockEnd())
1417 return Error("Malformed block");
1418 return std::error_code();
1419 }
1420
1421 if (Code == bitc::ENTER_SUBBLOCK) {
1422 // No known subblocks, always skip them.
1423 Stream.ReadSubBlockID();
1424 if (Stream.SkipBlock())
1425 return Error("Malformed block");
1426 continue;
1427 }
1428
1429 if (Code == bitc::DEFINE_ABBREV) {
1430 Stream.ReadAbbrevRecord();
1431 continue;
1432 }
1433
1434 bool IsFunctionLocal = false;
1435 // Read a record.
1436 Record.clear();
1437 Code = Stream.readRecord(Code, Record);
1438 switch (Code) {
1439 default: // Default behavior: ignore.
1440 break;
1441 case bitc::METADATA_NAME: {
1442 // Read named of the named metadata.
1443 unsigned NameLength = Record.size();
1444 SmallString<8> Name;
1445 Name.resize(NameLength);
1446 for (unsigned i = 0; i != NameLength; ++i)
1447 Name[i] = Record[i];
1448 Record.clear();
1449 Code = Stream.ReadCode();
1450
1451 // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1452 unsigned NextBitCode = Stream.readRecord(Code, Record);
1453 if (NextBitCode == METADATA_NAMED_NODE_2_7) {
1454 LLVM2_7MetadataDetected = true;
1455 } else if (NextBitCode != bitc::METADATA_NAMED_NODE) {
1456 assert(!"Invalid Named Metadata record."); (void)NextBitCode;
1457 }
1458
1459 // Read named metadata elements.
1460 unsigned Size = Record.size();
1461 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1462 for (unsigned i = 0; i != Size; ++i) {
1463 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1464 if (!MD)
1465 return Error("Invalid record");
1466 NMD->addOperand(MD);
1467 }
1468
1469 if (LLVM2_7MetadataDetected) {
1470 MDValueList.AssignValue(0, NextMDValueNo++);
1471 }
1472 break;
1473 }
1474 case METADATA_FN_NODE_2_7:
1475 case bitc::METADATA_OLD_FN_NODE:
1476 IsFunctionLocal = true;
1477 // fall-through
1478 case METADATA_NODE_2_7:
1479 case bitc::METADATA_OLD_NODE: {
1480 if (Code == METADATA_FN_NODE_2_7 ||
1481 Code == METADATA_NODE_2_7) {
1482 LLVM2_7MetadataDetected = true;
1483 }
1484
1485 if (Record.size() % 2 == 1)
1486 return Error("Invalid record");
1487
1488 unsigned Size = Record.size();
1489 SmallVector<Metadata *, 8> Elts;
1490 for (unsigned i = 0; i != Size; i += 2) {
1491 Type *Ty = getTypeByID(Record[i]);
1492 if (!Ty)
1493 return Error("Invalid record");
1494 if (Ty->isMetadataTy())
1495 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1496 else if (!Ty->isVoidTy()) {
1497 auto *MD =
1498 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1499 assert(isa<ConstantAsMetadata>(MD) &&
1500 "Expected non-function-local metadata");
1501 Elts.push_back(MD);
1502 } else
1503 Elts.push_back(nullptr);
1504 }
1505 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1506 break;
1507 }
1508 case bitc::METADATA_STRING_OLD: {
1509 std::string String(Record.begin(), Record.end());
1510
1511 // Test for upgrading !llvm.loop.
1512 mayBeOldLoopAttachmentTag(String);
1513
1514 Metadata *MD = MDString::get(Context, String);
1515 MDValueList.AssignValue(MD, NextMDValueNo++);
1516 break;
1517 }
1518 case bitc::METADATA_KIND: {
1519 if (Record.size() < 2)
1520 return Error("Invalid record");
1521
1522 unsigned Kind = Record[0];
1523 SmallString<8> Name(Record.begin()+1, Record.end());
1524
1525 unsigned NewKind = TheModule->getMDKindID(Name.str());
1526 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1527 return Error("Conflicting METADATA_KIND records");
1528 break;
1529 }
1530 }
1531 }
1532 }
1533
1534 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1535 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1536 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1537 if ((V & 1) == 0)
1538 return V >> 1;
1539 if (V != 1)
1540 return -(V >> 1);
1541 // There is no such thing as -0 with integers. "-0" really means MININT.
1542 return 1ULL << 63;
1543 }
1544
1545 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1546 // GlobalObject.
1547 static GlobalObject &
getGlobalObjectInExpr(const DenseMap<GlobalAlias *,Constant * > & Map,Constant & C)1548 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1549 Constant &C) {
1550 auto *GO = dyn_cast<GlobalObject>(&C);
1551 if (GO)
1552 return *GO;
1553
1554 auto *GA = dyn_cast<GlobalAlias>(&C);
1555 if (GA)
1556 return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1557
1558 auto &CE = cast<ConstantExpr>(C);
1559 assert(CE.getOpcode() == Instruction::BitCast ||
1560 CE.getOpcode() == Instruction::GetElementPtr ||
1561 CE.getOpcode() == Instruction::AddrSpaceCast);
1562 if (CE.getOpcode() == Instruction::GetElementPtr)
1563 assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1564 return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1565 }
1566
1567 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1568 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1569 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1570 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1571 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1572
1573 GlobalInitWorklist.swap(GlobalInits);
1574 AliasInitWorklist.swap(AliasInits);
1575
1576 while (!GlobalInitWorklist.empty()) {
1577 unsigned ValID = GlobalInitWorklist.back().second;
1578 if (ValID >= ValueList.size()) {
1579 // Not ready to resolve this yet, it requires something later in the file.
1580 GlobalInits.push_back(GlobalInitWorklist.back());
1581 } else {
1582 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1583 GlobalInitWorklist.back().first->setInitializer(C);
1584 else
1585 return Error("Expected a constant");
1586 }
1587 GlobalInitWorklist.pop_back();
1588 }
1589
1590 // FIXME: Delete this in LLVM 4.0
1591 // Older versions of llvm could write an alias pointing to another. We cannot
1592 // construct those aliases, so we first collect an alias to aliasee expression
1593 // and then compute the actual aliasee.
1594 DenseMap<GlobalAlias *, Constant *> AliasInit;
1595
1596 while (!AliasInitWorklist.empty()) {
1597 unsigned ValID = AliasInitWorklist.back().second;
1598 if (ValID >= ValueList.size()) {
1599 AliasInits.push_back(AliasInitWorklist.back());
1600 } else {
1601 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1602 AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1603 else
1604 return Error("Expected a constant");
1605 }
1606 AliasInitWorklist.pop_back();
1607 }
1608
1609 for (auto &Pair : AliasInit) {
1610 auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1611 Pair.first->setAliasee(&GO);
1612 }
1613
1614 return std::error_code();
1615 }
1616
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1617 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1618 SmallVector<uint64_t, 8> Words(Vals.size());
1619 std::transform(Vals.begin(), Vals.end(), Words.begin(),
1620 BitcodeReader::decodeSignRotatedValue);
1621
1622 return APInt(TypeBits, Words);
1623 }
1624
ParseConstants()1625 std::error_code BitcodeReader::ParseConstants() {
1626 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1627 return Error("Invalid record");
1628
1629 SmallVector<uint64_t, 64> Record;
1630
1631 // Read all the records for this value table.
1632 Type *CurTy = Type::getInt32Ty(Context);
1633 unsigned NextCstNo = ValueList.size();
1634 while (1) {
1635 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1636
1637 switch (Entry.Kind) {
1638 case BitstreamEntry::SubBlock: // Handled for us already.
1639 case BitstreamEntry::Error:
1640 return Error("Malformed block");
1641 case BitstreamEntry::EndBlock:
1642 if (NextCstNo != ValueList.size())
1643 return Error("Invalid constant reference");
1644
1645 // Once all the constants have been read, go through and resolve forward
1646 // references.
1647 ValueList.ResolveConstantForwardRefs();
1648 return std::error_code();
1649 case BitstreamEntry::Record:
1650 // The interesting case.
1651 break;
1652 }
1653
1654 // Read a record.
1655 Record.clear();
1656 Value *V = nullptr;
1657 unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1658 switch (BitCode) {
1659 default: // Default behavior: unknown constant
1660 case bitc::CST_CODE_UNDEF: // UNDEF
1661 V = UndefValue::get(CurTy);
1662 break;
1663 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
1664 if (Record.empty())
1665 return Error("Invalid record");
1666 if (Record[0] >= TypeList.size())
1667 return Error("Invalid record");
1668 CurTy = TypeList[Record[0]];
1669 continue; // Skip the ValueList manipulation.
1670 case bitc::CST_CODE_NULL: // NULL
1671 V = Constant::getNullValue(CurTy);
1672 break;
1673 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
1674 if (!CurTy->isIntegerTy() || Record.empty())
1675 return Error("Invalid record");
1676 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1677 break;
1678 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1679 if (!CurTy->isIntegerTy() || Record.empty())
1680 return Error("Invalid record");
1681
1682 APInt VInt = ReadWideAPInt(Record,
1683 cast<IntegerType>(CurTy)->getBitWidth());
1684 V = ConstantInt::get(Context, VInt);
1685
1686 break;
1687 }
1688 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
1689 if (Record.empty())
1690 return Error("Invalid record");
1691 if (CurTy->isHalfTy())
1692 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1693 APInt(16, (uint16_t)Record[0])));
1694 else if (CurTy->isFloatTy())
1695 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1696 APInt(32, (uint32_t)Record[0])));
1697 else if (CurTy->isDoubleTy())
1698 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1699 APInt(64, Record[0])));
1700 else if (CurTy->isX86_FP80Ty()) {
1701 // Bits are not stored the same way as a normal i80 APInt, compensate.
1702 uint64_t Rearrange[2];
1703 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1704 Rearrange[1] = Record[0] >> 48;
1705 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1706 APInt(80, Rearrange)));
1707 } else if (CurTy->isFP128Ty())
1708 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1709 APInt(128, Record)));
1710 else if (CurTy->isPPC_FP128Ty())
1711 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1712 APInt(128, Record)));
1713 else
1714 V = UndefValue::get(CurTy);
1715 break;
1716 }
1717
1718 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1719 if (Record.empty())
1720 return Error("Invalid record");
1721
1722 unsigned Size = Record.size();
1723 SmallVector<Constant*, 16> Elts;
1724
1725 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1726 for (unsigned i = 0; i != Size; ++i)
1727 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1728 STy->getElementType(i)));
1729 V = ConstantStruct::get(STy, Elts);
1730 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1731 Type *EltTy = ATy->getElementType();
1732 for (unsigned i = 0; i != Size; ++i)
1733 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1734 V = ConstantArray::get(ATy, Elts);
1735 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1736 Type *EltTy = VTy->getElementType();
1737 for (unsigned i = 0; i != Size; ++i)
1738 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1739 V = ConstantVector::get(Elts);
1740 } else {
1741 V = UndefValue::get(CurTy);
1742 }
1743 break;
1744 }
1745 case bitc::CST_CODE_STRING: { // STRING: [values]
1746 if (Record.empty())
1747 return Error("Invalid record");
1748
1749 ArrayType *ATy = cast<ArrayType>(CurTy);
1750 Type *EltTy = ATy->getElementType();
1751
1752 unsigned Size = Record.size();
1753 std::vector<Constant*> Elts;
1754 for (unsigned i = 0; i != Size; ++i)
1755 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1756 V = ConstantArray::get(ATy, Elts);
1757 break;
1758 }
1759 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1760 if (Record.empty())
1761 return Error("Invalid record");
1762
1763 ArrayType *ATy = cast<ArrayType>(CurTy);
1764 Type *EltTy = ATy->getElementType();
1765
1766 unsigned Size = Record.size();
1767 std::vector<Constant*> Elts;
1768 for (unsigned i = 0; i != Size; ++i)
1769 Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1770 Elts.push_back(Constant::getNullValue(EltTy));
1771 V = ConstantArray::get(ATy, Elts);
1772 break;
1773 }
1774 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
1775 if (Record.size() < 3)
1776 return Error("Invalid record");
1777 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1778 if (Opc < 0) {
1779 V = UndefValue::get(CurTy); // Unknown binop.
1780 } else {
1781 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1782 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1783 unsigned Flags = 0;
1784 if (Record.size() >= 4) {
1785 if (Opc == Instruction::Add ||
1786 Opc == Instruction::Sub ||
1787 Opc == Instruction::Mul ||
1788 Opc == Instruction::Shl) {
1789 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1790 Flags |= OverflowingBinaryOperator::NoSignedWrap;
1791 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1792 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1793 } else if (Opc == Instruction::SDiv ||
1794 Opc == Instruction::UDiv ||
1795 Opc == Instruction::LShr ||
1796 Opc == Instruction::AShr) {
1797 if (Record[3] & (1 << bitc::PEO_EXACT))
1798 Flags |= SDivOperator::IsExact;
1799 }
1800 }
1801 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1802 }
1803 break;
1804 }
1805 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
1806 if (Record.size() < 3)
1807 return Error("Invalid record");
1808 int Opc = GetDecodedCastOpcode(Record[0]);
1809 if (Opc < 0) {
1810 V = UndefValue::get(CurTy); // Unknown cast.
1811 } else {
1812 Type *OpTy = getTypeByID(Record[1]);
1813 if (!OpTy)
1814 return Error("Invalid record");
1815 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1816 V = ConstantExpr::getCast(Opc, Op, CurTy);
1817 }
1818 break;
1819 }
1820 case bitc::CST_CODE_CE_INBOUNDS_GEP:
1821 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
1822 Type *PointeeType = nullptr;
1823 if (Record.size() & 1)
1824 return Error("Invalid record");
1825 SmallVector<Constant*, 16> Elts;
1826 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1827 Type *ElTy = getTypeByID(Record[i]);
1828 if (!ElTy)
1829 return Error("Invalid record");
1830 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1831 }
1832 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1833 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
1834 BitCode ==
1835 bitc::CST_CODE_CE_INBOUNDS_GEP);
1836 break;
1837 }
1838 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
1839 if (Record.size() < 3)
1840 return Error("Invalid record");
1841 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1842 Type::getInt1Ty(Context)),
1843 ValueList.getConstantFwdRef(Record[1],CurTy),
1844 ValueList.getConstantFwdRef(Record[2],CurTy));
1845 break;
1846 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1847 if (Record.size() < 3)
1848 return Error("Invalid record");
1849 VectorType *OpTy =
1850 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1851 if (!OpTy)
1852 return Error("Invalid record");
1853 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1854 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1855 V = ConstantExpr::getExtractElement(Op0, Op1);
1856 break;
1857 }
1858 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1859 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1860 if (Record.size() < 3 || !OpTy)
1861 return Error("Invalid record");
1862 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1863 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1864 OpTy->getElementType());
1865 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1866 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1867 break;
1868 }
1869 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1870 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1871 if (Record.size() < 3 || !OpTy)
1872 return Error("Invalid record");
1873 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1874 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1875 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1876 OpTy->getNumElements());
1877 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1878 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1879 break;
1880 }
1881 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1882 VectorType *RTy = dyn_cast<VectorType>(CurTy);
1883 VectorType *OpTy =
1884 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1885 if (Record.size() < 4 || !RTy || !OpTy)
1886 return Error("Invalid record");
1887 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1888 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1889 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1890 RTy->getNumElements());
1891 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1892 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1893 break;
1894 }
1895 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
1896 if (Record.size() < 4)
1897 return Error("Invalid record");
1898 Type *OpTy = getTypeByID(Record[0]);
1899 if (!OpTy)
1900 return Error("Invalid record");
1901 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1902 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1903
1904 if (OpTy->isFPOrFPVectorTy())
1905 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1906 else
1907 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1908 break;
1909 }
1910 case bitc::CST_CODE_INLINEASM:
1911 case bitc::CST_CODE_INLINEASM_OLD: {
1912 if (Record.size() < 2)
1913 return Error("Invalid record");
1914 std::string AsmStr, ConstrStr;
1915 bool HasSideEffects = Record[0] & 1;
1916 bool IsAlignStack = Record[0] >> 1;
1917 unsigned AsmStrSize = Record[1];
1918 if (2+AsmStrSize >= Record.size())
1919 return Error("Invalid record");
1920 unsigned ConstStrSize = Record[2+AsmStrSize];
1921 if (3+AsmStrSize+ConstStrSize > Record.size())
1922 return Error("Invalid record");
1923
1924 for (unsigned i = 0; i != AsmStrSize; ++i)
1925 AsmStr += (char)Record[2+i];
1926 for (unsigned i = 0; i != ConstStrSize; ++i)
1927 ConstrStr += (char)Record[3+AsmStrSize+i];
1928 PointerType *PTy = cast<PointerType>(CurTy);
1929 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1930 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1931 break;
1932 }
1933 case bitc::CST_CODE_BLOCKADDRESS:{
1934 if (Record.size() < 3)
1935 return Error("Invalid record");
1936 Type *FnTy = getTypeByID(Record[0]);
1937 if (!FnTy)
1938 return Error("Invalid record");
1939 Function *Fn =
1940 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1941 if (!Fn)
1942 return Error("Invalid record");
1943
1944 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1945 Type::getInt8Ty(Context),
1946 false, GlobalValue::InternalLinkage,
1947 0, "");
1948 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1949 V = FwdRef;
1950 break;
1951 }
1952 }
1953
1954 ValueList.AssignValue(V, NextCstNo);
1955 ++NextCstNo;
1956 }
1957
1958 if (NextCstNo != ValueList.size())
1959 return Error("Invalid constant reference");
1960
1961 if (Stream.ReadBlockEnd())
1962 return Error("Expected a constant");
1963
1964 // Once all the constants have been read, go through and resolve forward
1965 // references.
1966 ValueList.ResolveConstantForwardRefs();
1967 return std::error_code();
1968 }
1969
materializeMetadata()1970 std::error_code BitcodeReader::materializeMetadata() {
1971 return std::error_code();
1972 }
1973
setStripDebugInfo()1974 void BitcodeReader::setStripDebugInfo() { }
1975
1976 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1977 /// remember where it is and then skip it. This lets us lazily deserialize the
1978 /// functions.
RememberAndSkipFunctionBody()1979 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1980 // Get the function we are talking about.
1981 if (FunctionsWithBodies.empty())
1982 return Error("Insufficient function protos");
1983
1984 Function *Fn = FunctionsWithBodies.back();
1985 FunctionsWithBodies.pop_back();
1986
1987 // Save the current stream state.
1988 uint64_t CurBit = Stream.GetCurrentBitNo();
1989 DeferredFunctionInfo[Fn] = CurBit;
1990
1991 // Skip over the function block for now.
1992 if (Stream.SkipBlock())
1993 return Error("Invalid record");
1994 return std::error_code();
1995 }
1996
GlobalCleanup()1997 std::error_code BitcodeReader::GlobalCleanup() {
1998 // Patch the initializers for globals and aliases up.
1999 ResolveGlobalAndAliasInits();
2000 if (!GlobalInits.empty() || !AliasInits.empty())
2001 return Error("Malformed global initializer set");
2002
2003 // Look for intrinsic functions which need to be upgraded at some point
2004 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2005 FI != FE; ++FI) {
2006 Function *NewFn;
2007 if (UpgradeIntrinsicFunction(&*FI, NewFn))
2008 UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2009 }
2010
2011 // Look for global variables which need to be renamed.
2012 for (Module::global_iterator
2013 GI = TheModule->global_begin(), GE = TheModule->global_end();
2014 GI != GE; GI++) {
2015 GlobalVariable *GV = &*GI;
2016 UpgradeGlobalVariable(&*GV);
2017 }
2018
2019 // Force deallocation of memory for these vectors to favor the client that
2020 // want lazy deserialization.
2021 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2022 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2023 return std::error_code();
2024 }
2025
ParseModule(bool Resume)2026 std::error_code BitcodeReader::ParseModule(bool Resume) {
2027 if (Resume)
2028 Stream.JumpToBit(NextUnreadBit);
2029 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2030 return Error("Invalid record");
2031
2032 SmallVector<uint64_t, 64> Record;
2033 std::vector<std::string> SectionTable;
2034 std::vector<std::string> GCTable;
2035
2036 // Read all the records for this module.
2037 while (!Stream.AtEndOfStream()) {
2038 unsigned Code = Stream.ReadCode();
2039 if (Code == bitc::END_BLOCK) {
2040 if (Stream.ReadBlockEnd())
2041 return Error("Malformed block");
2042
2043 // Patch the initializers for globals and aliases up.
2044 ResolveGlobalAndAliasInits();
2045 if (!GlobalInits.empty() || !AliasInits.empty())
2046 return Error("Malformed global initializer set");
2047 if (!FunctionsWithBodies.empty())
2048 return Error("Insufficient function protos");
2049
2050 // Look for intrinsic functions which need to be upgraded at some point
2051 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2052 FI != FE; ++FI) {
2053 Function* NewFn;
2054 if (UpgradeIntrinsicFunction(&*FI, NewFn))
2055 UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2056 }
2057
2058 // Look for global variables which need to be renamed.
2059 for (Module::global_iterator
2060 GI = TheModule->global_begin(), GE = TheModule->global_end();
2061 GI != GE; ++GI)
2062 UpgradeGlobalVariable(&*GI);
2063
2064 // Force deallocation of memory for these vectors to favor the client that
2065 // want lazy deserialization.
2066 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2067 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2068 std::vector<Function*>().swap(FunctionsWithBodies);
2069 return std::error_code();
2070 }
2071
2072 if (Code == bitc::ENTER_SUBBLOCK) {
2073 switch (Stream.ReadSubBlockID()) {
2074 default: // Skip unknown content.
2075 if (Stream.SkipBlock())
2076 return Error("Invalid record");
2077 break;
2078 case bitc::BLOCKINFO_BLOCK_ID:
2079 if (Stream.ReadBlockInfoBlock())
2080 return Error("Malformed block");
2081 break;
2082 case bitc::PARAMATTR_BLOCK_ID:
2083 if (std::error_code EC = ParseAttributeBlock())
2084 return EC;
2085 break;
2086 case bitc::TYPE_BLOCK_ID_NEW:
2087 if (std::error_code EC = ParseTypeTable())
2088 return EC;
2089 break;
2090 case TYPE_BLOCK_ID_OLD_3_0:
2091 if (std::error_code EC = ParseOldTypeTable())
2092 return EC;
2093 break;
2094 case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2095 if (std::error_code EC = ParseOldTypeSymbolTable())
2096 return EC;
2097 break;
2098 case bitc::VALUE_SYMTAB_BLOCK_ID:
2099 if (std::error_code EC = ParseValueSymbolTable())
2100 return EC;
2101 SeenValueSymbolTable = true;
2102 break;
2103 case bitc::CONSTANTS_BLOCK_ID:
2104 if (std::error_code EC = ParseConstants())
2105 return EC;
2106 if (std::error_code EC = ResolveGlobalAndAliasInits())
2107 return EC;
2108 break;
2109 case bitc::METADATA_BLOCK_ID:
2110 if (std::error_code EC = ParseMetadata())
2111 return EC;
2112 break;
2113 case bitc::FUNCTION_BLOCK_ID:
2114 // If this is the first function body we've seen, reverse the
2115 // FunctionsWithBodies list.
2116 if (!SeenFirstFunctionBody) {
2117 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2118 if (std::error_code EC = GlobalCleanup())
2119 return EC;
2120 SeenFirstFunctionBody = true;
2121 }
2122
2123 if (std::error_code EC = RememberAndSkipFunctionBody())
2124 return EC;
2125 // For streaming bitcode, suspend parsing when we reach the function
2126 // bodies. Subsequent materialization calls will resume it when
2127 // necessary. For streaming, the function bodies must be at the end of
2128 // the bitcode. If the bitcode file is old, the symbol table will be
2129 // at the end instead and will not have been seen yet. In this case,
2130 // just finish the parse now.
2131 if (LazyStreamer && SeenValueSymbolTable) {
2132 NextUnreadBit = Stream.GetCurrentBitNo();
2133 return std::error_code();
2134 }
2135 break;
2136 break;
2137 }
2138 continue;
2139 }
2140
2141 if (Code == bitc::DEFINE_ABBREV) {
2142 Stream.ReadAbbrevRecord();
2143 continue;
2144 }
2145
2146 // Read a record.
2147 switch (Stream.readRecord(Code, Record)) {
2148 default: break; // Default behavior, ignore unknown content.
2149 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
2150 if (Record.size() < 1)
2151 return Error("Invalid record");
2152 // Only version #0 is supported so far.
2153 if (Record[0] != 0)
2154 return Error("Invalid value");
2155 break;
2156 }
2157 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
2158 std::string S;
2159 if (ConvertToString(Record, 0, S))
2160 return Error("Invalid record");
2161 TheModule->setTargetTriple(S);
2162 break;
2163 }
2164 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
2165 std::string S;
2166 if (ConvertToString(Record, 0, S))
2167 return Error("Invalid record");
2168 TheModule->setDataLayout(S);
2169 break;
2170 }
2171 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
2172 std::string S;
2173 if (ConvertToString(Record, 0, S))
2174 return Error("Invalid record");
2175 TheModule->setModuleInlineAsm(S);
2176 break;
2177 }
2178 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
2179 std::string S;
2180 if (ConvertToString(Record, 0, S))
2181 return Error("Invalid record");
2182 // ANDROID: Ignore value, since we never used it anyways.
2183 // TheModule->addLibrary(S);
2184 break;
2185 }
2186 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
2187 std::string S;
2188 if (ConvertToString(Record, 0, S))
2189 return Error("Invalid record");
2190 SectionTable.push_back(S);
2191 break;
2192 }
2193 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
2194 std::string S;
2195 if (ConvertToString(Record, 0, S))
2196 return Error("Invalid record");
2197 GCTable.push_back(S);
2198 break;
2199 }
2200 // GLOBALVAR: [pointer type, isconst, initid,
2201 // linkage, alignment, section, visibility, threadlocal,
2202 // unnamed_addr]
2203 case bitc::MODULE_CODE_GLOBALVAR: {
2204 if (Record.size() < 6)
2205 return Error("Invalid record");
2206 Type *Ty = getTypeByID(Record[0]);
2207 if (!Ty)
2208 return Error("Invalid record");
2209 if (!Ty->isPointerTy())
2210 return Error("Invalid type for value");
2211 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2212 Ty = cast<PointerType>(Ty)->getElementType();
2213
2214 bool isConstant = Record[1];
2215 uint64_t RawLinkage = Record[3];
2216 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2217 unsigned Alignment = (1 << Record[4]) >> 1;
2218 std::string Section;
2219 if (Record[5]) {
2220 if (Record[5]-1 >= SectionTable.size())
2221 return Error("Invalid ID");
2222 Section = SectionTable[Record[5]-1];
2223 }
2224 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2225 if (Record.size() > 6)
2226 Visibility = GetDecodedVisibility(Record[6]);
2227
2228 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2229 if (Record.size() > 7)
2230 TLM = GetDecodedThreadLocalMode(Record[7]);
2231
2232 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2233 if (Record.size() > 8)
2234 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2235
2236 GlobalVariable *NewGV =
2237 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2238 TLM, AddressSpace);
2239 NewGV->setAlignment(Alignment);
2240 if (!Section.empty())
2241 NewGV->setSection(Section);
2242 NewGV->setVisibility(Visibility);
2243 NewGV->setUnnamedAddr(UnnamedAddr);
2244
2245 ValueList.push_back(NewGV);
2246
2247 // Remember which value to use for the global initializer.
2248 if (unsigned InitID = Record[2])
2249 GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2250 break;
2251 }
2252 // FUNCTION: [type, callingconv, isproto, linkage, paramattr,
2253 // alignment, section, visibility, gc, unnamed_addr]
2254 case bitc::MODULE_CODE_FUNCTION: {
2255 if (Record.size() < 8)
2256 return Error("Invalid record");
2257 Type *Ty = getTypeByID(Record[0]);
2258 if (!Ty)
2259 return Error("Invalid record");
2260 if (!Ty->isPointerTy())
2261 return Error("Invalid type for value");
2262 FunctionType *FTy =
2263 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2264 if (!FTy)
2265 return Error("Invalid type for value");
2266
2267 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2268 "", TheModule);
2269
2270 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2271 bool isProto = Record[2];
2272 uint64_t RawLinkage = Record[3];
2273 Func->setLinkage(getDecodedLinkage(RawLinkage));
2274 Func->setAttributes(getAttributes(Record[4]));
2275
2276 Func->setAlignment((1 << Record[5]) >> 1);
2277 if (Record[6]) {
2278 if (Record[6]-1 >= SectionTable.size())
2279 return Error("Invalid ID");
2280 Func->setSection(SectionTable[Record[6]-1]);
2281 }
2282 Func->setVisibility(GetDecodedVisibility(Record[7]));
2283 if (Record.size() > 8 && Record[8]) {
2284 if (Record[8]-1 > GCTable.size())
2285 return Error("Invalid ID");
2286 Func->setGC(GCTable[Record[8]-1].c_str());
2287 }
2288 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2289 if (Record.size() > 9)
2290 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2291 Func->setUnnamedAddr(UnnamedAddr);
2292 ValueList.push_back(Func);
2293
2294 // If this is a function with a body, remember the prototype we are
2295 // creating now, so that we can match up the body with them later.
2296 if (!isProto) {
2297 Func->setIsMaterializable(true);
2298 FunctionsWithBodies.push_back(Func);
2299 if (LazyStreamer)
2300 DeferredFunctionInfo[Func] = 0;
2301 }
2302 break;
2303 }
2304 // ALIAS: [alias type, aliasee val#, linkage]
2305 // ALIAS: [alias type, aliasee val#, linkage, visibility]
2306 case bitc::MODULE_CODE_ALIAS_OLD: {
2307 if (Record.size() < 3)
2308 return Error("Invalid record");
2309 Type *Ty = getTypeByID(Record[0]);
2310 if (!Ty)
2311 return Error("Invalid record");
2312 auto *PTy = dyn_cast<PointerType>(Ty);
2313 if (!PTy)
2314 return Error("Invalid type for value");
2315
2316 auto *NewGA =
2317 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2318 getDecodedLinkage(Record[2]), "", TheModule);
2319 // Old bitcode files didn't have visibility field.
2320 if (Record.size() > 3)
2321 NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2322 ValueList.push_back(NewGA);
2323 AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2324 break;
2325 }
2326 /// MODULE_CODE_PURGEVALS: [numvals]
2327 case bitc::MODULE_CODE_PURGEVALS:
2328 // Trim down the value list to the specified size.
2329 if (Record.size() < 1 || Record[0] > ValueList.size())
2330 return Error("Invalid record");
2331 ValueList.shrinkTo(Record[0]);
2332 break;
2333 }
2334 Record.clear();
2335 }
2336
2337 return Error("Invalid bitcode signature");
2338 }
2339
ParseBitcodeInto(Module * M)2340 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2341 TheModule = nullptr;
2342
2343 if (std::error_code EC = InitStream())
2344 return EC;
2345
2346 // Sniff for the signature.
2347 if (Stream.Read(8) != 'B' ||
2348 Stream.Read(8) != 'C' ||
2349 Stream.Read(4) != 0x0 ||
2350 Stream.Read(4) != 0xC ||
2351 Stream.Read(4) != 0xE ||
2352 Stream.Read(4) != 0xD)
2353 return Error("Invalid bitcode signature");
2354
2355 // We expect a number of well-defined blocks, though we don't necessarily
2356 // need to understand them all.
2357 while (1) {
2358 if (Stream.AtEndOfStream())
2359 return std::error_code();
2360
2361 BitstreamEntry Entry =
2362 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2363
2364 switch (Entry.Kind) {
2365 case BitstreamEntry::Error:
2366 return Error("Malformed block");
2367 case BitstreamEntry::EndBlock:
2368 return std::error_code();
2369
2370 case BitstreamEntry::SubBlock:
2371 switch (Entry.ID) {
2372 case bitc::BLOCKINFO_BLOCK_ID:
2373 if (Stream.ReadBlockInfoBlock())
2374 return Error("Malformed block");
2375 break;
2376 case bitc::MODULE_BLOCK_ID:
2377 // Reject multiple MODULE_BLOCK's in a single bitstream.
2378 if (TheModule)
2379 return Error("Invalid multiple blocks");
2380 TheModule = M;
2381 if (std::error_code EC = ParseModule(false))
2382 return EC;
2383 if (LazyStreamer)
2384 return std::error_code();
2385 break;
2386 default:
2387 if (Stream.SkipBlock())
2388 return Error("Invalid record");
2389 break;
2390 }
2391 continue;
2392 case BitstreamEntry::Record:
2393 // There should be no records in the top-level of blocks.
2394
2395 // The ranlib in Xcode 4 will align archive members by appending newlines
2396 // to the end of them. If this file size is a multiple of 4 but not 8, we
2397 // have to read and ignore these final 4 bytes :-(
2398 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2399 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2400 Stream.AtEndOfStream())
2401 return std::error_code();
2402
2403 return Error("Invalid record");
2404 }
2405 }
2406 }
2407
parseModuleTriple()2408 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2409 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2410 return Error("Invalid record");
2411
2412 SmallVector<uint64_t, 64> Record;
2413
2414 std::string Triple;
2415 // Read all the records for this module.
2416 while (1) {
2417 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2418
2419 switch (Entry.Kind) {
2420 case BitstreamEntry::SubBlock: // Handled for us already.
2421 case BitstreamEntry::Error:
2422 return Error("Malformed block");
2423 case BitstreamEntry::EndBlock:
2424 return Triple;
2425 case BitstreamEntry::Record:
2426 // The interesting case.
2427 break;
2428 }
2429
2430 // Read a record.
2431 switch (Stream.readRecord(Entry.ID, Record)) {
2432 default: break; // Default behavior, ignore unknown content.
2433 case bitc::MODULE_CODE_VERSION: // VERSION: [version#]
2434 if (Record.size() < 1)
2435 return Error("Invalid record");
2436 // Only version #0 is supported so far.
2437 if (Record[0] != 0)
2438 return Error("Invalid record");
2439 break;
2440 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
2441 std::string S;
2442 if (ConvertToString(Record, 0, S))
2443 return Error("Invalid record");
2444 Triple = S;
2445 break;
2446 }
2447 }
2448 Record.clear();
2449 }
2450
2451 return Error("Invalid bitcode signature");
2452 }
2453
parseTriple()2454 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2455 if (std::error_code EC = InitStream())
2456 return EC;
2457
2458 // Sniff for the signature.
2459 if (Stream.Read(8) != 'B' ||
2460 Stream.Read(8) != 'C' ||
2461 Stream.Read(4) != 0x0 ||
2462 Stream.Read(4) != 0xC ||
2463 Stream.Read(4) != 0xE ||
2464 Stream.Read(4) != 0xD)
2465 return Error("Invalid bitcode signature");
2466
2467 // We expect a number of well-defined blocks, though we don't necessarily
2468 // need to understand them all.
2469 while (1) {
2470 BitstreamEntry Entry = Stream.advance();
2471
2472 switch (Entry.Kind) {
2473 case BitstreamEntry::Error:
2474 return Error("Malformed block");
2475 case BitstreamEntry::EndBlock:
2476 return std::error_code();
2477
2478 case BitstreamEntry::SubBlock:
2479 if (Entry.ID == bitc::MODULE_BLOCK_ID)
2480 return parseModuleTriple();
2481
2482 // Ignore other sub-blocks.
2483 if (Stream.SkipBlock())
2484 return Error("Malformed block");
2485 continue;
2486
2487 case BitstreamEntry::Record:
2488 Stream.skipRecord(Entry.ID);
2489 continue;
2490 }
2491 }
2492 }
2493
2494 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2495 std::error_code BitcodeReader::ParseMetadataAttachment() {
2496 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2497 return Error("Invalid record");
2498
2499 SmallVector<uint64_t, 64> Record;
2500 while (1) {
2501 BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2502
2503 switch (Entry.Kind) {
2504 case BitstreamEntry::SubBlock: // Handled for us already.
2505 case BitstreamEntry::Error:
2506 return Error("Malformed block");
2507 case BitstreamEntry::EndBlock:
2508 return std::error_code();
2509 case BitstreamEntry::Record:
2510 // The interesting case.
2511 break;
2512 }
2513
2514 // Read a metadata attachment record.
2515 Record.clear();
2516 switch (Stream.readRecord(Entry.ID, Record)) {
2517 default: // Default behavior: ignore.
2518 break;
2519 case METADATA_ATTACHMENT_2_7:
2520 LLVM2_7MetadataDetected = true;
2521 case bitc::METADATA_ATTACHMENT: {
2522 unsigned RecordLength = Record.size();
2523 if (Record.empty() || (RecordLength - 1) % 2 == 1)
2524 return Error("Invalid record");
2525 Instruction *Inst = InstructionList[Record[0]];
2526 for (unsigned i = 1; i != RecordLength; i = i+2) {
2527 unsigned Kind = Record[i];
2528 DenseMap<unsigned, unsigned>::iterator I =
2529 MDKindMap.find(Kind);
2530 if (I == MDKindMap.end())
2531 return Error("Invalid ID");
2532 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2533 Inst->setMetadata(I->second, cast<MDNode>(Node));
2534 }
2535 break;
2536 }
2537 }
2538 }
2539 }
2540
2541 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2542 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2543 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2544 return Error("Invalid record");
2545
2546 InstructionList.clear();
2547 unsigned ModuleValueListSize = ValueList.size();
2548 unsigned ModuleMDValueListSize = MDValueList.size();
2549
2550 // Add all the function arguments to the value table.
2551 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2552 ValueList.push_back(&*I);
2553
2554 unsigned NextValueNo = ValueList.size();
2555 BasicBlock *CurBB = nullptr;
2556 unsigned CurBBNo = 0;
2557
2558 DebugLoc LastLoc;
2559
2560 // Read all the records.
2561 SmallVector<uint64_t, 64> Record;
2562 while (1) {
2563 unsigned Code = Stream.ReadCode();
2564 if (Code == bitc::END_BLOCK) {
2565 if (Stream.ReadBlockEnd())
2566 return Error("Malformed block");
2567 break;
2568 }
2569
2570 if (Code == bitc::ENTER_SUBBLOCK) {
2571 switch (Stream.ReadSubBlockID()) {
2572 default: // Skip unknown content.
2573 if (Stream.SkipBlock())
2574 return Error("Invalid record");
2575 break;
2576 case bitc::CONSTANTS_BLOCK_ID:
2577 if (std::error_code EC = ParseConstants())
2578 return EC;
2579 NextValueNo = ValueList.size();
2580 break;
2581 case bitc::VALUE_SYMTAB_BLOCK_ID:
2582 if (std::error_code EC = ParseValueSymbolTable())
2583 return EC;
2584 break;
2585 case bitc::METADATA_ATTACHMENT_ID:
2586 if (std::error_code EC = ParseMetadataAttachment())
2587 return EC;
2588 break;
2589 case bitc::METADATA_BLOCK_ID:
2590 if (std::error_code EC = ParseMetadata())
2591 return EC;
2592 break;
2593 }
2594 continue;
2595 }
2596
2597 if (Code == bitc::DEFINE_ABBREV) {
2598 Stream.ReadAbbrevRecord();
2599 continue;
2600 }
2601
2602 // Read a record.
2603 Record.clear();
2604 Instruction *I = nullptr;
2605 unsigned BitCode = Stream.readRecord(Code, Record);
2606 switch (BitCode) {
2607 default: // Default behavior: reject
2608 return Error("Invalid value");
2609 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
2610 if (Record.size() < 1 || Record[0] == 0)
2611 return Error("Invalid record");
2612 // Create all the basic blocks for the function.
2613 FunctionBBs.resize(Record[0]);
2614 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2615 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2616 CurBB = FunctionBBs[0];
2617 continue;
2618
2619 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
2620 // This record indicates that the last instruction is at the same
2621 // location as the previous instruction with a location.
2622 I = nullptr;
2623
2624 // Get the last instruction emitted.
2625 if (CurBB && !CurBB->empty())
2626 I = &CurBB->back();
2627 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2628 !FunctionBBs[CurBBNo-1]->empty())
2629 I = &FunctionBBs[CurBBNo-1]->back();
2630
2631 if (!I)
2632 return Error("Invalid record");
2633 I->setDebugLoc(LastLoc);
2634 I = nullptr;
2635 continue;
2636
2637 case FUNC_CODE_DEBUG_LOC_2_7:
2638 LLVM2_7MetadataDetected = true;
2639 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
2640 I = nullptr; // Get the last instruction emitted.
2641 if (CurBB && !CurBB->empty())
2642 I = &CurBB->back();
2643 else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2644 !FunctionBBs[CurBBNo-1]->empty())
2645 I = &FunctionBBs[CurBBNo-1]->back();
2646 if (!I || Record.size() < 4)
2647 return Error("Invalid record");
2648
2649 unsigned Line = Record[0], Col = Record[1];
2650 unsigned ScopeID = Record[2], IAID = Record[3];
2651
2652 MDNode *Scope = nullptr, *IA = nullptr;
2653 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2654 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2655 LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2656 I->setDebugLoc(LastLoc);
2657 I = nullptr;
2658 continue;
2659 }
2660
2661 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
2662 unsigned OpNum = 0;
2663 Value *LHS, *RHS;
2664 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2665 getValue(Record, OpNum, LHS->getType(), RHS) ||
2666 OpNum+1 > Record.size())
2667 return Error("Invalid record");
2668
2669 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2670 if (Opc == -1)
2671 return Error("Invalid record");
2672 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2673 InstructionList.push_back(I);
2674 if (OpNum < Record.size()) {
2675 if (Opc == Instruction::Add ||
2676 Opc == Instruction::Sub ||
2677 Opc == Instruction::Mul ||
2678 Opc == Instruction::Shl) {
2679 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2680 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2681 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2682 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2683 } else if (Opc == Instruction::SDiv ||
2684 Opc == Instruction::UDiv ||
2685 Opc == Instruction::LShr ||
2686 Opc == Instruction::AShr) {
2687 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2688 cast<BinaryOperator>(I)->setIsExact(true);
2689 }
2690 }
2691 break;
2692 }
2693 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
2694 unsigned OpNum = 0;
2695 Value *Op;
2696 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2697 OpNum+2 != Record.size())
2698 return Error("Invalid record");
2699
2700 Type *ResTy = getTypeByID(Record[OpNum]);
2701 int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2702 if (Opc == -1 || !ResTy)
2703 return Error("Invalid record");
2704 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2705 InstructionList.push_back(I);
2706 break;
2707 }
2708 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2709 case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2710 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2711 unsigned OpNum = 0;
2712
2713 Type *Ty;
2714 bool InBounds;
2715
2716 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2717 InBounds = Record[OpNum++];
2718 Ty = getTypeByID(Record[OpNum++]);
2719 } else {
2720 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2721 Ty = nullptr;
2722 }
2723
2724 Value *BasePtr;
2725 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2726 return Error("Invalid record");
2727
2728 if (Ty &&
2729 Ty !=
2730 cast<SequentialType>(BasePtr->getType()->getScalarType())
2731 ->getElementType())
2732 return Error(
2733 "Explicit gep type does not match pointee type of pointer operand");
2734
2735 SmallVector<Value*, 16> GEPIdx;
2736 while (OpNum != Record.size()) {
2737 Value *Op;
2738 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2739 return Error("Invalid record");
2740 GEPIdx.push_back(Op);
2741 }
2742
2743 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
2744
2745 InstructionList.push_back(I);
2746 if (InBounds)
2747 cast<GetElementPtrInst>(I)->setIsInBounds(true);
2748 break;
2749 }
2750
2751 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2752 // EXTRACTVAL: [opty, opval, n x indices]
2753 unsigned OpNum = 0;
2754 Value *Agg;
2755 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2756 return Error("Invalid record");
2757
2758 SmallVector<unsigned, 4> EXTRACTVALIdx;
2759 for (unsigned RecSize = Record.size();
2760 OpNum != RecSize; ++OpNum) {
2761 uint64_t Index = Record[OpNum];
2762 if ((unsigned)Index != Index)
2763 return Error("Invalid value");
2764 EXTRACTVALIdx.push_back((unsigned)Index);
2765 }
2766
2767 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2768 InstructionList.push_back(I);
2769 break;
2770 }
2771
2772 case bitc::FUNC_CODE_INST_INSERTVAL: {
2773 // INSERTVAL: [opty, opval, opty, opval, n x indices]
2774 unsigned OpNum = 0;
2775 Value *Agg;
2776 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2777 return Error("Invalid record");
2778 Value *Val;
2779 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2780 return Error("Invalid record");
2781
2782 SmallVector<unsigned, 4> INSERTVALIdx;
2783 for (unsigned RecSize = Record.size();
2784 OpNum != RecSize; ++OpNum) {
2785 uint64_t Index = Record[OpNum];
2786 if ((unsigned)Index != Index)
2787 return Error("Invalid value");
2788 INSERTVALIdx.push_back((unsigned)Index);
2789 }
2790
2791 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2792 InstructionList.push_back(I);
2793 break;
2794 }
2795
2796 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2797 // obsolete form of select
2798 // handles select i1 ... in old bitcode
2799 unsigned OpNum = 0;
2800 Value *TrueVal, *FalseVal, *Cond;
2801 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2802 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2803 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2804 return Error("Invalid record");
2805
2806 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2807 InstructionList.push_back(I);
2808 break;
2809 }
2810
2811 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2812 // new form of select
2813 // handles select i1 or select [N x i1]
2814 unsigned OpNum = 0;
2815 Value *TrueVal, *FalseVal, *Cond;
2816 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2817 getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2818 getValueTypePair(Record, OpNum, NextValueNo, Cond))
2819 return Error("Invalid record");
2820
2821 // select condition can be either i1 or [N x i1]
2822 if (VectorType* vector_type =
2823 dyn_cast<VectorType>(Cond->getType())) {
2824 // expect <n x i1>
2825 if (vector_type->getElementType() != Type::getInt1Ty(Context))
2826 return Error("Invalid type for value");
2827 } else {
2828 // expect i1
2829 if (Cond->getType() != Type::getInt1Ty(Context))
2830 return Error("Invalid type for value");
2831 }
2832
2833 I = SelectInst::Create(Cond, TrueVal, FalseVal);
2834 InstructionList.push_back(I);
2835 break;
2836 }
2837
2838 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2839 unsigned OpNum = 0;
2840 Value *Vec, *Idx;
2841 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2842 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2843 return Error("Invalid record");
2844 I = ExtractElementInst::Create(Vec, Idx);
2845 InstructionList.push_back(I);
2846 break;
2847 }
2848
2849 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2850 unsigned OpNum = 0;
2851 Value *Vec, *Elt, *Idx;
2852 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2853 getValue(Record, OpNum,
2854 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2855 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2856 return Error("Invalid record");
2857 I = InsertElementInst::Create(Vec, Elt, Idx);
2858 InstructionList.push_back(I);
2859 break;
2860 }
2861
2862 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2863 unsigned OpNum = 0;
2864 Value *Vec1, *Vec2, *Mask;
2865 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2866 getValue(Record, OpNum, Vec1->getType(), Vec2))
2867 return Error("Invalid record");
2868
2869 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2870 return Error("Invalid record");
2871 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2872 InstructionList.push_back(I);
2873 break;
2874 }
2875
2876 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
2877 // Old form of ICmp/FCmp returning bool
2878 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2879 // both legal on vectors but had different behaviour.
2880 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2881 // FCmp/ICmp returning bool or vector of bool
2882
2883 unsigned OpNum = 0;
2884 Value *LHS, *RHS;
2885 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2886 getValue(Record, OpNum, LHS->getType(), RHS) ||
2887 OpNum+1 != Record.size())
2888 return Error("Invalid record");
2889
2890 if (LHS->getType()->isFPOrFPVectorTy())
2891 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2892 else
2893 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2894 InstructionList.push_back(I);
2895 break;
2896 }
2897
2898 case FUNC_CODE_INST_GETRESULT_2_7: {
2899 if (Record.size() != 2) {
2900 return Error("Invalid record");
2901 }
2902 unsigned OpNum = 0;
2903 Value *Op;
2904 getValueTypePair(Record, OpNum, NextValueNo, Op);
2905 unsigned Index = Record[1];
2906 I = ExtractValueInst::Create(Op, Index);
2907 InstructionList.push_back(I);
2908 break;
2909 }
2910
2911 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2912 {
2913 unsigned Size = Record.size();
2914 if (Size == 0) {
2915 I = ReturnInst::Create(Context);
2916 InstructionList.push_back(I);
2917 break;
2918 }
2919
2920 unsigned OpNum = 0;
2921 Value *Op = nullptr;
2922 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2923 return Error("Invalid record");
2924 if (OpNum != Record.size())
2925 return Error("Invalid record");
2926
2927 I = ReturnInst::Create(Context, Op);
2928 InstructionList.push_back(I);
2929 break;
2930 }
2931 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2932 if (Record.size() != 1 && Record.size() != 3)
2933 return Error("Invalid record");
2934 BasicBlock *TrueDest = getBasicBlock(Record[0]);
2935 if (!TrueDest)
2936 return Error("Invalid record");
2937
2938 if (Record.size() == 1) {
2939 I = BranchInst::Create(TrueDest);
2940 InstructionList.push_back(I);
2941 }
2942 else {
2943 BasicBlock *FalseDest = getBasicBlock(Record[1]);
2944 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2945 if (!FalseDest || !Cond)
2946 return Error("Invalid record");
2947 I = BranchInst::Create(TrueDest, FalseDest, Cond);
2948 InstructionList.push_back(I);
2949 }
2950 break;
2951 }
2952 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2953 if (Record.size() < 3 || (Record.size() & 1) == 0)
2954 return Error("Invalid record");
2955 Type *OpTy = getTypeByID(Record[0]);
2956 Value *Cond = getFnValueByID(Record[1], OpTy);
2957 BasicBlock *Default = getBasicBlock(Record[2]);
2958 if (!OpTy || !Cond || !Default)
2959 return Error("Invalid record");
2960 unsigned NumCases = (Record.size()-3)/2;
2961 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2962 InstructionList.push_back(SI);
2963 for (unsigned i = 0, e = NumCases; i != e; ++i) {
2964 ConstantInt *CaseVal =
2965 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2966 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2967 if (!CaseVal || !DestBB) {
2968 delete SI;
2969 return Error("Invalid record");
2970 }
2971 SI->addCase(CaseVal, DestBB);
2972 }
2973 I = SI;
2974 break;
2975 }
2976 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2977 if (Record.size() < 2)
2978 return Error("Invalid record");
2979 Type *OpTy = getTypeByID(Record[0]);
2980 Value *Address = getFnValueByID(Record[1], OpTy);
2981 if (!OpTy || !Address)
2982 return Error("Invalid record");
2983 unsigned NumDests = Record.size()-2;
2984 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2985 InstructionList.push_back(IBI);
2986 for (unsigned i = 0, e = NumDests; i != e; ++i) {
2987 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2988 IBI->addDestination(DestBB);
2989 } else {
2990 delete IBI;
2991 return Error("Invalid record");
2992 }
2993 }
2994 I = IBI;
2995 break;
2996 }
2997
2998 case bitc::FUNC_CODE_INST_INVOKE: {
2999 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3000 if (Record.size() < 4)
3001 return Error("Invalid record");
3002 AttributeSet PAL = getAttributes(Record[0]);
3003 unsigned CCInfo = Record[1];
3004 BasicBlock *NormalBB = getBasicBlock(Record[2]);
3005 BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3006
3007 unsigned OpNum = 4;
3008 Value *Callee;
3009 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3010 return Error("Invalid record");
3011
3012 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3013 FunctionType *FTy = !CalleeTy ? nullptr :
3014 dyn_cast<FunctionType>(CalleeTy->getElementType());
3015
3016 // Check that the right number of fixed parameters are here.
3017 if (!FTy || !NormalBB || !UnwindBB ||
3018 Record.size() < OpNum+FTy->getNumParams())
3019 return Error("Invalid record");
3020
3021 SmallVector<Value*, 16> Ops;
3022 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3023 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3024 if (!Ops.back())
3025 return Error("Invalid record");
3026 }
3027
3028 if (!FTy->isVarArg()) {
3029 if (Record.size() != OpNum)
3030 return Error("Invalid record");
3031 } else {
3032 // Read type/value pairs for varargs params.
3033 while (OpNum != Record.size()) {
3034 Value *Op;
3035 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3036 return Error("Invalid record");
3037 Ops.push_back(Op);
3038 }
3039 }
3040
3041 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3042 InstructionList.push_back(I);
3043 cast<InvokeInst>(I)->setCallingConv(
3044 static_cast<CallingConv::ID>(CCInfo));
3045 cast<InvokeInst>(I)->setAttributes(PAL);
3046 break;
3047 }
3048 case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3049 // 'unwind' instruction has been removed in LLVM 3.1
3050 // Replace 'unwind' with 'landingpad' and 'resume'.
3051 Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3052 Type::getInt32Ty(Context), nullptr);
3053
3054 LandingPadInst *LP = LandingPadInst::Create(ExnTy, 1);
3055 LP->setCleanup(true);
3056
3057 CurBB->getInstList().push_back(LP);
3058 I = ResumeInst::Create(LP);
3059 InstructionList.push_back(I);
3060 break;
3061 }
3062 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3063 I = new UnreachableInst(Context);
3064 InstructionList.push_back(I);
3065 break;
3066 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3067 if (Record.size() < 1 || ((Record.size()-1)&1))
3068 return Error("Invalid record");
3069 Type *Ty = getTypeByID(Record[0]);
3070 if (!Ty)
3071 return Error("Invalid record");
3072
3073 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3074 InstructionList.push_back(PN);
3075
3076 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3077 Value *V = getFnValueByID(Record[1+i], Ty);
3078 BasicBlock *BB = getBasicBlock(Record[2+i]);
3079 if (!V || !BB)
3080 return Error("Invalid record");
3081 PN->addIncoming(V, BB);
3082 }
3083 I = PN;
3084 break;
3085 }
3086
3087 case FUNC_CODE_INST_MALLOC_2_7: { // MALLOC: [instty, op, align]
3088 // Autoupgrade malloc instruction to malloc call.
3089 // FIXME: Remove in LLVM 3.0.
3090 if (Record.size() < 3) {
3091 return Error("Invalid record");
3092 }
3093 PointerType *Ty =
3094 dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3095 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
3096 if (!Ty || !Size)
3097 return Error("Invalid record");
3098 if (!CurBB)
3099 return Error("Invalid instruction with no BB");
3100 Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
3101 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
3102 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
3103 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
3104 AllocSize, Size, nullptr);
3105 InstructionList.push_back(I);
3106 break;
3107 }
3108 case FUNC_CODE_INST_FREE_2_7: { // FREE: [op, opty]
3109 unsigned OpNum = 0;
3110 Value *Op;
3111 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3112 OpNum != Record.size()) {
3113 return Error("Invalid record");
3114 }
3115 if (!CurBB)
3116 return Error("Invalid instruction with no BB");
3117 I = CallInst::CreateFree(Op, CurBB);
3118 InstructionList.push_back(I);
3119 break;
3120 }
3121
3122 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3123 // For backward compatibility, tolerate a lack of an opty, and use i32.
3124 // Remove this in LLVM 3.0.
3125 if (Record.size() < 3 || Record.size() > 4) {
3126 return Error("Invalid record");
3127 }
3128 unsigned OpNum = 0;
3129 PointerType *Ty =
3130 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
3131 Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
3132 Type::getInt32Ty(Context);
3133 Value *Size = getFnValueByID(Record[OpNum++], OpTy);
3134 unsigned Align = Record[OpNum++];
3135 if (!Ty || !Size)
3136 return Error("Invalid record");
3137 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3138 InstructionList.push_back(I);
3139 break;
3140 }
3141 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3142 unsigned OpNum = 0;
3143 Value *Op;
3144 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3145 OpNum+2 != Record.size())
3146 return Error("Invalid record");
3147
3148 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3149 InstructionList.push_back(I);
3150 break;
3151 }
3152 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
3153 unsigned OpNum = 0;
3154 Value *Val, *Ptr;
3155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3156 getValue(Record, OpNum,
3157 cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3158 OpNum+2 != Record.size())
3159 return Error("Invalid record");
3160
3161 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3162 InstructionList.push_back(I);
3163 break;
3164 }
3165 case FUNC_CODE_INST_STORE_2_7: {
3166 unsigned OpNum = 0;
3167 Value *Val, *Ptr;
3168 if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
3169 getValue(Record, OpNum,
3170 PointerType::getUnqual(Val->getType()), Ptr)||
3171 OpNum+2 != Record.size()) {
3172 return Error("Invalid record");
3173 }
3174 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3175 InstructionList.push_back(I);
3176 break;
3177 }
3178 case FUNC_CODE_INST_CALL_2_7:
3179 LLVM2_7MetadataDetected = true;
3180 case bitc::FUNC_CODE_INST_CALL: {
3181 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3182 if (Record.size() < 3)
3183 return Error("Invalid record");
3184
3185 AttributeSet PAL = getAttributes(Record[0]);
3186 unsigned CCInfo = Record[1];
3187
3188 unsigned OpNum = 2;
3189 Value *Callee;
3190 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3191 return Error("Invalid record");
3192
3193 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3194 FunctionType *FTy = nullptr;
3195 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3196 if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3197 return Error("Invalid record");
3198
3199 SmallVector<Value*, 16> Args;
3200 // Read the fixed params.
3201 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3202 if (FTy->getParamType(i)->isLabelTy())
3203 Args.push_back(getBasicBlock(Record[OpNum]));
3204 else
3205 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3206 if (!Args.back())
3207 return Error("Invalid record");
3208 }
3209
3210 // Read type/value pairs for varargs params.
3211 if (!FTy->isVarArg()) {
3212 if (OpNum != Record.size())
3213 return Error("Invalid record");
3214 } else {
3215 while (OpNum != Record.size()) {
3216 Value *Op;
3217 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3218 return Error("Invalid record");
3219 Args.push_back(Op);
3220 }
3221 }
3222
3223 I = CallInst::Create(Callee, Args);
3224 InstructionList.push_back(I);
3225 cast<CallInst>(I)->setCallingConv(
3226 static_cast<CallingConv::ID>(CCInfo>>1));
3227 cast<CallInst>(I)->setTailCall(CCInfo & 1);
3228 cast<CallInst>(I)->setAttributes(PAL);
3229 break;
3230 }
3231 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3232 if (Record.size() < 3)
3233 return Error("Invalid record");
3234 Type *OpTy = getTypeByID(Record[0]);
3235 Value *Op = getFnValueByID(Record[1], OpTy);
3236 Type *ResTy = getTypeByID(Record[2]);
3237 if (!OpTy || !Op || !ResTy)
3238 return Error("Invalid record");
3239 I = new VAArgInst(Op, ResTy);
3240 InstructionList.push_back(I);
3241 break;
3242 }
3243 }
3244
3245 // Add instruction to end of current BB. If there is no current BB, reject
3246 // this file.
3247 if (!CurBB) {
3248 delete I;
3249 return Error("Invalid instruction with no BB");
3250 }
3251 CurBB->getInstList().push_back(I);
3252
3253 // If this was a terminator instruction, move to the next block.
3254 if (isa<TerminatorInst>(I)) {
3255 ++CurBBNo;
3256 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3257 }
3258
3259 // Non-void values get registered in the value table for future use.
3260 if (I && !I->getType()->isVoidTy())
3261 ValueList.AssignValue(I, NextValueNo++);
3262 }
3263
3264 // Check the function list for unresolved values.
3265 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3266 if (!A->getParent()) {
3267 // We found at least one unresolved value. Nuke them all to avoid leaks.
3268 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3269 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3270 A->replaceAllUsesWith(UndefValue::get(A->getType()));
3271 delete A;
3272 }
3273 }
3274 return Error("Never resolved value found in function");
3275 }
3276 }
3277
3278 // FIXME: Check for unresolved forward-declared metadata references
3279 // and clean up leaks.
3280
3281 // See if anything took the address of blocks in this function. If so,
3282 // resolve them now.
3283 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3284 BlockAddrFwdRefs.find(F);
3285 if (BAFRI != BlockAddrFwdRefs.end()) {
3286 std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3287 for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3288 unsigned BlockIdx = RefList[i].first;
3289 if (BlockIdx >= FunctionBBs.size())
3290 return Error("Invalid ID");
3291
3292 GlobalVariable *FwdRef = RefList[i].second;
3293 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3294 FwdRef->eraseFromParent();
3295 }
3296
3297 BlockAddrFwdRefs.erase(BAFRI);
3298 }
3299
3300 unsigned NewMDValueListSize = MDValueList.size();
3301 // Trim the value list down to the size it was before we parsed this function.
3302 ValueList.shrinkTo(ModuleValueListSize);
3303 MDValueList.shrinkTo(ModuleMDValueListSize);
3304
3305 if (LLVM2_7MetadataDetected) {
3306 MDValueList.resize(NewMDValueListSize);
3307 }
3308
3309 std::vector<BasicBlock*>().swap(FunctionBBs);
3310 return std::error_code();
3311 }
3312
3313 //===----------------------------------------------------------------------===//
3314 // GVMaterializer implementation
3315 //===----------------------------------------------------------------------===//
3316
releaseBuffer()3317 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3318
materialize(GlobalValue * GV)3319 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3320 if (std::error_code EC = materializeMetadata())
3321 return EC;
3322
3323 Function *F = dyn_cast<Function>(GV);
3324 // If it's not a function or is already material, ignore the request.
3325 if (!F || !F->isMaterializable())
3326 return std::error_code();
3327
3328 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3329 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3330
3331 // Move the bit stream to the saved position of the deferred function body.
3332 Stream.JumpToBit(DFII->second);
3333
3334 if (std::error_code EC = ParseFunctionBody(F))
3335 return EC;
3336 F->setIsMaterializable(false);
3337
3338 // Upgrade any old intrinsic calls in the function.
3339 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3340 E = UpgradedIntrinsics.end(); I != E; ++I) {
3341 if (I->first != I->second) {
3342 for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3343 UI != UE;) {
3344 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3345 UpgradeIntrinsicCall(CI, I->second);
3346 }
3347 }
3348 }
3349
3350 return std::error_code();
3351 }
3352
isDematerializable(const GlobalValue * GV) const3353 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3354 const Function *F = dyn_cast<Function>(GV);
3355 if (!F || F->isDeclaration())
3356 return false;
3357 return DeferredFunctionInfo.count(const_cast<Function*>(F));
3358 }
3359
dematerialize(GlobalValue * GV)3360 void BitcodeReader::dematerialize(GlobalValue *GV) {
3361 Function *F = dyn_cast<Function>(GV);
3362 // If this function isn't dematerializable, this is a noop.
3363 if (!F || !isDematerializable(F))
3364 return;
3365
3366 assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3367
3368 // Just forget the function body, we can remat it later.
3369 F->deleteBody();
3370 F->setIsMaterializable(true);
3371 }
3372
materializeModule()3373 std::error_code BitcodeReader::materializeModule() {
3374 // Iterate over the module, deserializing any functions that are still on
3375 // disk.
3376 for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3377 F != E; ++F) {
3378 if (std::error_code EC = materialize(&*F))
3379 return EC;
3380 }
3381 // At this point, if there are any function bodies, the current bit is
3382 // pointing to the END_BLOCK record after them. Now make sure the rest
3383 // of the bits in the module have been read.
3384 if (NextUnreadBit)
3385 ParseModule(true);
3386
3387 // Upgrade any intrinsic calls that slipped through (should not happen!) and
3388 // delete the old functions to clean up. We can't do this unless the entire
3389 // module is materialized because there could always be another function body
3390 // with calls to the old function.
3391 for (std::vector<std::pair<Function*, Function*> >::iterator I =
3392 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3393 if (I->first != I->second) {
3394 for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3395 UI != UE;) {
3396 if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3397 UpgradeIntrinsicCall(CI, I->second);
3398 }
3399 if (!I->first->use_empty())
3400 I->first->replaceAllUsesWith(I->second);
3401 I->first->eraseFromParent();
3402 }
3403 }
3404 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3405
3406 // Check debug info intrinsics.
3407 CheckDebugInfoIntrinsics(TheModule);
3408
3409 return std::error_code();
3410 }
3411
getIdentifiedStructTypes() const3412 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3413 return IdentifiedStructTypes;
3414 }
3415
InitStream()3416 std::error_code BitcodeReader::InitStream() {
3417 if (LazyStreamer)
3418 return InitLazyStream();
3419 return InitStreamFromBuffer();
3420 }
3421
InitStreamFromBuffer()3422 std::error_code BitcodeReader::InitStreamFromBuffer() {
3423 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3424 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3425
3426 if (Buffer->getBufferSize() & 3)
3427 return Error("Invalid bitcode signature");
3428
3429 // If we have a wrapper header, parse it and ignore the non-bc file contents.
3430 // The magic number is 0x0B17C0DE stored in little endian.
3431 if (isBitcodeWrapper(BufPtr, BufEnd))
3432 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3433 return Error("Invalid bitcode wrapper header");
3434
3435 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3436 Stream.init(&*StreamFile);
3437
3438 return std::error_code();
3439 }
3440
InitLazyStream()3441 std::error_code BitcodeReader::InitLazyStream() {
3442 // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3443 // see it.
3444 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(
3445 std::move(LazyStreamer));
3446 StreamingMemoryObject &Bytes = *OwnedBytes;
3447 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3448 Stream.init(&*StreamFile);
3449
3450 unsigned char buf[16];
3451 if (Bytes.readBytes(buf, 16, 0) != 16)
3452 return Error("Invalid bitcode signature");
3453
3454 if (!isBitcode(buf, buf + 16))
3455 return Error("Invalid bitcode signature");
3456
3457 if (isBitcodeWrapper(buf, buf + 4)) {
3458 const unsigned char *bitcodeStart = buf;
3459 const unsigned char *bitcodeEnd = buf + 16;
3460 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3461 Bytes.dropLeadingBytes(bitcodeStart - buf);
3462 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3463 }
3464 return std::error_code();
3465 }
3466
3467 namespace {
3468 class BitcodeErrorCategoryType : public std::error_category {
name() const3469 const char *name() const LLVM_NOEXCEPT override {
3470 return "llvm.bitcode";
3471 }
message(int IE) const3472 std::string message(int IE) const override {
3473 BitcodeError E = static_cast<BitcodeError>(IE);
3474 switch (E) {
3475 case BitcodeError::InvalidBitcodeSignature:
3476 return "Invalid bitcode signature";
3477 case BitcodeError::CorruptedBitcode:
3478 return "Corrupted bitcode";
3479 }
3480 llvm_unreachable("Unknown error type!");
3481 }
3482 };
3483 }
3484
3485 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3486
BitcodeErrorCategory()3487 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3488 return *ErrorCategory;
3489 }
3490
3491 //===----------------------------------------------------------------------===//
3492 // External interface
3493 //===----------------------------------------------------------------------===//
3494
3495 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3496 ///
3497 static llvm::ErrorOr<llvm::Module *>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool WillMaterializeAll,const DiagnosticHandlerFunction & DiagnosticHandler)3498 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3499 LLVMContext &Context, bool WillMaterializeAll,
3500 const DiagnosticHandlerFunction &DiagnosticHandler) {
3501 Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3502 BitcodeReader *R =
3503 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3504 M->setMaterializer(R);
3505
3506 auto cleanupOnError = [&](std::error_code EC) {
3507 R->releaseBuffer(); // Never take ownership on error.
3508 delete M; // Also deletes R.
3509 return EC;
3510 };
3511
3512 if (std::error_code EC = R->ParseBitcodeInto(M))
3513 return cleanupOnError(EC);
3514
3515 Buffer.release(); // The BitcodeReader owns it now.
3516 return M;
3517 }
3518
3519 llvm::ErrorOr<Module *>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3520 llvm_2_7::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3521 LLVMContext &Context,
3522 const DiagnosticHandlerFunction &DiagnosticHandler) {
3523 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3524 DiagnosticHandler);
3525 }
3526
3527 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3528 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3529 llvm::ErrorOr<llvm::Module *>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3530 llvm_2_7::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3531 const DiagnosticHandlerFunction &DiagnosticHandler) {
3532 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3533 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3534 std::move(Buf), Context, true, DiagnosticHandler);
3535 if (!ModuleOrErr)
3536 return ModuleOrErr;
3537 Module *M = ModuleOrErr.get();
3538 // Read in the entire module, and destroy the BitcodeReader.
3539 if (std::error_code EC = M->materializeAll()) {
3540 delete M;
3541 return EC;
3542 }
3543
3544 return M;
3545 }
3546
3547 std::string
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3548 llvm_2_7::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3549 DiagnosticHandlerFunction DiagnosticHandler) {
3550 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3551 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3552 DiagnosticHandler);
3553 ErrorOr<std::string> Triple = R->parseTriple();
3554 if (Triple.getError())
3555 return "";
3556 return Triple.get();
3557 }
3558