1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitReader_3_0.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/GVMaterializer.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/OperandTraits.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 
37 using namespace llvm;
38 using namespace llvm_3_0;
39 
40 #define FUNC_CODE_INST_UNWIND_2_7     14
41 #define eh_exception_2_7             145
42 #define eh_selector_2_7              149
43 
44 #define TYPE_BLOCK_ID_OLD_3_0         10
45 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
46 #define TYPE_CODE_STRUCT_OLD_3_0      10
47 
48 namespace {
FindExnAndSelIntrinsics(BasicBlock * BB,CallInst * & Exn,CallInst * & Sel,SmallPtrSet<BasicBlock *,8> & Visited)49   void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
50                                       CallInst *&Sel,
51                                       SmallPtrSet<BasicBlock*, 8> &Visited) {
52     if (!Visited.insert(BB).second) return;
53 
54     for (BasicBlock::iterator
55            I = BB->begin(), E = BB->end(); I != E; ++I) {
56       if (CallInst *CI = dyn_cast<CallInst>(I)) {
57         switch (CI->getCalledFunction()->getIntrinsicID()) {
58         default: break;
59         case eh_exception_2_7:
60           assert(!Exn && "Found more than one eh.exception call!");
61           Exn = CI;
62           break;
63         case eh_selector_2_7:
64           assert(!Sel && "Found more than one eh.selector call!");
65           Sel = CI;
66           break;
67         }
68 
69         if (Exn && Sel) return;
70       }
71     }
72 
73     if (Exn && Sel) return;
74 
75     for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
76       FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
77       if (Exn && Sel) return;
78     }
79   }
80 
81 
82 
83   /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
84   /// from the eh_selector call to the new landingpad instruction.
TransferClausesToLandingPadInst(LandingPadInst * LPI,CallInst * EHSel)85   void TransferClausesToLandingPadInst(LandingPadInst *LPI,
86                                               CallInst *EHSel) {
87     LLVMContext &Context = LPI->getContext();
88     unsigned N = EHSel->getNumArgOperands();
89 
90     for (unsigned i = N - 1; i > 1; --i) {
91       if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
92         unsigned FilterLength = CI->getZExtValue();
93         unsigned FirstCatch = i + FilterLength + !FilterLength;
94         assert(FirstCatch <= N && "Invalid filter length");
95 
96         if (FirstCatch < N)
97           for (unsigned j = FirstCatch; j < N; ++j) {
98             Value *Val = EHSel->getArgOperand(j);
99             if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
100               LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
101             } else {
102               GlobalVariable *GV = cast<GlobalVariable>(Val);
103               LPI->addClause(GV->getInitializer());
104             }
105           }
106 
107         if (!FilterLength) {
108           // Cleanup.
109           LPI->setCleanup(true);
110         } else {
111           // Filter.
112           SmallVector<Constant *, 4> TyInfo;
113           TyInfo.reserve(FilterLength - 1);
114           for (unsigned j = i + 1; j < FirstCatch; ++j)
115             TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
116           ArrayType *AType =
117             ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
118                            PointerType::getUnqual(Type::getInt8Ty(Context)),
119                            TyInfo.size());
120           LPI->addClause(ConstantArray::get(AType, TyInfo));
121         }
122 
123         N = i;
124       }
125     }
126 
127     if (N > 2)
128       for (unsigned j = 2; j < N; ++j) {
129         Value *Val = EHSel->getArgOperand(j);
130         if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
131           LPI->addClause(cast<Constant>(EHSel->getArgOperand(j)));
132         } else {
133           GlobalVariable *GV = cast<GlobalVariable>(Val);
134           LPI->addClause(GV->getInitializer());
135         }
136       }
137   }
138 
139 
140   /// This function upgrades the old pre-3.0 exception handling system to the new
141   /// one. N.B. This will be removed in 3.1.
UpgradeExceptionHandling(Module * M)142   void UpgradeExceptionHandling(Module *M) {
143     Function *EHException = M->getFunction("llvm.eh.exception");
144     Function *EHSelector = M->getFunction("llvm.eh.selector");
145     if (!EHException || !EHSelector)
146       return;
147 
148     LLVMContext &Context = M->getContext();
149     Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
150     Type *SelTy = Type::getInt32Ty(Context);
151     Type *LPadSlotTy = StructType::get(ExnTy, SelTy, nullptr);
152 
153     // This map links the invoke instruction with the eh.exception and eh.selector
154     // calls associated with it.
155     DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
156     for (Module::iterator
157            I = M->begin(), E = M->end(); I != E; ++I) {
158       Function &F = *I;
159 
160       for (Function::iterator
161              II = F.begin(), IE = F.end(); II != IE; ++II) {
162         BasicBlock *BB = &*II;
163         InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
164         if (!Inst) continue;
165         BasicBlock *UnwindDest = Inst->getUnwindDest();
166         if (UnwindDest->isLandingPad()) continue; // Already converted.
167 
168         SmallPtrSet<BasicBlock*, 8> Visited;
169         CallInst *Exn = 0;
170         CallInst *Sel = 0;
171         FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
172         assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
173         InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
174       }
175     }
176 
177     // This map stores the slots where the exception object and selector value are
178     // stored within a function.
179     DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
180     SmallPtrSet<Instruction*, 32> DeadInsts;
181     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
182            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
183          I != E; ++I) {
184       InvokeInst *Invoke = I->first;
185       BasicBlock *UnwindDest = Invoke->getUnwindDest();
186       Function *F = UnwindDest->getParent();
187       std::pair<Value*, Value*> EHIntrinsics = I->second;
188       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
189       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
190 
191       // Store the exception object and selector value in the entry block.
192       Value *ExnSlot = 0;
193       Value *SelSlot = 0;
194       if (!FnToLPadSlotMap[F].first) {
195         BasicBlock *Entry = &F->front();
196         ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
197         SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
198         FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
199       } else {
200         ExnSlot = FnToLPadSlotMap[F].first;
201         SelSlot = FnToLPadSlotMap[F].second;
202       }
203 
204       if (!UnwindDest->getSinglePredecessor()) {
205         // The unwind destination doesn't have a single predecessor. Create an
206         // unwind destination which has only one predecessor.
207         BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
208                                                UnwindDest->getParent());
209         BranchInst::Create(UnwindDest, NewBB);
210         Invoke->setUnwindDest(NewBB);
211 
212         // Fix up any PHIs in the original unwind destination block.
213         for (BasicBlock::iterator
214                II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
215           PHINode *PN = cast<PHINode>(II);
216           int Idx = PN->getBasicBlockIndex(Invoke->getParent());
217           if (Idx == -1) continue;
218           PN->setIncomingBlock(Idx, NewBB);
219         }
220 
221         UnwindDest = NewBB;
222       }
223 
224       IRBuilder<> Builder(Context);
225       Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
226 
227       LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, 0);
228       Value *LPExn = Builder.CreateExtractValue(LPI, 0);
229       Value *LPSel = Builder.CreateExtractValue(LPI, 1);
230       Builder.CreateStore(LPExn, ExnSlot);
231       Builder.CreateStore(LPSel, SelSlot);
232 
233       TransferClausesToLandingPadInst(LPI, Sel);
234 
235       DeadInsts.insert(Exn);
236       DeadInsts.insert(Sel);
237     }
238 
239     // Replace the old intrinsic calls with the values from the landingpad
240     // instruction(s). These values were stored in allocas for us to use here.
241     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
242            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
243          I != E; ++I) {
244       std::pair<Value*, Value*> EHIntrinsics = I->second;
245       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
246       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
247       BasicBlock *Parent = Exn->getParent();
248 
249       std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
250 
251       IRBuilder<> Builder(Context);
252       Builder.SetInsertPoint(Parent, Exn->getIterator());
253       LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
254       LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
255 
256       Exn->replaceAllUsesWith(LPExn);
257       Sel->replaceAllUsesWith(LPSel);
258     }
259 
260     // Remove the dead instructions.
261     for (SmallPtrSet<Instruction*, 32>::iterator
262            I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
263       Instruction *Inst = *I;
264       Inst->eraseFromParent();
265     }
266 
267     // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
268     // exception and selector values from the stored place.
269     Function *EHResume = M->getFunction("llvm.eh.resume");
270     if (!EHResume) return;
271 
272     while (!EHResume->use_empty()) {
273       CallInst *Resume = cast<CallInst>(*EHResume->use_begin());
274       BasicBlock *BB = Resume->getParent();
275 
276       IRBuilder<> Builder(Context);
277       Builder.SetInsertPoint(BB, Resume->getIterator());
278 
279       Value *LPadVal =
280         Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
281                                   Resume->getArgOperand(0), 0, "lpad.val");
282       LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
283                                           1, "lpad.val");
284       Builder.CreateResume(LPadVal);
285 
286       // Remove all instructions after the 'resume.'
287       BasicBlock::iterator I = Resume->getIterator();
288       while (I != BB->end()) {
289         Instruction *Inst = &*I++;
290         Inst->eraseFromParent();
291       }
292     }
293   }
294 
295 
StripDebugInfoOfFunction(Module * M,const char * name)296   void StripDebugInfoOfFunction(Module* M, const char* name) {
297     if (Function* FuncStart = M->getFunction(name)) {
298       while (!FuncStart->use_empty()) {
299         cast<CallInst>(*FuncStart->use_begin())->eraseFromParent();
300       }
301       FuncStart->eraseFromParent();
302     }
303   }
304 
305   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
306   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
307   /// strips that use.
CheckDebugInfoIntrinsics(Module * M)308   void CheckDebugInfoIntrinsics(Module *M) {
309     StripDebugInfoOfFunction(M, "llvm.dbg.func.start");
310     StripDebugInfoOfFunction(M, "llvm.dbg.stoppoint");
311     StripDebugInfoOfFunction(M, "llvm.dbg.region.start");
312     StripDebugInfoOfFunction(M, "llvm.dbg.region.end");
313 
314     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
315       if (!Declare->use_empty()) {
316         DbgDeclareInst *DDI = cast<DbgDeclareInst>(*Declare->use_begin());
317         if (!isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(0))) ||
318             !isa<MDNode>(ValueAsMetadata::get(DDI->getArgOperand(1)))) {
319           while (!Declare->use_empty()) {
320             CallInst *CI = cast<CallInst>(*Declare->use_begin());
321             CI->eraseFromParent();
322           }
323           Declare->eraseFromParent();
324         }
325       }
326     }
327   }
328 
329 
330 //===----------------------------------------------------------------------===//
331 //                          BitcodeReaderValueList Class
332 //===----------------------------------------------------------------------===//
333 
334 class BitcodeReaderValueList {
335   std::vector<WeakVH> ValuePtrs;
336 
337   /// ResolveConstants - As we resolve forward-referenced constants, we add
338   /// information about them to this vector.  This allows us to resolve them in
339   /// bulk instead of resolving each reference at a time.  See the code in
340   /// ResolveConstantForwardRefs for more information about this.
341   ///
342   /// The key of this vector is the placeholder constant, the value is the slot
343   /// number that holds the resolved value.
344   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
345   ResolveConstantsTy ResolveConstants;
346   LLVMContext &Context;
347 public:
BitcodeReaderValueList(LLVMContext & C)348   explicit BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
~BitcodeReaderValueList()349   ~BitcodeReaderValueList() {
350     assert(ResolveConstants.empty() && "Constants not resolved?");
351   }
352 
353   // vector compatibility methods
size() const354   unsigned size() const { return ValuePtrs.size(); }
resize(unsigned N)355   void resize(unsigned N) { ValuePtrs.resize(N); }
push_back(Value * V)356   void push_back(Value *V) {
357     ValuePtrs.push_back(V);
358   }
359 
clear()360   void clear() {
361     assert(ResolveConstants.empty() && "Constants not resolved?");
362     ValuePtrs.clear();
363   }
364 
operator [](unsigned i) const365   Value *operator[](unsigned i) const {
366     assert(i < ValuePtrs.size());
367     return ValuePtrs[i];
368   }
369 
back() const370   Value *back() const { return ValuePtrs.back(); }
pop_back()371     void pop_back() { ValuePtrs.pop_back(); }
empty() const372   bool empty() const { return ValuePtrs.empty(); }
shrinkTo(unsigned N)373   void shrinkTo(unsigned N) {
374     assert(N <= size() && "Invalid shrinkTo request!");
375     ValuePtrs.resize(N);
376   }
377 
378   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
379   Value *getValueFwdRef(unsigned Idx, Type *Ty);
380 
381   void AssignValue(Value *V, unsigned Idx);
382 
383   /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
384   /// resolves any forward references.
385   void ResolveConstantForwardRefs();
386 };
387 
388 
389 //===----------------------------------------------------------------------===//
390 //                          BitcodeReaderMDValueList Class
391 //===----------------------------------------------------------------------===//
392 
393 class BitcodeReaderMDValueList {
394   unsigned NumFwdRefs;
395   bool AnyFwdRefs;
396   std::vector<TrackingMDRef> MDValuePtrs;
397 
398   LLVMContext &Context;
399 public:
BitcodeReaderMDValueList(LLVMContext & C)400   explicit BitcodeReaderMDValueList(LLVMContext &C)
401       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
402 
403   // vector compatibility methods
size() const404   unsigned size() const       { return MDValuePtrs.size(); }
resize(unsigned N)405   void resize(unsigned N)     { MDValuePtrs.resize(N); }
push_back(Metadata * MD)406   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
clear()407   void clear()                { MDValuePtrs.clear();  }
back() const408   Metadata *back() const      { return MDValuePtrs.back(); }
pop_back()409   void pop_back()             { MDValuePtrs.pop_back(); }
empty() const410   bool empty() const          { return MDValuePtrs.empty(); }
411 
operator [](unsigned i) const412   Metadata *operator[](unsigned i) const {
413     assert(i < MDValuePtrs.size());
414     return MDValuePtrs[i];
415   }
416 
shrinkTo(unsigned N)417   void shrinkTo(unsigned N) {
418     assert(N <= size() && "Invalid shrinkTo request!");
419     MDValuePtrs.resize(N);
420   }
421 
422   Metadata *getValueFwdRef(unsigned Idx);
423   void AssignValue(Metadata *MD, unsigned Idx);
424   void tryToResolveCycles();
425 };
426 
427 class BitcodeReader : public GVMaterializer {
428   LLVMContext &Context;
429   DiagnosticHandlerFunction DiagnosticHandler;
430   Module *TheModule;
431   std::unique_ptr<MemoryBuffer> Buffer;
432   std::unique_ptr<BitstreamReader> StreamFile;
433   BitstreamCursor Stream;
434   std::unique_ptr<DataStreamer> LazyStreamer;
435   uint64_t NextUnreadBit;
436   bool SeenValueSymbolTable;
437 
438   std::vector<Type*> TypeList;
439   BitcodeReaderValueList ValueList;
440   BitcodeReaderMDValueList MDValueList;
441   SmallVector<Instruction *, 64> InstructionList;
442 
443   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
444   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
445 
446   /// MAttributes - The set of attributes by index.  Index zero in the
447   /// file is for null, and is thus not represented here.  As such all indices
448   /// are off by one.
449   std::vector<AttributeSet> MAttributes;
450 
451   /// \brief The set of attribute groups.
452   std::map<unsigned, AttributeSet> MAttributeGroups;
453 
454   /// FunctionBBs - While parsing a function body, this is a list of the basic
455   /// blocks for the function.
456   std::vector<BasicBlock*> FunctionBBs;
457 
458   // When reading the module header, this list is populated with functions that
459   // have bodies later in the file.
460   std::vector<Function*> FunctionsWithBodies;
461 
462   // When intrinsic functions are encountered which require upgrading they are
463   // stored here with their replacement function.
464   typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap;
465   UpgradedIntrinsicMap UpgradedIntrinsics;
466 
467   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
468   DenseMap<unsigned, unsigned> MDKindMap;
469 
470   // Several operations happen after the module header has been read, but
471   // before function bodies are processed. This keeps track of whether
472   // we've done this yet.
473   bool SeenFirstFunctionBody;
474 
475   /// DeferredFunctionInfo - When function bodies are initially scanned, this
476   /// map contains info about where to find deferred function body in the
477   /// stream.
478   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
479 
480   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
481   /// are resolved lazily when functions are loaded.
482   typedef std::pair<unsigned, GlobalVariable*> BlockAddrRefTy;
483   DenseMap<Function*, std::vector<BlockAddrRefTy> > BlockAddrFwdRefs;
484 
485   static const std::error_category &BitcodeErrorCategory();
486 
487 public:
488   std::error_code Error(BitcodeError E, const Twine &Message);
489   std::error_code Error(BitcodeError E);
490   std::error_code Error(const Twine &Message);
491 
492   explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
493                          DiagnosticHandlerFunction DiagnosticHandler);
~BitcodeReader()494   ~BitcodeReader() { FreeState(); }
495 
496   void FreeState();
497 
498   void releaseBuffer();
499 
500   bool isDematerializable(const GlobalValue *GV) const;
501   std::error_code materialize(GlobalValue *GV) override;
502   std::error_code materializeModule() override;
503   std::vector<StructType *> getIdentifiedStructTypes() const override;
504   void dematerialize(GlobalValue *GV);
505 
506   /// @brief Main interface to parsing a bitcode buffer.
507   /// @returns true if an error occurred.
508   std::error_code ParseBitcodeInto(Module *M);
509 
510   /// @brief Cheap mechanism to just extract module triple
511   /// @returns true if an error occurred.
512   llvm::ErrorOr<std::string> parseTriple();
513 
514   static uint64_t decodeSignRotatedValue(uint64_t V);
515 
516   /// Materialize any deferred Metadata block.
517   std::error_code materializeMetadata() override;
518 
519   void setStripDebugInfo() override;
520 
521 private:
522   std::vector<StructType *> IdentifiedStructTypes;
523   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
524   StructType *createIdentifiedStructType(LLVMContext &Context);
525 
526   Type *getTypeByID(unsigned ID);
527   Type *getTypeByIDOrNull(unsigned ID);
getFnValueByID(unsigned ID,Type * Ty)528   Value *getFnValueByID(unsigned ID, Type *Ty) {
529     if (Ty && Ty->isMetadataTy())
530       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
531     return ValueList.getValueFwdRef(ID, Ty);
532   }
getFnMetadataByID(unsigned ID)533   Metadata *getFnMetadataByID(unsigned ID) {
534     return MDValueList.getValueFwdRef(ID);
535   }
getBasicBlock(unsigned ID) const536   BasicBlock *getBasicBlock(unsigned ID) const {
537     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
538     return FunctionBBs[ID];
539   }
getAttributes(unsigned i) const540   AttributeSet getAttributes(unsigned i) const {
541     if (i-1 < MAttributes.size())
542       return MAttributes[i-1];
543     return AttributeSet();
544   }
545 
546   /// getValueTypePair - Read a value/type pair out of the specified record from
547   /// slot 'Slot'.  Increment Slot past the number of slots used in the record.
548   /// Return true on failure.
getValueTypePair(SmallVectorImpl<uint64_t> & Record,unsigned & Slot,unsigned InstNum,Value * & ResVal)549   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
550                         unsigned InstNum, Value *&ResVal) {
551     if (Slot == Record.size()) return true;
552     unsigned ValNo = (unsigned)Record[Slot++];
553     if (ValNo < InstNum) {
554       // If this is not a forward reference, just return the value we already
555       // have.
556       ResVal = getFnValueByID(ValNo, nullptr);
557       return ResVal == nullptr;
558     } else if (Slot == Record.size()) {
559       return true;
560     }
561 
562     unsigned TypeNo = (unsigned)Record[Slot++];
563     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
564     return ResVal == nullptr;
565   }
getValue(SmallVector<uint64_t,64> & Record,unsigned & Slot,Type * Ty,Value * & ResVal)566   bool getValue(SmallVector<uint64_t, 64> &Record, unsigned &Slot,
567                 Type *Ty, Value *&ResVal) {
568     if (Slot == Record.size()) return true;
569     unsigned ValNo = (unsigned)Record[Slot++];
570     ResVal = getFnValueByID(ValNo, Ty);
571     return ResVal == 0;
572   }
573 
574 
575   std::error_code ParseModule(bool Resume);
576   std::error_code ParseAttributeBlock();
577   std::error_code ParseTypeTable();
578   std::error_code ParseOldTypeTable();         // FIXME: Remove in LLVM 3.1
579   std::error_code ParseTypeTableBody();
580 
581   std::error_code ParseOldTypeSymbolTable();   // FIXME: Remove in LLVM 3.1
582   std::error_code ParseValueSymbolTable();
583   std::error_code ParseConstants();
584   std::error_code RememberAndSkipFunctionBody();
585   std::error_code ParseFunctionBody(Function *F);
586   std::error_code GlobalCleanup();
587   std::error_code ResolveGlobalAndAliasInits();
588   std::error_code ParseMetadata();
589   std::error_code ParseMetadataAttachment();
590   llvm::ErrorOr<std::string> parseModuleTriple();
591   std::error_code InitStream();
592   std::error_code InitStreamFromBuffer();
593   std::error_code InitLazyStream();
594 };
595 
596 } // end anonymous namespace
597 
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC,const Twine & Message)598 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
599                              std::error_code EC, const Twine &Message) {
600   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
601   DiagnosticHandler(DI);
602   return EC;
603 }
604 
Error(const DiagnosticHandlerFunction & DiagnosticHandler,std::error_code EC)605 static std::error_code Error(const DiagnosticHandlerFunction &DiagnosticHandler,
606                              std::error_code EC) {
607   return Error(DiagnosticHandler, EC, EC.message());
608 }
609 
Error(BitcodeError E,const Twine & Message)610 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
611   return ::Error(DiagnosticHandler, make_error_code(E), Message);
612 }
613 
Error(const Twine & Message)614 std::error_code BitcodeReader::Error(const Twine &Message) {
615   return ::Error(DiagnosticHandler,
616                  make_error_code(BitcodeError::CorruptedBitcode), Message);
617 }
618 
Error(BitcodeError E)619 std::error_code BitcodeReader::Error(BitcodeError E) {
620   return ::Error(DiagnosticHandler, make_error_code(E));
621 }
622 
getDiagHandler(DiagnosticHandlerFunction F,LLVMContext & C)623 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
624                                                 LLVMContext &C) {
625   if (F)
626     return F;
627   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
628 }
629 
BitcodeReader(MemoryBuffer * buffer,LLVMContext & C,DiagnosticHandlerFunction DiagnosticHandler)630 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
631                              DiagnosticHandlerFunction DiagnosticHandler)
632     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
633       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
634       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
635       MDValueList(C), SeenFirstFunctionBody(false) {}
636 
637 
FreeState()638 void BitcodeReader::FreeState() {
639   Buffer = nullptr;
640   std::vector<Type*>().swap(TypeList);
641   ValueList.clear();
642   MDValueList.clear();
643 
644   std::vector<AttributeSet>().swap(MAttributes);
645   std::vector<BasicBlock*>().swap(FunctionBBs);
646   std::vector<Function*>().swap(FunctionsWithBodies);
647   DeferredFunctionInfo.clear();
648   MDKindMap.clear();
649 }
650 
651 //===----------------------------------------------------------------------===//
652 //  Helper functions to implement forward reference resolution, etc.
653 //===----------------------------------------------------------------------===//
654 
655 /// ConvertToString - Convert a string from a record into an std::string, return
656 /// true on failure.
657 template<typename StrTy>
ConvertToString(ArrayRef<uint64_t> Record,unsigned Idx,StrTy & Result)658 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
659                             StrTy &Result) {
660   if (Idx > Record.size())
661     return true;
662 
663   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
664     Result += (char)Record[i];
665   return false;
666 }
667 
getDecodedLinkage(unsigned Val)668 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
669   switch (Val) {
670   default: // Map unknown/new linkages to external
671   case 0:
672     return GlobalValue::ExternalLinkage;
673   case 1:
674     return GlobalValue::WeakAnyLinkage;
675   case 2:
676     return GlobalValue::AppendingLinkage;
677   case 3:
678     return GlobalValue::InternalLinkage;
679   case 4:
680     return GlobalValue::LinkOnceAnyLinkage;
681   case 5:
682     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
683   case 6:
684     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
685   case 7:
686     return GlobalValue::ExternalWeakLinkage;
687   case 8:
688     return GlobalValue::CommonLinkage;
689   case 9:
690     return GlobalValue::PrivateLinkage;
691   case 10:
692     return GlobalValue::WeakODRLinkage;
693   case 11:
694     return GlobalValue::LinkOnceODRLinkage;
695   case 12:
696     return GlobalValue::AvailableExternallyLinkage;
697   case 13:
698     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
699   case 14:
700     return GlobalValue::ExternalWeakLinkage; // Obsolete LinkerPrivateWeakLinkage
701   //ANDROID: convert LinkOnceODRAutoHideLinkage -> LinkOnceODRLinkage
702   case 15:
703     return GlobalValue::LinkOnceODRLinkage;
704   }
705 }
706 
GetDecodedVisibility(unsigned Val)707 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
708   switch (Val) {
709   default: // Map unknown visibilities to default.
710   case 0: return GlobalValue::DefaultVisibility;
711   case 1: return GlobalValue::HiddenVisibility;
712   case 2: return GlobalValue::ProtectedVisibility;
713   }
714 }
715 
GetDecodedThreadLocalMode(unsigned Val)716 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
717   switch (Val) {
718     case 0: return GlobalVariable::NotThreadLocal;
719     default: // Map unknown non-zero value to general dynamic.
720     case 1: return GlobalVariable::GeneralDynamicTLSModel;
721     case 2: return GlobalVariable::LocalDynamicTLSModel;
722     case 3: return GlobalVariable::InitialExecTLSModel;
723     case 4: return GlobalVariable::LocalExecTLSModel;
724   }
725 }
726 
getDecodedUnnamedAddrType(unsigned Val)727 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
728   switch (Val) {
729     default: // Map unknown to UnnamedAddr::None.
730     case 0: return GlobalVariable::UnnamedAddr::None;
731     case 1: return GlobalVariable::UnnamedAddr::Global;
732     case 2: return GlobalVariable::UnnamedAddr::Local;
733   }
734 }
735 
GetDecodedCastOpcode(unsigned Val)736 static int GetDecodedCastOpcode(unsigned Val) {
737   switch (Val) {
738   default: return -1;
739   case bitc::CAST_TRUNC   : return Instruction::Trunc;
740   case bitc::CAST_ZEXT    : return Instruction::ZExt;
741   case bitc::CAST_SEXT    : return Instruction::SExt;
742   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
743   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
744   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
745   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
746   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
747   case bitc::CAST_FPEXT   : return Instruction::FPExt;
748   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
749   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
750   case bitc::CAST_BITCAST : return Instruction::BitCast;
751   }
752 }
GetDecodedBinaryOpcode(unsigned Val,Type * Ty)753 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
754   switch (Val) {
755   default: return -1;
756   case bitc::BINOP_ADD:
757     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
758   case bitc::BINOP_SUB:
759     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
760   case bitc::BINOP_MUL:
761     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
762   case bitc::BINOP_UDIV: return Instruction::UDiv;
763   case bitc::BINOP_SDIV:
764     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
765   case bitc::BINOP_UREM: return Instruction::URem;
766   case bitc::BINOP_SREM:
767     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
768   case bitc::BINOP_SHL:  return Instruction::Shl;
769   case bitc::BINOP_LSHR: return Instruction::LShr;
770   case bitc::BINOP_ASHR: return Instruction::AShr;
771   case bitc::BINOP_AND:  return Instruction::And;
772   case bitc::BINOP_OR:   return Instruction::Or;
773   case bitc::BINOP_XOR:  return Instruction::Xor;
774   }
775 }
776 
GetDecodedRMWOperation(unsigned Val)777 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
778   switch (Val) {
779   default: return AtomicRMWInst::BAD_BINOP;
780   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
781   case bitc::RMW_ADD: return AtomicRMWInst::Add;
782   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
783   case bitc::RMW_AND: return AtomicRMWInst::And;
784   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
785   case bitc::RMW_OR: return AtomicRMWInst::Or;
786   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
787   case bitc::RMW_MAX: return AtomicRMWInst::Max;
788   case bitc::RMW_MIN: return AtomicRMWInst::Min;
789   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
790   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
791   }
792 }
793 
GetDecodedOrdering(unsigned Val)794 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
795   switch (Val) {
796   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
797   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
798   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
799   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
800   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
801   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
802   default: // Map unknown orderings to sequentially-consistent.
803   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
804   }
805 }
806 
GetDecodedSynchScope(unsigned Val)807 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
808   switch (Val) {
809   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
810   default: // Map unknown scopes to cross-thread.
811   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
812   }
813 }
814 
815 namespace llvm {
816 namespace {
817   /// @brief A class for maintaining the slot number definition
818   /// as a placeholder for the actual definition for forward constants defs.
819   class ConstantPlaceHolder : public ConstantExpr {
820     void operator=(const ConstantPlaceHolder &) = delete;
821   public:
822     // allocate space for exactly one operand
operator new(size_t s)823     void *operator new(size_t s) {
824       return User::operator new(s, 1);
825     }
ConstantPlaceHolder(Type * Ty,LLVMContext & Context)826     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
827       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
828       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
829     }
830 
831     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
classof(const Value * V)832     static bool classof(const Value *V) {
833       return isa<ConstantExpr>(V) &&
834              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
835     }
836 
837 
838     /// Provide fast operand accessors
839     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
840   };
841 }
842 
843 // FIXME: can we inherit this from ConstantExpr?
844 template <>
845 struct OperandTraits<ConstantPlaceHolder> :
846   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
847 };
848 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
849 }
850 
851 
AssignValue(Value * V,unsigned Idx)852 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
853   if (Idx == size()) {
854     push_back(V);
855     return;
856   }
857 
858   if (Idx >= size())
859     resize(Idx+1);
860 
861   WeakVH &OldV = ValuePtrs[Idx];
862   if (!OldV) {
863     OldV = V;
864     return;
865   }
866 
867   // Handle constants and non-constants (e.g. instrs) differently for
868   // efficiency.
869   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
870     ResolveConstants.push_back(std::make_pair(PHC, Idx));
871     OldV = V;
872   } else {
873     // If there was a forward reference to this value, replace it.
874     Value *PrevVal = OldV;
875     OldV->replaceAllUsesWith(V);
876     delete PrevVal;
877   }
878 }
879 
880 
getConstantFwdRef(unsigned Idx,Type * Ty)881 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
882                                                     Type *Ty) {
883   if (Idx >= size())
884     resize(Idx + 1);
885 
886   if (Value *V = ValuePtrs[Idx]) {
887     assert(Ty == V->getType() && "Type mismatch in constant table!");
888     return cast<Constant>(V);
889   }
890 
891   // Create and return a placeholder, which will later be RAUW'd.
892   Constant *C = new ConstantPlaceHolder(Ty, Context);
893   ValuePtrs[Idx] = C;
894   return C;
895 }
896 
getValueFwdRef(unsigned Idx,Type * Ty)897 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
898   if (Idx >= size())
899     resize(Idx + 1);
900 
901   if (Value *V = ValuePtrs[Idx]) {
902     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
903     return V;
904   }
905 
906   // No type specified, must be invalid reference.
907   if (!Ty) return nullptr;
908 
909   // Create and return a placeholder, which will later be RAUW'd.
910   Value *V = new Argument(Ty);
911   ValuePtrs[Idx] = V;
912   return V;
913 }
914 
915 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
916 /// resolves any forward references.  The idea behind this is that we sometimes
917 /// get constants (such as large arrays) which reference *many* forward ref
918 /// constants.  Replacing each of these causes a lot of thrashing when
919 /// building/reuniquing the constant.  Instead of doing this, we look at all the
920 /// uses and rewrite all the place holders at once for any constant that uses
921 /// a placeholder.
ResolveConstantForwardRefs()922 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
923   // Sort the values by-pointer so that they are efficient to look up with a
924   // binary search.
925   std::sort(ResolveConstants.begin(), ResolveConstants.end());
926 
927   SmallVector<Constant*, 64> NewOps;
928 
929   while (!ResolveConstants.empty()) {
930     Value *RealVal = operator[](ResolveConstants.back().second);
931     Constant *Placeholder = ResolveConstants.back().first;
932     ResolveConstants.pop_back();
933 
934     // Loop over all users of the placeholder, updating them to reference the
935     // new value.  If they reference more than one placeholder, update them all
936     // at once.
937     while (!Placeholder->use_empty()) {
938       auto UI = Placeholder->user_begin();
939       User *U = *UI;
940 
941       // If the using object isn't uniqued, just update the operands.  This
942       // handles instructions and initializers for global variables.
943       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
944         UI.getUse().set(RealVal);
945         continue;
946       }
947 
948       // Otherwise, we have a constant that uses the placeholder.  Replace that
949       // constant with a new constant that has *all* placeholder uses updated.
950       Constant *UserC = cast<Constant>(U);
951       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
952            I != E; ++I) {
953         Value *NewOp;
954         if (!isa<ConstantPlaceHolder>(*I)) {
955           // Not a placeholder reference.
956           NewOp = *I;
957         } else if (*I == Placeholder) {
958           // Common case is that it just references this one placeholder.
959           NewOp = RealVal;
960         } else {
961           // Otherwise, look up the placeholder in ResolveConstants.
962           ResolveConstantsTy::iterator It =
963             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
964                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
965                                                             0));
966           assert(It != ResolveConstants.end() && It->first == *I);
967           NewOp = operator[](It->second);
968         }
969 
970         NewOps.push_back(cast<Constant>(NewOp));
971       }
972 
973       // Make the new constant.
974       Constant *NewC;
975       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
976         NewC = ConstantArray::get(UserCA->getType(), NewOps);
977       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
978         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
979       } else if (isa<ConstantVector>(UserC)) {
980         NewC = ConstantVector::get(NewOps);
981       } else {
982         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
983         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
984       }
985 
986       UserC->replaceAllUsesWith(NewC);
987       UserC->destroyConstant();
988       NewOps.clear();
989     }
990 
991     // Update all ValueHandles, they should be the only users at this point.
992     Placeholder->replaceAllUsesWith(RealVal);
993     delete Placeholder;
994   }
995 }
996 
AssignValue(Metadata * MD,unsigned Idx)997 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
998   if (Idx == size()) {
999     push_back(MD);
1000     return;
1001   }
1002 
1003   if (Idx >= size())
1004     resize(Idx+1);
1005 
1006   TrackingMDRef &OldMD = MDValuePtrs[Idx];
1007   if (!OldMD) {
1008     OldMD.reset(MD);
1009     return;
1010   }
1011 
1012   // If there was a forward reference to this value, replace it.
1013   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1014   PrevMD->replaceAllUsesWith(MD);
1015   --NumFwdRefs;
1016 }
1017 
getValueFwdRef(unsigned Idx)1018 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1019   if (Idx >= size())
1020     resize(Idx + 1);
1021 
1022   if (Metadata *MD = MDValuePtrs[Idx])
1023     return MD;
1024 
1025   // Create and return a placeholder, which will later be RAUW'd.
1026   AnyFwdRefs = true;
1027   ++NumFwdRefs;
1028   Metadata *MD = MDNode::getTemporary(Context, None).release();
1029   MDValuePtrs[Idx].reset(MD);
1030   return MD;
1031 }
1032 
tryToResolveCycles()1033 void BitcodeReaderMDValueList::tryToResolveCycles() {
1034   if (!AnyFwdRefs)
1035     // Nothing to do.
1036     return;
1037 
1038   if (NumFwdRefs)
1039     // Still forward references... can't resolve cycles.
1040     return;
1041 
1042   // Resolve any cycles.
1043   for (auto &MD : MDValuePtrs) {
1044     auto *N = dyn_cast_or_null<MDNode>(MD);
1045     if (!N)
1046       continue;
1047 
1048     assert(!N->isTemporary() && "Unexpected forward reference");
1049     N->resolveCycles();
1050   }
1051 }
1052 
getTypeByID(unsigned ID)1053 Type *BitcodeReader::getTypeByID(unsigned ID) {
1054   // The type table size is always specified correctly.
1055   if (ID >= TypeList.size())
1056     return nullptr;
1057 
1058   if (Type *Ty = TypeList[ID])
1059     return Ty;
1060 
1061   // If we have a forward reference, the only possible case is when it is to a
1062   // named struct.  Just create a placeholder for now.
1063   return TypeList[ID] = createIdentifiedStructType(Context);
1064 }
1065 
createIdentifiedStructType(LLVMContext & Context,StringRef Name)1066 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1067                                                       StringRef Name) {
1068   auto *Ret = StructType::create(Context, Name);
1069   IdentifiedStructTypes.push_back(Ret);
1070   return Ret;
1071 }
1072 
createIdentifiedStructType(LLVMContext & Context)1073 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1074   auto *Ret = StructType::create(Context);
1075   IdentifiedStructTypes.push_back(Ret);
1076   return Ret;
1077 }
1078 
1079 
1080 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
getTypeByIDOrNull(unsigned ID)1081 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
1082   if (ID >= TypeList.size())
1083     TypeList.resize(ID+1);
1084 
1085   return TypeList[ID];
1086 }
1087 
1088 //===----------------------------------------------------------------------===//
1089 //  Functions for parsing blocks from the bitcode file
1090 //===----------------------------------------------------------------------===//
1091 
1092 
1093 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1094 /// been decoded from the given integer. This function must stay in sync with
1095 /// 'encodeLLVMAttributesForBitcode'.
decodeLLVMAttributesForBitcode(AttrBuilder & B,uint64_t EncodedAttrs)1096 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1097                                            uint64_t EncodedAttrs) {
1098   // FIXME: Remove in 4.0.
1099 
1100   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1101   // the bits above 31 down by 11 bits.
1102   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1103   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1104          "Alignment must be a power of two.");
1105 
1106   if (Alignment)
1107     B.addAlignmentAttr(Alignment);
1108   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1109                 (EncodedAttrs & 0xffff));
1110 }
1111 
ParseAttributeBlock()1112 std::error_code BitcodeReader::ParseAttributeBlock() {
1113   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1114     return Error("Invalid record");
1115 
1116   if (!MAttributes.empty())
1117     return Error("Invalid multiple blocks");
1118 
1119   SmallVector<uint64_t, 64> Record;
1120 
1121   SmallVector<AttributeSet, 8> Attrs;
1122 
1123   // Read all the records.
1124   while (1) {
1125     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1126 
1127     switch (Entry.Kind) {
1128     case BitstreamEntry::SubBlock: // Handled for us already.
1129     case BitstreamEntry::Error:
1130       return Error("Malformed block");
1131     case BitstreamEntry::EndBlock:
1132       return std::error_code();
1133     case BitstreamEntry::Record:
1134       // The interesting case.
1135       break;
1136     }
1137 
1138     // Read a record.
1139     Record.clear();
1140     switch (Stream.readRecord(Entry.ID, Record)) {
1141     default:  // Default behavior: ignore.
1142       break;
1143     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1144       // FIXME: Remove in 4.0.
1145       if (Record.size() & 1)
1146         return Error("Invalid record");
1147 
1148       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1149         AttrBuilder B;
1150         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1151         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1152       }
1153 
1154       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1155       Attrs.clear();
1156       break;
1157     }
1158     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1159       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1160         Attrs.push_back(MAttributeGroups[Record[i]]);
1161 
1162       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1163       Attrs.clear();
1164       break;
1165     }
1166     }
1167   }
1168 }
1169 
1170 
ParseTypeTable()1171 std::error_code BitcodeReader::ParseTypeTable() {
1172   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1173     return Error("Invalid record");
1174 
1175   return ParseTypeTableBody();
1176 }
1177 
ParseTypeTableBody()1178 std::error_code BitcodeReader::ParseTypeTableBody() {
1179   if (!TypeList.empty())
1180     return Error("Invalid multiple blocks");
1181 
1182   SmallVector<uint64_t, 64> Record;
1183   unsigned NumRecords = 0;
1184 
1185   SmallString<64> TypeName;
1186 
1187   // Read all the records for this type table.
1188   while (1) {
1189     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1190 
1191     switch (Entry.Kind) {
1192     case BitstreamEntry::SubBlock: // Handled for us already.
1193     case BitstreamEntry::Error:
1194       return Error("Malformed block");
1195     case BitstreamEntry::EndBlock:
1196       if (NumRecords != TypeList.size())
1197         return Error("Malformed block");
1198       return std::error_code();
1199     case BitstreamEntry::Record:
1200       // The interesting case.
1201       break;
1202     }
1203 
1204     // Read a record.
1205     Record.clear();
1206     Type *ResultTy = nullptr;
1207     switch (Stream.readRecord(Entry.ID, Record)) {
1208     default:
1209       return Error("Invalid value");
1210     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1211       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1212       // type list.  This allows us to reserve space.
1213       if (Record.size() < 1)
1214         return Error("Invalid record");
1215       TypeList.resize(Record[0]);
1216       continue;
1217     case bitc::TYPE_CODE_VOID:      // VOID
1218       ResultTy = Type::getVoidTy(Context);
1219       break;
1220     case bitc::TYPE_CODE_HALF:     // HALF
1221       ResultTy = Type::getHalfTy(Context);
1222       break;
1223     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1224       ResultTy = Type::getFloatTy(Context);
1225       break;
1226     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1227       ResultTy = Type::getDoubleTy(Context);
1228       break;
1229     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1230       ResultTy = Type::getX86_FP80Ty(Context);
1231       break;
1232     case bitc::TYPE_CODE_FP128:     // FP128
1233       ResultTy = Type::getFP128Ty(Context);
1234       break;
1235     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1236       ResultTy = Type::getPPC_FP128Ty(Context);
1237       break;
1238     case bitc::TYPE_CODE_LABEL:     // LABEL
1239       ResultTy = Type::getLabelTy(Context);
1240       break;
1241     case bitc::TYPE_CODE_METADATA:  // METADATA
1242       ResultTy = Type::getMetadataTy(Context);
1243       break;
1244     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1245       ResultTy = Type::getX86_MMXTy(Context);
1246       break;
1247     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1248       if (Record.size() < 1)
1249         return Error("Invalid record");
1250 
1251       ResultTy = IntegerType::get(Context, Record[0]);
1252       break;
1253     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1254                                     //          [pointee type, address space]
1255       if (Record.size() < 1)
1256         return Error("Invalid record");
1257       unsigned AddressSpace = 0;
1258       if (Record.size() == 2)
1259         AddressSpace = Record[1];
1260       ResultTy = getTypeByID(Record[0]);
1261       if (!ResultTy)
1262         return Error("Invalid type");
1263       ResultTy = PointerType::get(ResultTy, AddressSpace);
1264       break;
1265     }
1266     case bitc::TYPE_CODE_FUNCTION_OLD: {
1267       // FIXME: attrid is dead, remove it in LLVM 4.0
1268       // FUNCTION: [vararg, attrid, retty, paramty x N]
1269       if (Record.size() < 3)
1270         return Error("Invalid record");
1271       SmallVector<Type*, 8> ArgTys;
1272       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1273         if (Type *T = getTypeByID(Record[i]))
1274           ArgTys.push_back(T);
1275         else
1276           break;
1277       }
1278 
1279       ResultTy = getTypeByID(Record[2]);
1280       if (!ResultTy || ArgTys.size() < Record.size()-3)
1281         return Error("Invalid type");
1282 
1283       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1284       break;
1285     }
1286     case bitc::TYPE_CODE_FUNCTION: {
1287       // FUNCTION: [vararg, retty, paramty x N]
1288       if (Record.size() < 2)
1289         return Error("Invalid record");
1290       SmallVector<Type*, 8> ArgTys;
1291       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1292         if (Type *T = getTypeByID(Record[i]))
1293           ArgTys.push_back(T);
1294         else
1295           break;
1296       }
1297 
1298       ResultTy = getTypeByID(Record[1]);
1299       if (!ResultTy || ArgTys.size() < Record.size()-2)
1300         return Error("Invalid type");
1301 
1302       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1303       break;
1304     }
1305     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1306       if (Record.size() < 1)
1307         return Error("Invalid record");
1308       SmallVector<Type*, 8> EltTys;
1309       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1310         if (Type *T = getTypeByID(Record[i]))
1311           EltTys.push_back(T);
1312         else
1313           break;
1314       }
1315       if (EltTys.size() != Record.size()-1)
1316         return Error("Invalid type");
1317       ResultTy = StructType::get(Context, EltTys, Record[0]);
1318       break;
1319     }
1320     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1321       if (ConvertToString(Record, 0, TypeName))
1322         return Error("Invalid record");
1323       continue;
1324 
1325     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1326       if (Record.size() < 1)
1327         return Error("Invalid record");
1328 
1329       if (NumRecords >= TypeList.size())
1330         return Error("Invalid TYPE table");
1331 
1332       // Check to see if this was forward referenced, if so fill in the temp.
1333       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1334       if (Res) {
1335         Res->setName(TypeName);
1336         TypeList[NumRecords] = nullptr;
1337       } else  // Otherwise, create a new struct.
1338         Res = createIdentifiedStructType(Context, TypeName);
1339       TypeName.clear();
1340 
1341       SmallVector<Type*, 8> EltTys;
1342       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1343         if (Type *T = getTypeByID(Record[i]))
1344           EltTys.push_back(T);
1345         else
1346           break;
1347       }
1348       if (EltTys.size() != Record.size()-1)
1349         return Error("Invalid record");
1350       Res->setBody(EltTys, Record[0]);
1351       ResultTy = Res;
1352       break;
1353     }
1354     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1355       if (Record.size() != 1)
1356         return Error("Invalid record");
1357 
1358       if (NumRecords >= TypeList.size())
1359         return Error("Invalid TYPE table");
1360 
1361       // Check to see if this was forward referenced, if so fill in the temp.
1362       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1363       if (Res) {
1364         Res->setName(TypeName);
1365         TypeList[NumRecords] = nullptr;
1366       } else  // Otherwise, create a new struct with no body.
1367         Res = createIdentifiedStructType(Context, TypeName);
1368       TypeName.clear();
1369       ResultTy = Res;
1370       break;
1371     }
1372     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1373       if (Record.size() < 2)
1374         return Error("Invalid record");
1375       if ((ResultTy = getTypeByID(Record[1])))
1376         ResultTy = ArrayType::get(ResultTy, Record[0]);
1377       else
1378         return Error("Invalid type");
1379       break;
1380     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1381       if (Record.size() < 2)
1382         return Error("Invalid record");
1383       if ((ResultTy = getTypeByID(Record[1])))
1384         ResultTy = VectorType::get(ResultTy, Record[0]);
1385       else
1386         return Error("Invalid type");
1387       break;
1388     }
1389 
1390     if (NumRecords >= TypeList.size())
1391       return Error("Invalid TYPE table");
1392     assert(ResultTy && "Didn't read a type?");
1393     assert(!TypeList[NumRecords] && "Already read type?");
1394     TypeList[NumRecords++] = ResultTy;
1395   }
1396 }
1397 
1398 // FIXME: Remove in LLVM 3.1
ParseOldTypeTable()1399 std::error_code BitcodeReader::ParseOldTypeTable() {
1400   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
1401     return Error("Malformed block");
1402 
1403   if (!TypeList.empty())
1404     return Error("Invalid TYPE table");
1405 
1406 
1407   // While horrible, we have no good ordering of types in the bc file.  Just
1408   // iteratively parse types out of the bc file in multiple passes until we get
1409   // them all.  Do this by saving a cursor for the start of the type block.
1410   BitstreamCursor StartOfTypeBlockCursor(Stream);
1411 
1412   unsigned NumTypesRead = 0;
1413 
1414   SmallVector<uint64_t, 64> Record;
1415 RestartScan:
1416   unsigned NextTypeID = 0;
1417   bool ReadAnyTypes = false;
1418 
1419   // Read all the records for this type table.
1420   while (1) {
1421     unsigned Code = Stream.ReadCode();
1422     if (Code == bitc::END_BLOCK) {
1423       if (NextTypeID != TypeList.size())
1424         return Error("Invalid TYPE table");
1425 
1426       // If we haven't read all of the types yet, iterate again.
1427       if (NumTypesRead != TypeList.size()) {
1428         // If we didn't successfully read any types in this pass, then we must
1429         // have an unhandled forward reference.
1430         if (!ReadAnyTypes)
1431           return Error("Invalid TYPE table");
1432 
1433         Stream = StartOfTypeBlockCursor;
1434         goto RestartScan;
1435       }
1436 
1437       if (Stream.ReadBlockEnd())
1438         return Error("Invalid TYPE table");
1439       return std::error_code();
1440     }
1441 
1442     if (Code == bitc::ENTER_SUBBLOCK) {
1443       // No known subblocks, always skip them.
1444       Stream.ReadSubBlockID();
1445       if (Stream.SkipBlock())
1446         return Error("Malformed block");
1447       continue;
1448     }
1449 
1450     if (Code == bitc::DEFINE_ABBREV) {
1451       Stream.ReadAbbrevRecord();
1452       continue;
1453     }
1454 
1455     // Read a record.
1456     Record.clear();
1457     Type *ResultTy = nullptr;
1458     switch (Stream.readRecord(Code, Record)) {
1459     default: return Error("Invalid TYPE table");
1460     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1461       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1462       // type list.  This allows us to reserve space.
1463       if (Record.size() < 1)
1464         return Error("Invalid TYPE table");
1465       TypeList.resize(Record[0]);
1466       continue;
1467     case bitc::TYPE_CODE_VOID:      // VOID
1468       ResultTy = Type::getVoidTy(Context);
1469       break;
1470     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1471       ResultTy = Type::getFloatTy(Context);
1472       break;
1473     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1474       ResultTy = Type::getDoubleTy(Context);
1475       break;
1476     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1477       ResultTy = Type::getX86_FP80Ty(Context);
1478       break;
1479     case bitc::TYPE_CODE_FP128:     // FP128
1480       ResultTy = Type::getFP128Ty(Context);
1481       break;
1482     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1483       ResultTy = Type::getPPC_FP128Ty(Context);
1484       break;
1485     case bitc::TYPE_CODE_LABEL:     // LABEL
1486       ResultTy = Type::getLabelTy(Context);
1487       break;
1488     case bitc::TYPE_CODE_METADATA:  // METADATA
1489       ResultTy = Type::getMetadataTy(Context);
1490       break;
1491     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1492       ResultTy = Type::getX86_MMXTy(Context);
1493       break;
1494     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
1495       if (Record.size() < 1)
1496         return Error("Invalid TYPE table");
1497       ResultTy = IntegerType::get(Context, Record[0]);
1498       break;
1499     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
1500       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
1501         ResultTy = StructType::create(Context, "");
1502       break;
1503     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
1504       if (NextTypeID >= TypeList.size()) break;
1505       // If we already read it, don't reprocess.
1506       if (TypeList[NextTypeID] &&
1507           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
1508         break;
1509 
1510       // Set a type.
1511       if (TypeList[NextTypeID] == 0)
1512         TypeList[NextTypeID] = StructType::create(Context, "");
1513 
1514       std::vector<Type*> EltTys;
1515       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1516         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1517           EltTys.push_back(Elt);
1518         else
1519           break;
1520       }
1521 
1522       if (EltTys.size() != Record.size()-1)
1523         break;      // Not all elements are ready.
1524 
1525       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
1526       ResultTy = TypeList[NextTypeID];
1527       TypeList[NextTypeID] = 0;
1528       break;
1529     }
1530     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1531       //          [pointee type, address space]
1532       if (Record.size() < 1)
1533         return Error("Invalid TYPE table");
1534       unsigned AddressSpace = 0;
1535       if (Record.size() == 2)
1536         AddressSpace = Record[1];
1537       if ((ResultTy = getTypeByIDOrNull(Record[0])))
1538         ResultTy = PointerType::get(ResultTy, AddressSpace);
1539       break;
1540     }
1541     case bitc::TYPE_CODE_FUNCTION_OLD: {
1542       // FIXME: attrid is dead, remove it in LLVM 3.0
1543       // FUNCTION: [vararg, attrid, retty, paramty x N]
1544       if (Record.size() < 3)
1545         return Error("Invalid TYPE table");
1546       std::vector<Type*> ArgTys;
1547       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1548         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1549           ArgTys.push_back(Elt);
1550         else
1551           break;
1552       }
1553       if (ArgTys.size()+3 != Record.size())
1554         break;  // Something was null.
1555       if ((ResultTy = getTypeByIDOrNull(Record[2])))
1556         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1557       break;
1558     }
1559     case bitc::TYPE_CODE_FUNCTION: {
1560       // FUNCTION: [vararg, retty, paramty x N]
1561       if (Record.size() < 2)
1562         return Error("Invalid TYPE table");
1563       std::vector<Type*> ArgTys;
1564       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1565         if (Type *Elt = getTypeByIDOrNull(Record[i]))
1566           ArgTys.push_back(Elt);
1567         else
1568           break;
1569       }
1570       if (ArgTys.size()+2 != Record.size())
1571         break;  // Something was null.
1572       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1573         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1574       break;
1575     }
1576     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1577       if (Record.size() < 2)
1578         return Error("Invalid TYPE table");
1579       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1580         ResultTy = ArrayType::get(ResultTy, Record[0]);
1581       break;
1582     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1583       if (Record.size() < 2)
1584         return Error("Invalid TYPE table");
1585       if ((ResultTy = getTypeByIDOrNull(Record[1])))
1586         ResultTy = VectorType::get(ResultTy, Record[0]);
1587       break;
1588     }
1589 
1590     if (NextTypeID >= TypeList.size())
1591       return Error("Invalid TYPE table");
1592 
1593     if (ResultTy && TypeList[NextTypeID] == 0) {
1594       ++NumTypesRead;
1595       ReadAnyTypes = true;
1596 
1597       TypeList[NextTypeID] = ResultTy;
1598     }
1599 
1600     ++NextTypeID;
1601   }
1602 }
1603 
1604 
ParseOldTypeSymbolTable()1605 std::error_code BitcodeReader::ParseOldTypeSymbolTable() {
1606   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
1607     return Error("Malformed block");
1608 
1609   SmallVector<uint64_t, 64> Record;
1610 
1611   // Read all the records for this type table.
1612   std::string TypeName;
1613   while (1) {
1614     unsigned Code = Stream.ReadCode();
1615     if (Code == bitc::END_BLOCK) {
1616       if (Stream.ReadBlockEnd())
1617         return Error("Malformed block");
1618       return std::error_code();
1619     }
1620 
1621     if (Code == bitc::ENTER_SUBBLOCK) {
1622       // No known subblocks, always skip them.
1623       Stream.ReadSubBlockID();
1624       if (Stream.SkipBlock())
1625         return Error("Malformed block");
1626       continue;
1627     }
1628 
1629     if (Code == bitc::DEFINE_ABBREV) {
1630       Stream.ReadAbbrevRecord();
1631       continue;
1632     }
1633 
1634     // Read a record.
1635     Record.clear();
1636     switch (Stream.readRecord(Code, Record)) {
1637     default:  // Default behavior: unknown type.
1638       break;
1639     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
1640       if (ConvertToString(Record, 1, TypeName))
1641         return Error("Invalid record");
1642       unsigned TypeID = Record[0];
1643       if (TypeID >= TypeList.size())
1644         return Error("Invalid record");
1645 
1646       // Only apply the type name to a struct type with no name.
1647       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
1648         if (!STy->isLiteral() && !STy->hasName())
1649           STy->setName(TypeName);
1650       TypeName.clear();
1651       break;
1652     }
1653   }
1654 }
1655 
ParseValueSymbolTable()1656 std::error_code BitcodeReader::ParseValueSymbolTable() {
1657   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1658     return Error("Invalid record");
1659 
1660   SmallVector<uint64_t, 64> Record;
1661 
1662   // Read all the records for this value table.
1663   SmallString<128> ValueName;
1664   while (1) {
1665     unsigned Code = Stream.ReadCode();
1666     if (Code == bitc::END_BLOCK) {
1667       if (Stream.ReadBlockEnd())
1668         return Error("Malformed block");
1669       return std::error_code();
1670     }
1671     if (Code == bitc::ENTER_SUBBLOCK) {
1672       // No known subblocks, always skip them.
1673       Stream.ReadSubBlockID();
1674       if (Stream.SkipBlock())
1675         return Error("Malformed block");
1676       continue;
1677     }
1678 
1679     if (Code == bitc::DEFINE_ABBREV) {
1680       Stream.ReadAbbrevRecord();
1681       continue;
1682     }
1683 
1684     // Read a record.
1685     Record.clear();
1686     switch (Stream.readRecord(Code, Record)) {
1687     default:  // Default behavior: unknown type.
1688       break;
1689     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1690       if (ConvertToString(Record, 1, ValueName))
1691         return Error("Invalid record");
1692       unsigned ValueID = Record[0];
1693       if (ValueID >= ValueList.size())
1694         return Error("Invalid record");
1695       Value *V = ValueList[ValueID];
1696 
1697       V->setName(StringRef(ValueName.data(), ValueName.size()));
1698       ValueName.clear();
1699       break;
1700     }
1701     case bitc::VST_CODE_BBENTRY: {
1702       if (ConvertToString(Record, 1, ValueName))
1703         return Error("Invalid record");
1704       BasicBlock *BB = getBasicBlock(Record[0]);
1705       if (!BB)
1706         return Error("Invalid record");
1707 
1708       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1709       ValueName.clear();
1710       break;
1711     }
1712     }
1713   }
1714 }
1715 
ParseMetadata()1716 std::error_code BitcodeReader::ParseMetadata() {
1717   unsigned NextMDValueNo = MDValueList.size();
1718 
1719   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1720     return Error("Invalid record");
1721 
1722   SmallVector<uint64_t, 64> Record;
1723 
1724   // Read all the records.
1725   while (1) {
1726     unsigned Code = Stream.ReadCode();
1727     if (Code == bitc::END_BLOCK) {
1728       if (Stream.ReadBlockEnd())
1729         return Error("Malformed block");
1730       return std::error_code();
1731     }
1732 
1733     if (Code == bitc::ENTER_SUBBLOCK) {
1734       // No known subblocks, always skip them.
1735       Stream.ReadSubBlockID();
1736       if (Stream.SkipBlock())
1737         return Error("Malformed block");
1738       continue;
1739     }
1740 
1741     if (Code == bitc::DEFINE_ABBREV) {
1742       Stream.ReadAbbrevRecord();
1743       continue;
1744     }
1745 
1746     bool IsFunctionLocal = false;
1747     // Read a record.
1748     Record.clear();
1749     Code = Stream.readRecord(Code, Record);
1750     switch (Code) {
1751     default:  // Default behavior: ignore.
1752       break;
1753     case bitc::METADATA_NAME: {
1754       // Read name of the named metadata.
1755       SmallString<8> Name(Record.begin(), Record.end());
1756       Record.clear();
1757       Code = Stream.ReadCode();
1758 
1759       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1760       unsigned NextBitCode = Stream.readRecord(Code, Record);
1761       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1762 
1763       // Read named metadata elements.
1764       unsigned Size = Record.size();
1765       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1766       for (unsigned i = 0; i != Size; ++i) {
1767         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1768         if (!MD)
1769           return Error("Invalid record");
1770         NMD->addOperand(MD);
1771       }
1772       break;
1773     }
1774     case bitc::METADATA_OLD_FN_NODE:
1775       IsFunctionLocal = true;
1776       // fall-through
1777     case bitc::METADATA_OLD_NODE: {
1778       if (Record.size() % 2 == 1)
1779         return Error("Invalid record");
1780 
1781       unsigned Size = Record.size();
1782       SmallVector<Metadata *, 8> Elts;
1783       for (unsigned i = 0; i != Size; i += 2) {
1784         Type *Ty = getTypeByID(Record[i]);
1785         if (!Ty)
1786           return Error("Invalid record");
1787         if (Ty->isMetadataTy())
1788           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1789         else if (!Ty->isVoidTy()) {
1790           auto *MD =
1791               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1792           assert(isa<ConstantAsMetadata>(MD) &&
1793                  "Expected non-function-local metadata");
1794           Elts.push_back(MD);
1795         } else
1796           Elts.push_back(nullptr);
1797       }
1798       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1799       break;
1800     }
1801     case bitc::METADATA_STRING_OLD: {
1802       std::string String(Record.begin(), Record.end());
1803 
1804       // Test for upgrading !llvm.loop.
1805       mayBeOldLoopAttachmentTag(String);
1806 
1807       Metadata *MD = MDString::get(Context, String);
1808       MDValueList.AssignValue(MD, NextMDValueNo++);
1809       break;
1810     }
1811     case bitc::METADATA_KIND: {
1812       if (Record.size() < 2)
1813         return Error("Invalid record");
1814 
1815       unsigned Kind = Record[0];
1816       SmallString<8> Name(Record.begin()+1, Record.end());
1817 
1818       unsigned NewKind = TheModule->getMDKindID(Name.str());
1819       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1820         return Error("Conflicting METADATA_KIND records");
1821       break;
1822     }
1823     }
1824   }
1825 }
1826 
1827 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1828 /// the LSB for dense VBR encoding.
decodeSignRotatedValue(uint64_t V)1829 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1830   if ((V & 1) == 0)
1831     return V >> 1;
1832   if (V != 1)
1833     return -(V >> 1);
1834   // There is no such thing as -0 with integers.  "-0" really means MININT.
1835   return 1ULL << 63;
1836 }
1837 
1838 // FIXME: Delete this in LLVM 4.0 and just assert that the aliasee is a
1839 // GlobalObject.
1840 static GlobalObject &
getGlobalObjectInExpr(const DenseMap<GlobalAlias *,Constant * > & Map,Constant & C)1841 getGlobalObjectInExpr(const DenseMap<GlobalAlias *, Constant *> &Map,
1842                       Constant &C) {
1843   auto *GO = dyn_cast<GlobalObject>(&C);
1844   if (GO)
1845     return *GO;
1846 
1847   auto *GA = dyn_cast<GlobalAlias>(&C);
1848   if (GA)
1849     return getGlobalObjectInExpr(Map, *Map.find(GA)->second);
1850 
1851   auto &CE = cast<ConstantExpr>(C);
1852   assert(CE.getOpcode() == Instruction::BitCast ||
1853          CE.getOpcode() == Instruction::GetElementPtr ||
1854          CE.getOpcode() == Instruction::AddrSpaceCast);
1855   if (CE.getOpcode() == Instruction::GetElementPtr)
1856     assert(cast<GEPOperator>(CE).hasAllZeroIndices());
1857   return getGlobalObjectInExpr(Map, *CE.getOperand(0));
1858 }
1859 
1860 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1861 /// values and aliases that we can.
ResolveGlobalAndAliasInits()1862 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1863   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1864   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1865 
1866   GlobalInitWorklist.swap(GlobalInits);
1867   AliasInitWorklist.swap(AliasInits);
1868 
1869   while (!GlobalInitWorklist.empty()) {
1870     unsigned ValID = GlobalInitWorklist.back().second;
1871     if (ValID >= ValueList.size()) {
1872       // Not ready to resolve this yet, it requires something later in the file.
1873       GlobalInits.push_back(GlobalInitWorklist.back());
1874     } else {
1875       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1876         GlobalInitWorklist.back().first->setInitializer(C);
1877       else
1878         return Error("Expected a constant");
1879     }
1880     GlobalInitWorklist.pop_back();
1881   }
1882 
1883   // FIXME: Delete this in LLVM 4.0
1884   // Older versions of llvm could write an alias pointing to another. We cannot
1885   // construct those aliases, so we first collect an alias to aliasee expression
1886   // and then compute the actual aliasee.
1887   DenseMap<GlobalAlias *, Constant *> AliasInit;
1888 
1889   while (!AliasInitWorklist.empty()) {
1890     unsigned ValID = AliasInitWorklist.back().second;
1891     if (ValID >= ValueList.size()) {
1892       AliasInits.push_back(AliasInitWorklist.back());
1893     } else {
1894       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1895         AliasInit.insert(std::make_pair(AliasInitWorklist.back().first, C));
1896       else
1897         return Error("Expected a constant");
1898     }
1899     AliasInitWorklist.pop_back();
1900   }
1901 
1902   for (auto &Pair : AliasInit) {
1903     auto &GO = getGlobalObjectInExpr(AliasInit, *Pair.second);
1904     Pair.first->setAliasee(&GO);
1905   }
1906 
1907   return std::error_code();
1908 }
1909 
ReadWideAPInt(ArrayRef<uint64_t> Vals,unsigned TypeBits)1910 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1911   SmallVector<uint64_t, 8> Words(Vals.size());
1912   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1913                  BitcodeReader::decodeSignRotatedValue);
1914 
1915   return APInt(TypeBits, Words);
1916 }
1917 
ParseConstants()1918 std::error_code BitcodeReader::ParseConstants() {
1919   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1920     return Error("Invalid record");
1921 
1922   SmallVector<uint64_t, 64> Record;
1923 
1924   // Read all the records for this value table.
1925   Type *CurTy = Type::getInt32Ty(Context);
1926   unsigned NextCstNo = ValueList.size();
1927   while (1) {
1928     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1929 
1930     switch (Entry.Kind) {
1931     case BitstreamEntry::SubBlock: // Handled for us already.
1932     case BitstreamEntry::Error:
1933       return Error("Malformed block");
1934     case BitstreamEntry::EndBlock:
1935       if (NextCstNo != ValueList.size())
1936         return Error("Invalid constant reference");
1937 
1938       // Once all the constants have been read, go through and resolve forward
1939       // references.
1940       ValueList.ResolveConstantForwardRefs();
1941       return std::error_code();
1942     case BitstreamEntry::Record:
1943       // The interesting case.
1944       break;
1945     }
1946 
1947     // Read a record.
1948     Record.clear();
1949     Value *V = nullptr;
1950     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1951     switch (BitCode) {
1952     default:  // Default behavior: unknown constant
1953     case bitc::CST_CODE_UNDEF:     // UNDEF
1954       V = UndefValue::get(CurTy);
1955       break;
1956     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1957       if (Record.empty())
1958         return Error("Invalid record");
1959       if (Record[0] >= TypeList.size())
1960         return Error("Invalid record");
1961       CurTy = TypeList[Record[0]];
1962       continue;  // Skip the ValueList manipulation.
1963     case bitc::CST_CODE_NULL:      // NULL
1964       V = Constant::getNullValue(CurTy);
1965       break;
1966     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1967       if (!CurTy->isIntegerTy() || Record.empty())
1968         return Error("Invalid record");
1969       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1970       break;
1971     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1972       if (!CurTy->isIntegerTy() || Record.empty())
1973         return Error("Invalid record");
1974 
1975       APInt VInt = ReadWideAPInt(Record,
1976                                  cast<IntegerType>(CurTy)->getBitWidth());
1977       V = ConstantInt::get(Context, VInt);
1978 
1979       break;
1980     }
1981     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1982       if (Record.empty())
1983         return Error("Invalid record");
1984       if (CurTy->isHalfTy())
1985         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1986                                              APInt(16, (uint16_t)Record[0])));
1987       else if (CurTy->isFloatTy())
1988         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1989                                              APInt(32, (uint32_t)Record[0])));
1990       else if (CurTy->isDoubleTy())
1991         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1992                                              APInt(64, Record[0])));
1993       else if (CurTy->isX86_FP80Ty()) {
1994         // Bits are not stored the same way as a normal i80 APInt, compensate.
1995         uint64_t Rearrange[2];
1996         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1997         Rearrange[1] = Record[0] >> 48;
1998         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1999                                              APInt(80, Rearrange)));
2000       } else if (CurTy->isFP128Ty())
2001         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2002                                              APInt(128, Record)));
2003       else if (CurTy->isPPC_FP128Ty())
2004         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2005                                              APInt(128, Record)));
2006       else
2007         V = UndefValue::get(CurTy);
2008       break;
2009     }
2010 
2011     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2012       if (Record.empty())
2013         return Error("Invalid record");
2014 
2015       unsigned Size = Record.size();
2016       SmallVector<Constant*, 16> Elts;
2017 
2018       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2019         for (unsigned i = 0; i != Size; ++i)
2020           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2021                                                      STy->getElementType(i)));
2022         V = ConstantStruct::get(STy, Elts);
2023       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2024         Type *EltTy = ATy->getElementType();
2025         for (unsigned i = 0; i != Size; ++i)
2026           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2027         V = ConstantArray::get(ATy, Elts);
2028       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2029         Type *EltTy = VTy->getElementType();
2030         for (unsigned i = 0; i != Size; ++i)
2031           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2032         V = ConstantVector::get(Elts);
2033       } else {
2034         V = UndefValue::get(CurTy);
2035       }
2036       break;
2037     }
2038     case bitc::CST_CODE_STRING: { // STRING: [values]
2039       if (Record.empty())
2040         return Error("Invalid record");
2041 
2042       ArrayType *ATy = cast<ArrayType>(CurTy);
2043       Type *EltTy = ATy->getElementType();
2044 
2045       unsigned Size = Record.size();
2046       std::vector<Constant*> Elts;
2047       for (unsigned i = 0; i != Size; ++i)
2048         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2049       V = ConstantArray::get(ATy, Elts);
2050       break;
2051     }
2052     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2053       if (Record.empty())
2054         return Error("Invalid record");
2055 
2056       ArrayType *ATy = cast<ArrayType>(CurTy);
2057       Type *EltTy = ATy->getElementType();
2058 
2059       unsigned Size = Record.size();
2060       std::vector<Constant*> Elts;
2061       for (unsigned i = 0; i != Size; ++i)
2062         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
2063       Elts.push_back(Constant::getNullValue(EltTy));
2064       V = ConstantArray::get(ATy, Elts);
2065       break;
2066     }
2067     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2068       if (Record.size() < 3)
2069         return Error("Invalid record");
2070       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
2071       if (Opc < 0) {
2072         V = UndefValue::get(CurTy);  // Unknown binop.
2073       } else {
2074         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2075         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2076         unsigned Flags = 0;
2077         if (Record.size() >= 4) {
2078           if (Opc == Instruction::Add ||
2079               Opc == Instruction::Sub ||
2080               Opc == Instruction::Mul ||
2081               Opc == Instruction::Shl) {
2082             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2083               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2084             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2085               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2086           } else if (Opc == Instruction::SDiv ||
2087                      Opc == Instruction::UDiv ||
2088                      Opc == Instruction::LShr ||
2089                      Opc == Instruction::AShr) {
2090             if (Record[3] & (1 << bitc::PEO_EXACT))
2091               Flags |= SDivOperator::IsExact;
2092           }
2093         }
2094         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2095       }
2096       break;
2097     }
2098     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2099       if (Record.size() < 3)
2100         return Error("Invalid record");
2101       int Opc = GetDecodedCastOpcode(Record[0]);
2102       if (Opc < 0) {
2103         V = UndefValue::get(CurTy);  // Unknown cast.
2104       } else {
2105         Type *OpTy = getTypeByID(Record[1]);
2106         if (!OpTy)
2107           return Error("Invalid record");
2108         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2109         V = ConstantExpr::getCast(Opc, Op, CurTy);
2110       }
2111       break;
2112     }
2113     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2114     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2115       Type *PointeeType = nullptr;
2116       if (Record.size() & 1)
2117         return Error("Invalid record");
2118       SmallVector<Constant*, 16> Elts;
2119       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2120         Type *ElTy = getTypeByID(Record[i]);
2121         if (!ElTy)
2122           return Error("Invalid record");
2123         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
2124       }
2125       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2126       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2127                                          BitCode ==
2128                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
2129       break;
2130     }
2131     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
2132       if (Record.size() < 3)
2133         return Error("Invalid record");
2134       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2135                                                               Type::getInt1Ty(Context)),
2136                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2137                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2138       break;
2139     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
2140       if (Record.size() < 3)
2141         return Error("Invalid record");
2142       VectorType *OpTy =
2143         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2144       if (!OpTy)
2145         return Error("Invalid record");
2146       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2147       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2148       V = ConstantExpr::getExtractElement(Op0, Op1);
2149       break;
2150     }
2151     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
2152       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2153       if (Record.size() < 3 || !OpTy)
2154         return Error("Invalid record");
2155       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2156       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2157                                                   OpTy->getElementType());
2158       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2159       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2160       break;
2161     }
2162     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2163       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2164       if (Record.size() < 3 || !OpTy)
2165         return Error("Invalid record");
2166       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2167       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2168       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2169                                                  OpTy->getNumElements());
2170       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2171       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2172       break;
2173     }
2174     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2175       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2176       VectorType *OpTy =
2177         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2178       if (Record.size() < 4 || !RTy || !OpTy)
2179         return Error("Invalid record");
2180       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2181       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2182       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2183                                                  RTy->getNumElements());
2184       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2185       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2186       break;
2187     }
2188     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2189       if (Record.size() < 4)
2190         return Error("Invalid record");
2191       Type *OpTy = getTypeByID(Record[0]);
2192       if (!OpTy)
2193         return Error("Invalid record");
2194       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2195       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2196 
2197       if (OpTy->isFPOrFPVectorTy())
2198         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2199       else
2200         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2201       break;
2202     }
2203     case bitc::CST_CODE_INLINEASM:
2204     case bitc::CST_CODE_INLINEASM_OLD: {
2205       if (Record.size() < 2)
2206         return Error("Invalid record");
2207       std::string AsmStr, ConstrStr;
2208       bool HasSideEffects = Record[0] & 1;
2209       bool IsAlignStack = Record[0] >> 1;
2210       unsigned AsmStrSize = Record[1];
2211       if (2+AsmStrSize >= Record.size())
2212         return Error("Invalid record");
2213       unsigned ConstStrSize = Record[2+AsmStrSize];
2214       if (3+AsmStrSize+ConstStrSize > Record.size())
2215         return Error("Invalid record");
2216 
2217       for (unsigned i = 0; i != AsmStrSize; ++i)
2218         AsmStr += (char)Record[2+i];
2219       for (unsigned i = 0; i != ConstStrSize; ++i)
2220         ConstrStr += (char)Record[3+AsmStrSize+i];
2221       PointerType *PTy = cast<PointerType>(CurTy);
2222       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2223                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2224       break;
2225     }
2226     case bitc::CST_CODE_BLOCKADDRESS:{
2227       if (Record.size() < 3)
2228         return Error("Invalid record");
2229       Type *FnTy = getTypeByID(Record[0]);
2230       if (!FnTy)
2231         return Error("Invalid record");
2232       Function *Fn =
2233         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2234       if (!Fn)
2235         return Error("Invalid record");
2236 
2237       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
2238                                                   Type::getInt8Ty(Context),
2239                                             false, GlobalValue::InternalLinkage,
2240                                                   0, "");
2241       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
2242       V = FwdRef;
2243       break;
2244     }
2245     }
2246 
2247     ValueList.AssignValue(V, NextCstNo);
2248     ++NextCstNo;
2249   }
2250 
2251   if (NextCstNo != ValueList.size())
2252     return Error("Invalid constant reference");
2253 
2254   if (Stream.ReadBlockEnd())
2255     return Error("Expected a constant");
2256 
2257   // Once all the constants have been read, go through and resolve forward
2258   // references.
2259   ValueList.ResolveConstantForwardRefs();
2260   return std::error_code();
2261 }
2262 
materializeMetadata()2263 std::error_code BitcodeReader::materializeMetadata() {
2264   return std::error_code();
2265 }
2266 
setStripDebugInfo()2267 void BitcodeReader::setStripDebugInfo() { }
2268 
2269 /// RememberAndSkipFunctionBody - When we see the block for a function body,
2270 /// remember where it is and then skip it.  This lets us lazily deserialize the
2271 /// functions.
RememberAndSkipFunctionBody()2272 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
2273   // Get the function we are talking about.
2274   if (FunctionsWithBodies.empty())
2275     return Error("Insufficient function protos");
2276 
2277   Function *Fn = FunctionsWithBodies.back();
2278   FunctionsWithBodies.pop_back();
2279 
2280   // Save the current stream state.
2281   uint64_t CurBit = Stream.GetCurrentBitNo();
2282   DeferredFunctionInfo[Fn] = CurBit;
2283 
2284   // Skip over the function block for now.
2285   if (Stream.SkipBlock())
2286     return Error("Invalid record");
2287   return std::error_code();
2288 }
2289 
GlobalCleanup()2290 std::error_code BitcodeReader::GlobalCleanup() {
2291   // Patch the initializers for globals and aliases up.
2292   ResolveGlobalAndAliasInits();
2293   if (!GlobalInits.empty() || !AliasInits.empty())
2294     return Error("Malformed global initializer set");
2295 
2296   // Look for intrinsic functions which need to be upgraded at some point
2297   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
2298        FI != FE; ++FI) {
2299     Function *NewFn;
2300     if (UpgradeIntrinsicFunction(&*FI, NewFn))
2301       UpgradedIntrinsics.push_back(std::make_pair(&*FI, NewFn));
2302   }
2303 
2304   // Look for global variables which need to be renamed.
2305   for (Module::global_iterator
2306          GI = TheModule->global_begin(), GE = TheModule->global_end();
2307        GI != GE; GI++) {
2308     GlobalVariable *GV = &*GI;
2309     UpgradeGlobalVariable(GV);
2310   }
2311 
2312   // Force deallocation of memory for these vectors to favor the client that
2313   // want lazy deserialization.
2314   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
2315   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
2316   return std::error_code();
2317 }
2318 
ParseModule(bool Resume)2319 std::error_code BitcodeReader::ParseModule(bool Resume) {
2320   if (Resume)
2321     Stream.JumpToBit(NextUnreadBit);
2322   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2323     return Error("Invalid record");
2324 
2325   SmallVector<uint64_t, 64> Record;
2326   std::vector<std::string> SectionTable;
2327   std::vector<std::string> GCTable;
2328 
2329   // Read all the records for this module.
2330   while (1) {
2331     BitstreamEntry Entry = Stream.advance();
2332 
2333     switch (Entry.Kind) {
2334     case BitstreamEntry::Error:
2335       return Error("Malformed block");
2336     case BitstreamEntry::EndBlock:
2337       return GlobalCleanup();
2338 
2339     case BitstreamEntry::SubBlock:
2340       switch (Entry.ID) {
2341       default:  // Skip unknown content.
2342         if (Stream.SkipBlock())
2343           return Error("Invalid record");
2344         break;
2345       case bitc::BLOCKINFO_BLOCK_ID:
2346         if (Stream.ReadBlockInfoBlock())
2347           return Error("Malformed block");
2348         break;
2349       case bitc::PARAMATTR_BLOCK_ID:
2350         if (std::error_code EC = ParseAttributeBlock())
2351           return EC;
2352         break;
2353       case bitc::TYPE_BLOCK_ID_NEW:
2354         if (std::error_code EC = ParseTypeTable())
2355           return EC;
2356         break;
2357       case TYPE_BLOCK_ID_OLD_3_0:
2358         if (std::error_code EC = ParseOldTypeTable())
2359           return EC;
2360         break;
2361       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
2362         if (std::error_code EC = ParseOldTypeSymbolTable())
2363           return EC;
2364         break;
2365       case bitc::VALUE_SYMTAB_BLOCK_ID:
2366         if (std::error_code EC = ParseValueSymbolTable())
2367           return EC;
2368         SeenValueSymbolTable = true;
2369         break;
2370       case bitc::CONSTANTS_BLOCK_ID:
2371         if (std::error_code EC = ParseConstants())
2372           return EC;
2373         if (std::error_code EC = ResolveGlobalAndAliasInits())
2374           return EC;
2375         break;
2376       case bitc::METADATA_BLOCK_ID:
2377         if (std::error_code EC = ParseMetadata())
2378           return EC;
2379         break;
2380       case bitc::FUNCTION_BLOCK_ID:
2381         // If this is the first function body we've seen, reverse the
2382         // FunctionsWithBodies list.
2383         if (!SeenFirstFunctionBody) {
2384           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2385           if (std::error_code EC = GlobalCleanup())
2386             return EC;
2387           SeenFirstFunctionBody = true;
2388         }
2389 
2390         if (std::error_code EC = RememberAndSkipFunctionBody())
2391           return EC;
2392         // For streaming bitcode, suspend parsing when we reach the function
2393         // bodies. Subsequent materialization calls will resume it when
2394         // necessary. For streaming, the function bodies must be at the end of
2395         // the bitcode. If the bitcode file is old, the symbol table will be
2396         // at the end instead and will not have been seen yet. In this case,
2397         // just finish the parse now.
2398         if (LazyStreamer && SeenValueSymbolTable) {
2399           NextUnreadBit = Stream.GetCurrentBitNo();
2400           return std::error_code();
2401         }
2402         break;
2403         break;
2404       }
2405       continue;
2406 
2407     case BitstreamEntry::Record:
2408       // The interesting case.
2409       break;
2410     }
2411 
2412 
2413     // Read a record.
2414     switch (Stream.readRecord(Entry.ID, Record)) {
2415     default: break;  // Default behavior, ignore unknown content.
2416     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2417       if (Record.size() < 1)
2418         return Error("Invalid record");
2419       // Only version #0 is supported so far.
2420       if (Record[0] != 0)
2421         return Error("Invalid value");
2422       break;
2423     }
2424     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2425       std::string S;
2426       if (ConvertToString(Record, 0, S))
2427         return Error("Invalid record");
2428       TheModule->setTargetTriple(S);
2429       break;
2430     }
2431     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2432       std::string S;
2433       if (ConvertToString(Record, 0, S))
2434         return Error("Invalid record");
2435       TheModule->setDataLayout(S);
2436       break;
2437     }
2438     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2439       std::string S;
2440       if (ConvertToString(Record, 0, S))
2441         return Error("Invalid record");
2442       TheModule->setModuleInlineAsm(S);
2443       break;
2444     }
2445     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2446       std::string S;
2447       if (ConvertToString(Record, 0, S))
2448         return Error("Invalid record");
2449       // ANDROID: Ignore value, since we never used it anyways.
2450       // TheModule->addLibrary(S);
2451       break;
2452     }
2453     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2454       std::string S;
2455       if (ConvertToString(Record, 0, S))
2456         return Error("Invalid record");
2457       SectionTable.push_back(S);
2458       break;
2459     }
2460     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2461       std::string S;
2462       if (ConvertToString(Record, 0, S))
2463         return Error("Invalid record");
2464       GCTable.push_back(S);
2465       break;
2466     }
2467     // GLOBALVAR: [pointer type, isconst, initid,
2468     //             linkage, alignment, section, visibility, threadlocal,
2469     //             unnamed_addr]
2470     case bitc::MODULE_CODE_GLOBALVAR: {
2471       if (Record.size() < 6)
2472         return Error("Invalid record");
2473       Type *Ty = getTypeByID(Record[0]);
2474       if (!Ty)
2475         return Error("Invalid record");
2476       if (!Ty->isPointerTy())
2477         return Error("Invalid type for value");
2478       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2479       Ty = cast<PointerType>(Ty)->getElementType();
2480 
2481       bool isConstant = Record[1];
2482       uint64_t RawLinkage = Record[3];
2483       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2484       unsigned Alignment = (1 << Record[4]) >> 1;
2485       std::string Section;
2486       if (Record[5]) {
2487         if (Record[5]-1 >= SectionTable.size())
2488           return Error("Invalid ID");
2489         Section = SectionTable[Record[5]-1];
2490       }
2491       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2492       if (Record.size() > 6)
2493         Visibility = GetDecodedVisibility(Record[6]);
2494 
2495       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2496       if (Record.size() > 7)
2497         TLM = GetDecodedThreadLocalMode(Record[7]);
2498 
2499       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2500       if (Record.size() > 8)
2501         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2502 
2503       GlobalVariable *NewGV =
2504         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2505                            TLM, AddressSpace);
2506       NewGV->setAlignment(Alignment);
2507       if (!Section.empty())
2508         NewGV->setSection(Section);
2509       NewGV->setVisibility(Visibility);
2510       NewGV->setUnnamedAddr(UnnamedAddr);
2511 
2512       ValueList.push_back(NewGV);
2513 
2514       // Remember which value to use for the global initializer.
2515       if (unsigned InitID = Record[2])
2516         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2517       break;
2518     }
2519     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2520     //             alignment, section, visibility, gc, unnamed_addr]
2521     case bitc::MODULE_CODE_FUNCTION: {
2522       if (Record.size() < 8)
2523         return Error("Invalid record");
2524       Type *Ty = getTypeByID(Record[0]);
2525       if (!Ty)
2526         return Error("Invalid record");
2527       if (!Ty->isPointerTy())
2528         return Error("Invalid type for value");
2529       FunctionType *FTy =
2530         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2531       if (!FTy)
2532         return Error("Invalid type for value");
2533 
2534       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2535                                         "", TheModule);
2536 
2537       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2538       bool isProto = Record[2];
2539       uint64_t RawLinkage = Record[3];
2540       Func->setLinkage(getDecodedLinkage(RawLinkage));
2541       Func->setAttributes(getAttributes(Record[4]));
2542 
2543       Func->setAlignment((1 << Record[5]) >> 1);
2544       if (Record[6]) {
2545         if (Record[6]-1 >= SectionTable.size())
2546           return Error("Invalid ID");
2547         Func->setSection(SectionTable[Record[6]-1]);
2548       }
2549       Func->setVisibility(GetDecodedVisibility(Record[7]));
2550       if (Record.size() > 8 && Record[8]) {
2551         if (Record[8]-1 > GCTable.size())
2552           return Error("Invalid ID");
2553         Func->setGC(GCTable[Record[8]-1].c_str());
2554       }
2555       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2556       if (Record.size() > 9)
2557         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2558       Func->setUnnamedAddr(UnnamedAddr);
2559       ValueList.push_back(Func);
2560 
2561       // If this is a function with a body, remember the prototype we are
2562       // creating now, so that we can match up the body with them later.
2563       if (!isProto) {
2564         Func->setIsMaterializable(true);
2565         FunctionsWithBodies.push_back(Func);
2566         if (LazyStreamer)
2567           DeferredFunctionInfo[Func] = 0;
2568       }
2569       break;
2570     }
2571     // ALIAS: [alias type, aliasee val#, linkage]
2572     // ALIAS: [alias type, aliasee val#, linkage, visibility]
2573     case bitc::MODULE_CODE_ALIAS_OLD: {
2574       if (Record.size() < 3)
2575         return Error("Invalid record");
2576       Type *Ty = getTypeByID(Record[0]);
2577       if (!Ty)
2578         return Error("Invalid record");
2579       auto *PTy = dyn_cast<PointerType>(Ty);
2580       if (!PTy)
2581         return Error("Invalid type for value");
2582 
2583       auto *NewGA =
2584           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2585                               getDecodedLinkage(Record[2]), "", TheModule);
2586       // Old bitcode files didn't have visibility field.
2587       if (Record.size() > 3)
2588         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2589       ValueList.push_back(NewGA);
2590       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2591       break;
2592     }
2593     /// MODULE_CODE_PURGEVALS: [numvals]
2594     case bitc::MODULE_CODE_PURGEVALS:
2595       // Trim down the value list to the specified size.
2596       if (Record.size() < 1 || Record[0] > ValueList.size())
2597         return Error("Invalid record");
2598       ValueList.shrinkTo(Record[0]);
2599       break;
2600     }
2601     Record.clear();
2602   }
2603 }
2604 
ParseBitcodeInto(Module * M)2605 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2606   TheModule = nullptr;
2607 
2608   if (std::error_code EC = InitStream())
2609     return EC;
2610 
2611   // Sniff for the signature.
2612   if (Stream.Read(8) != 'B' ||
2613       Stream.Read(8) != 'C' ||
2614       Stream.Read(4) != 0x0 ||
2615       Stream.Read(4) != 0xC ||
2616       Stream.Read(4) != 0xE ||
2617       Stream.Read(4) != 0xD)
2618     return Error("Invalid bitcode signature");
2619 
2620   // We expect a number of well-defined blocks, though we don't necessarily
2621   // need to understand them all.
2622   while (1) {
2623     if (Stream.AtEndOfStream())
2624       return std::error_code();
2625 
2626     BitstreamEntry Entry =
2627       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2628 
2629     switch (Entry.Kind) {
2630     case BitstreamEntry::Error:
2631       return Error("Malformed block");
2632     case BitstreamEntry::EndBlock:
2633       return std::error_code();
2634 
2635     case BitstreamEntry::SubBlock:
2636       switch (Entry.ID) {
2637       case bitc::BLOCKINFO_BLOCK_ID:
2638         if (Stream.ReadBlockInfoBlock())
2639           return Error("Malformed block");
2640         break;
2641       case bitc::MODULE_BLOCK_ID:
2642         // Reject multiple MODULE_BLOCK's in a single bitstream.
2643         if (TheModule)
2644           return Error("Invalid multiple blocks");
2645         TheModule = M;
2646         if (std::error_code EC = ParseModule(false))
2647           return EC;
2648         if (LazyStreamer)
2649           return std::error_code();
2650         break;
2651       default:
2652         if (Stream.SkipBlock())
2653           return Error("Invalid record");
2654         break;
2655       }
2656       continue;
2657     case BitstreamEntry::Record:
2658       // There should be no records in the top-level of blocks.
2659 
2660       // The ranlib in Xcode 4 will align archive members by appending newlines
2661       // to the end of them. If this file size is a multiple of 4 but not 8, we
2662       // have to read and ignore these final 4 bytes :-(
2663       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2664           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2665           Stream.AtEndOfStream())
2666         return std::error_code();
2667 
2668       return Error("Invalid record");
2669     }
2670   }
2671 }
2672 
parseModuleTriple()2673 llvm::ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2674   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2675     return Error("Invalid record");
2676 
2677   SmallVector<uint64_t, 64> Record;
2678 
2679   std::string Triple;
2680   // Read all the records for this module.
2681   while (1) {
2682     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2683 
2684     switch (Entry.Kind) {
2685     case BitstreamEntry::SubBlock: // Handled for us already.
2686     case BitstreamEntry::Error:
2687       return Error("Malformed block");
2688     case BitstreamEntry::EndBlock:
2689       return Triple;
2690     case BitstreamEntry::Record:
2691       // The interesting case.
2692       break;
2693     }
2694 
2695     // Read a record.
2696     switch (Stream.readRecord(Entry.ID, Record)) {
2697     default: break;  // Default behavior, ignore unknown content.
2698     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
2699       if (Record.size() < 1)
2700         return Error("Invalid record");
2701       // Only version #0 is supported so far.
2702       if (Record[0] != 0)
2703         return Error("Invalid record");
2704       break;
2705     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2706       std::string S;
2707       if (ConvertToString(Record, 0, S))
2708         return Error("Invalid record");
2709       Triple = S;
2710       break;
2711     }
2712     }
2713     Record.clear();
2714   }
2715 
2716   return Error("Invalid bitcode signature");
2717 }
2718 
parseTriple()2719 llvm::ErrorOr<std::string> BitcodeReader::parseTriple() {
2720   if (std::error_code EC = InitStream())
2721     return EC;
2722 
2723   // Sniff for the signature.
2724   if (Stream.Read(8) != 'B' ||
2725       Stream.Read(8) != 'C' ||
2726       Stream.Read(4) != 0x0 ||
2727       Stream.Read(4) != 0xC ||
2728       Stream.Read(4) != 0xE ||
2729       Stream.Read(4) != 0xD)
2730     return Error("Invalid bitcode signature");
2731 
2732   // We expect a number of well-defined blocks, though we don't necessarily
2733   // need to understand them all.
2734   while (1) {
2735     BitstreamEntry Entry = Stream.advance();
2736 
2737     switch (Entry.Kind) {
2738     case BitstreamEntry::Error:
2739       return Error("Malformed block");
2740     case BitstreamEntry::EndBlock:
2741       return std::error_code();
2742 
2743     case BitstreamEntry::SubBlock:
2744       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2745         return parseModuleTriple();
2746 
2747       // Ignore other sub-blocks.
2748       if (Stream.SkipBlock())
2749         return Error("Malformed block");
2750       continue;
2751 
2752     case BitstreamEntry::Record:
2753       Stream.skipRecord(Entry.ID);
2754       continue;
2755     }
2756   }
2757 }
2758 
2759 /// ParseMetadataAttachment - Parse metadata attachments.
ParseMetadataAttachment()2760 std::error_code BitcodeReader::ParseMetadataAttachment() {
2761   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2762     return Error("Invalid record");
2763 
2764   SmallVector<uint64_t, 64> Record;
2765   while (1) {
2766     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2767 
2768     switch (Entry.Kind) {
2769     case BitstreamEntry::SubBlock: // Handled for us already.
2770     case BitstreamEntry::Error:
2771       return Error("Malformed block");
2772     case BitstreamEntry::EndBlock:
2773       return std::error_code();
2774     case BitstreamEntry::Record:
2775       // The interesting case.
2776       break;
2777     }
2778 
2779     // Read a metadata attachment record.
2780     Record.clear();
2781     switch (Stream.readRecord(Entry.ID, Record)) {
2782     default:  // Default behavior: ignore.
2783       break;
2784     case bitc::METADATA_ATTACHMENT: {
2785       unsigned RecordLength = Record.size();
2786       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2787         return Error("Invalid record");
2788       Instruction *Inst = InstructionList[Record[0]];
2789       for (unsigned i = 1; i != RecordLength; i = i+2) {
2790         unsigned Kind = Record[i];
2791         DenseMap<unsigned, unsigned>::iterator I =
2792           MDKindMap.find(Kind);
2793         if (I == MDKindMap.end())
2794           return Error("Invalid ID");
2795         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2796         Inst->setMetadata(I->second, cast<MDNode>(Node));
2797       }
2798       break;
2799     }
2800     }
2801   }
2802 }
2803 
2804 /// ParseFunctionBody - Lazily parse the specified function body block.
ParseFunctionBody(Function * F)2805 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2806   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2807     return Error("Invalid record");
2808 
2809   InstructionList.clear();
2810   unsigned ModuleValueListSize = ValueList.size();
2811   unsigned ModuleMDValueListSize = MDValueList.size();
2812 
2813   // Add all the function arguments to the value table.
2814   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2815     ValueList.push_back(&*I);
2816 
2817   unsigned NextValueNo = ValueList.size();
2818   BasicBlock *CurBB = nullptr;
2819   unsigned CurBBNo = 0;
2820 
2821   DebugLoc LastLoc;
2822 
2823   // Read all the records.
2824   SmallVector<uint64_t, 64> Record;
2825   while (1) {
2826     unsigned Code = Stream.ReadCode();
2827     if (Code == bitc::END_BLOCK) {
2828       if (Stream.ReadBlockEnd())
2829         return Error("Malformed block");
2830       break;
2831     }
2832 
2833     if (Code == bitc::ENTER_SUBBLOCK) {
2834       switch (Stream.ReadSubBlockID()) {
2835       default:  // Skip unknown content.
2836         if (Stream.SkipBlock())
2837           return Error("Invalid record");
2838         break;
2839       case bitc::CONSTANTS_BLOCK_ID:
2840         if (std::error_code EC = ParseConstants())
2841           return EC;
2842         NextValueNo = ValueList.size();
2843         break;
2844       case bitc::VALUE_SYMTAB_BLOCK_ID:
2845         if (std::error_code EC = ParseValueSymbolTable())
2846           return EC;
2847         break;
2848       case bitc::METADATA_ATTACHMENT_ID:
2849         if (std::error_code EC = ParseMetadataAttachment())
2850           return EC;
2851         break;
2852       case bitc::METADATA_BLOCK_ID:
2853         if (std::error_code EC = ParseMetadata())
2854           return EC;
2855         break;
2856       }
2857       continue;
2858     }
2859 
2860     if (Code == bitc::DEFINE_ABBREV) {
2861       Stream.ReadAbbrevRecord();
2862       continue;
2863     }
2864 
2865     // Read a record.
2866     Record.clear();
2867     Instruction *I = nullptr;
2868     unsigned BitCode = Stream.readRecord(Code, Record);
2869     switch (BitCode) {
2870     default: // Default behavior: reject
2871       return Error("Invalid value");
2872     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2873       if (Record.size() < 1 || Record[0] == 0)
2874         return Error("Invalid record");
2875       // Create all the basic blocks for the function.
2876       FunctionBBs.resize(Record[0]);
2877       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2878         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2879       CurBB = FunctionBBs[0];
2880       continue;
2881 
2882     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2883       // This record indicates that the last instruction is at the same
2884       // location as the previous instruction with a location.
2885       I = nullptr;
2886 
2887       // Get the last instruction emitted.
2888       if (CurBB && !CurBB->empty())
2889         I = &CurBB->back();
2890       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2891                !FunctionBBs[CurBBNo-1]->empty())
2892         I = &FunctionBBs[CurBBNo-1]->back();
2893 
2894       if (!I)
2895         return Error("Invalid record");
2896       I->setDebugLoc(LastLoc);
2897       I = nullptr;
2898       continue;
2899 
2900     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2901       I = nullptr;     // Get the last instruction emitted.
2902       if (CurBB && !CurBB->empty())
2903         I = &CurBB->back();
2904       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2905                !FunctionBBs[CurBBNo-1]->empty())
2906         I = &FunctionBBs[CurBBNo-1]->back();
2907       if (!I || Record.size() < 4)
2908         return Error("Invalid record");
2909 
2910       unsigned Line = Record[0], Col = Record[1];
2911       unsigned ScopeID = Record[2], IAID = Record[3];
2912 
2913       MDNode *Scope = nullptr, *IA = nullptr;
2914       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2915       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2916       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2917       I->setDebugLoc(LastLoc);
2918       I = nullptr;
2919       continue;
2920     }
2921 
2922     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2923       unsigned OpNum = 0;
2924       Value *LHS, *RHS;
2925       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2926           getValue(Record, OpNum, LHS->getType(), RHS) ||
2927           OpNum+1 > Record.size())
2928         return Error("Invalid record");
2929 
2930       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2931       if (Opc == -1)
2932         return Error("Invalid record");
2933       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2934       InstructionList.push_back(I);
2935       if (OpNum < Record.size()) {
2936         if (Opc == Instruction::Add ||
2937             Opc == Instruction::Sub ||
2938             Opc == Instruction::Mul ||
2939             Opc == Instruction::Shl) {
2940           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2941             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2942           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2943             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2944         } else if (Opc == Instruction::SDiv ||
2945                    Opc == Instruction::UDiv ||
2946                    Opc == Instruction::LShr ||
2947                    Opc == Instruction::AShr) {
2948           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2949             cast<BinaryOperator>(I)->setIsExact(true);
2950         }
2951       }
2952       break;
2953     }
2954     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2955       unsigned OpNum = 0;
2956       Value *Op;
2957       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2958           OpNum+2 != Record.size())
2959         return Error("Invalid record");
2960 
2961       Type *ResTy = getTypeByID(Record[OpNum]);
2962       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2963       if (Opc == -1 || !ResTy)
2964         return Error("Invalid record");
2965       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2966       InstructionList.push_back(I);
2967       break;
2968     }
2969     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
2970     case bitc::FUNC_CODE_INST_GEP_OLD: // GEP: [n x operands]
2971     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2972       unsigned OpNum = 0;
2973 
2974       Type *Ty;
2975       bool InBounds;
2976 
2977       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
2978         InBounds = Record[OpNum++];
2979         Ty = getTypeByID(Record[OpNum++]);
2980       } else {
2981         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
2982         Ty = nullptr;
2983       }
2984 
2985       Value *BasePtr;
2986       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2987         return Error("Invalid record");
2988 
2989       if (Ty &&
2990           Ty !=
2991               cast<SequentialType>(BasePtr->getType()->getScalarType())
2992                   ->getElementType())
2993         return Error(
2994             "Explicit gep type does not match pointee type of pointer operand");
2995 
2996       SmallVector<Value*, 16> GEPIdx;
2997       while (OpNum != Record.size()) {
2998         Value *Op;
2999         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3000           return Error("Invalid record");
3001         GEPIdx.push_back(Op);
3002       }
3003 
3004       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3005 
3006       InstructionList.push_back(I);
3007       if (InBounds)
3008         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3009       break;
3010     }
3011 
3012     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3013                                        // EXTRACTVAL: [opty, opval, n x indices]
3014       unsigned OpNum = 0;
3015       Value *Agg;
3016       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3017         return Error("Invalid record");
3018 
3019       SmallVector<unsigned, 4> EXTRACTVALIdx;
3020       for (unsigned RecSize = Record.size();
3021            OpNum != RecSize; ++OpNum) {
3022         uint64_t Index = Record[OpNum];
3023         if ((unsigned)Index != Index)
3024           return Error("Invalid value");
3025         EXTRACTVALIdx.push_back((unsigned)Index);
3026       }
3027 
3028       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3029       InstructionList.push_back(I);
3030       break;
3031     }
3032 
3033     case bitc::FUNC_CODE_INST_INSERTVAL: {
3034                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3035       unsigned OpNum = 0;
3036       Value *Agg;
3037       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3038         return Error("Invalid record");
3039       Value *Val;
3040       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3041         return Error("Invalid record");
3042 
3043       SmallVector<unsigned, 4> INSERTVALIdx;
3044       for (unsigned RecSize = Record.size();
3045            OpNum != RecSize; ++OpNum) {
3046         uint64_t Index = Record[OpNum];
3047         if ((unsigned)Index != Index)
3048           return Error("Invalid value");
3049         INSERTVALIdx.push_back((unsigned)Index);
3050       }
3051 
3052       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3053       InstructionList.push_back(I);
3054       break;
3055     }
3056 
3057     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3058       // obsolete form of select
3059       // handles select i1 ... in old bitcode
3060       unsigned OpNum = 0;
3061       Value *TrueVal, *FalseVal, *Cond;
3062       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3063           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3064           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
3065         return Error("Invalid record");
3066 
3067       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3068       InstructionList.push_back(I);
3069       break;
3070     }
3071 
3072     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3073       // new form of select
3074       // handles select i1 or select [N x i1]
3075       unsigned OpNum = 0;
3076       Value *TrueVal, *FalseVal, *Cond;
3077       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3078           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
3079           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3080         return Error("Invalid record");
3081 
3082       // select condition can be either i1 or [N x i1]
3083       if (VectorType* vector_type =
3084           dyn_cast<VectorType>(Cond->getType())) {
3085         // expect <n x i1>
3086         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3087           return Error("Invalid type for value");
3088       } else {
3089         // expect i1
3090         if (Cond->getType() != Type::getInt1Ty(Context))
3091           return Error("Invalid type for value");
3092       }
3093 
3094       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3095       InstructionList.push_back(I);
3096       break;
3097     }
3098 
3099     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3100       unsigned OpNum = 0;
3101       Value *Vec, *Idx;
3102       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3103           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3104         return Error("Invalid record");
3105       I = ExtractElementInst::Create(Vec, Idx);
3106       InstructionList.push_back(I);
3107       break;
3108     }
3109 
3110     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3111       unsigned OpNum = 0;
3112       Value *Vec, *Elt, *Idx;
3113       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3114           getValue(Record, OpNum,
3115                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3116           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
3117         return Error("Invalid record");
3118       I = InsertElementInst::Create(Vec, Elt, Idx);
3119       InstructionList.push_back(I);
3120       break;
3121     }
3122 
3123     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3124       unsigned OpNum = 0;
3125       Value *Vec1, *Vec2, *Mask;
3126       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3127           getValue(Record, OpNum, Vec1->getType(), Vec2))
3128         return Error("Invalid record");
3129 
3130       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3131         return Error("Invalid record");
3132       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3133       InstructionList.push_back(I);
3134       break;
3135     }
3136 
3137     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3138       // Old form of ICmp/FCmp returning bool
3139       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3140       // both legal on vectors but had different behaviour.
3141     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3142       // FCmp/ICmp returning bool or vector of bool
3143 
3144       unsigned OpNum = 0;
3145       Value *LHS, *RHS;
3146       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3147           getValue(Record, OpNum, LHS->getType(), RHS) ||
3148           OpNum+1 != Record.size())
3149         return Error("Invalid record");
3150 
3151       if (LHS->getType()->isFPOrFPVectorTy())
3152         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
3153       else
3154         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
3155       InstructionList.push_back(I);
3156       break;
3157     }
3158 
3159     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3160       {
3161         unsigned Size = Record.size();
3162         if (Size == 0) {
3163           I = ReturnInst::Create(Context);
3164           InstructionList.push_back(I);
3165           break;
3166         }
3167 
3168         unsigned OpNum = 0;
3169         Value *Op = nullptr;
3170         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3171           return Error("Invalid record");
3172         if (OpNum != Record.size())
3173           return Error("Invalid record");
3174 
3175         I = ReturnInst::Create(Context, Op);
3176         InstructionList.push_back(I);
3177         break;
3178       }
3179     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3180       if (Record.size() != 1 && Record.size() != 3)
3181         return Error("Invalid record");
3182       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3183       if (!TrueDest)
3184         return Error("Invalid record");
3185 
3186       if (Record.size() == 1) {
3187         I = BranchInst::Create(TrueDest);
3188         InstructionList.push_back(I);
3189       }
3190       else {
3191         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3192         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
3193         if (!FalseDest || !Cond)
3194           return Error("Invalid record");
3195         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3196         InstructionList.push_back(I);
3197       }
3198       break;
3199     }
3200     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3201       if (Record.size() < 3 || (Record.size() & 1) == 0)
3202         return Error("Invalid record");
3203       Type *OpTy = getTypeByID(Record[0]);
3204       Value *Cond = getFnValueByID(Record[1], OpTy);
3205       BasicBlock *Default = getBasicBlock(Record[2]);
3206       if (!OpTy || !Cond || !Default)
3207         return Error("Invalid record");
3208       unsigned NumCases = (Record.size()-3)/2;
3209       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3210       InstructionList.push_back(SI);
3211       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3212         ConstantInt *CaseVal =
3213           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3214         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3215         if (!CaseVal || !DestBB) {
3216           delete SI;
3217           return Error("Invalid record");
3218         }
3219         SI->addCase(CaseVal, DestBB);
3220       }
3221       I = SI;
3222       break;
3223     }
3224     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3225       if (Record.size() < 2)
3226         return Error("Invalid record");
3227       Type *OpTy = getTypeByID(Record[0]);
3228       Value *Address = getFnValueByID(Record[1], OpTy);
3229       if (!OpTy || !Address)
3230         return Error("Invalid record");
3231       unsigned NumDests = Record.size()-2;
3232       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3233       InstructionList.push_back(IBI);
3234       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3235         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3236           IBI->addDestination(DestBB);
3237         } else {
3238           delete IBI;
3239           return Error("Invalid record");
3240         }
3241       }
3242       I = IBI;
3243       break;
3244     }
3245 
3246     case bitc::FUNC_CODE_INST_INVOKE: {
3247       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3248       if (Record.size() < 4)
3249         return Error("Invalid record");
3250       AttributeSet PAL = getAttributes(Record[0]);
3251       unsigned CCInfo = Record[1];
3252       BasicBlock *NormalBB = getBasicBlock(Record[2]);
3253       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3254 
3255       unsigned OpNum = 4;
3256       Value *Callee;
3257       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3258         return Error("Invalid record");
3259 
3260       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3261       FunctionType *FTy = !CalleeTy ? nullptr :
3262         dyn_cast<FunctionType>(CalleeTy->getElementType());
3263 
3264       // Check that the right number of fixed parameters are here.
3265       if (!FTy || !NormalBB || !UnwindBB ||
3266           Record.size() < OpNum+FTy->getNumParams())
3267         return Error("Invalid record");
3268 
3269       SmallVector<Value*, 16> Ops;
3270       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3271         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3272         if (!Ops.back())
3273           return Error("Invalid record");
3274       }
3275 
3276       if (!FTy->isVarArg()) {
3277         if (Record.size() != OpNum)
3278           return Error("Invalid record");
3279       } else {
3280         // Read type/value pairs for varargs params.
3281         while (OpNum != Record.size()) {
3282           Value *Op;
3283           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3284             return Error("Invalid record");
3285           Ops.push_back(Op);
3286         }
3287       }
3288 
3289       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3290       InstructionList.push_back(I);
3291       cast<InvokeInst>(I)->setCallingConv(
3292         static_cast<CallingConv::ID>(CCInfo));
3293       cast<InvokeInst>(I)->setAttributes(PAL);
3294       break;
3295     }
3296     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3297       unsigned Idx = 0;
3298       Value *Val = nullptr;
3299       if (getValueTypePair(Record, Idx, NextValueNo, Val))
3300         return Error("Invalid record");
3301       I = ResumeInst::Create(Val);
3302       InstructionList.push_back(I);
3303       break;
3304     }
3305     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
3306       // 'unwind' instruction has been removed in LLVM 3.1
3307       // Replace 'unwind' with 'landingpad' and 'resume'.
3308       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
3309                                     Type::getInt32Ty(Context), nullptr);
3310 
3311       LandingPadInst *LP = LandingPadInst::Create(ExnTy, 1);
3312       LP->setCleanup(true);
3313 
3314       CurBB->getInstList().push_back(LP);
3315       I = ResumeInst::Create(LP);
3316       InstructionList.push_back(I);
3317       break;
3318     }
3319     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3320       I = new UnreachableInst(Context);
3321       InstructionList.push_back(I);
3322       break;
3323     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3324       if (Record.size() < 1 || ((Record.size()-1)&1))
3325         return Error("Invalid record");
3326       Type *Ty = getTypeByID(Record[0]);
3327       if (!Ty)
3328         return Error("Invalid record");
3329 
3330       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3331       InstructionList.push_back(PN);
3332 
3333       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3334         Value *V = getFnValueByID(Record[1+i], Ty);
3335         BasicBlock *BB = getBasicBlock(Record[2+i]);
3336         if (!V || !BB)
3337           return Error("Invalid record");
3338         PN->addIncoming(V, BB);
3339       }
3340       I = PN;
3341       break;
3342     }
3343 
3344     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
3345       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3346       unsigned Idx = 0;
3347       if (Record.size() < 4)
3348         return Error("Invalid record");
3349       Type *Ty = getTypeByID(Record[Idx++]);
3350       if (!Ty)
3351         return Error("Invalid record");
3352       Value *PersFn = nullptr;
3353       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3354         return Error("Invalid record");
3355 
3356       bool IsCleanup = !!Record[Idx++];
3357       unsigned NumClauses = Record[Idx++];
3358       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
3359       LP->setCleanup(IsCleanup);
3360       for (unsigned J = 0; J != NumClauses; ++J) {
3361         LandingPadInst::ClauseType CT =
3362           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3363         Value *Val;
3364 
3365         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3366           delete LP;
3367           return Error("Invalid record");
3368         }
3369 
3370         assert((CT != LandingPadInst::Catch ||
3371                 !isa<ArrayType>(Val->getType())) &&
3372                "Catch clause has a invalid type!");
3373         assert((CT != LandingPadInst::Filter ||
3374                 isa<ArrayType>(Val->getType())) &&
3375                "Filter clause has invalid type!");
3376         LP->addClause(cast<Constant>(Val));
3377       }
3378 
3379       I = LP;
3380       InstructionList.push_back(I);
3381       break;
3382     }
3383 
3384     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3385       if (Record.size() != 4)
3386         return Error("Invalid record");
3387       PointerType *Ty =
3388         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3389       Type *OpTy = getTypeByID(Record[1]);
3390       Value *Size = getFnValueByID(Record[2], OpTy);
3391       unsigned Align = Record[3];
3392       if (!Ty || !Size)
3393         return Error("Invalid record");
3394       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3395       InstructionList.push_back(I);
3396       break;
3397     }
3398     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3399       unsigned OpNum = 0;
3400       Value *Op;
3401       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3402           OpNum+2 != Record.size())
3403         return Error("Invalid record");
3404 
3405       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3406       InstructionList.push_back(I);
3407       break;
3408     }
3409     case bitc::FUNC_CODE_INST_LOADATOMIC: {
3410        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
3411       unsigned OpNum = 0;
3412       Value *Op;
3413       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3414           OpNum+4 != Record.size())
3415         return Error("Invalid record");
3416 
3417       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3418       if (Ordering == AtomicOrdering::NotAtomic ||
3419           Ordering == AtomicOrdering::Release ||
3420           Ordering == AtomicOrdering::AcquireRelease)
3421         return Error("Invalid record");
3422       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
3423         return Error("Invalid record");
3424       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3425 
3426       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3427                        Ordering, SynchScope);
3428       InstructionList.push_back(I);
3429       break;
3430     }
3431     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
3432       unsigned OpNum = 0;
3433       Value *Val, *Ptr;
3434       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3435           getValue(Record, OpNum,
3436                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3437           OpNum+2 != Record.size())
3438         return Error("Invalid record");
3439 
3440       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3441       InstructionList.push_back(I);
3442       break;
3443     }
3444     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
3445       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
3446       unsigned OpNum = 0;
3447       Value *Val, *Ptr;
3448       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3449           getValue(Record, OpNum,
3450                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3451           OpNum+4 != Record.size())
3452         return Error("Invalid record");
3453 
3454       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3455       if (Ordering == AtomicOrdering::NotAtomic ||
3456           Ordering == AtomicOrdering::Acquire ||
3457           Ordering == AtomicOrdering::AcquireRelease)
3458         return Error("Invalid record");
3459       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3460       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
3461         return Error("Invalid record");
3462 
3463       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3464                         Ordering, SynchScope);
3465       InstructionList.push_back(I);
3466       break;
3467     }
3468     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
3469       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
3470       unsigned OpNum = 0;
3471       Value *Ptr, *Cmp, *New;
3472       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3473           getValue(Record, OpNum,
3474                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
3475           getValue(Record, OpNum,
3476                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
3477           OpNum+3 != Record.size())
3478         return Error("Invalid record");
3479       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
3480       if (Ordering == AtomicOrdering::NotAtomic ||
3481           Ordering == AtomicOrdering::Unordered)
3482         return Error("Invalid record");
3483       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
3484       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Ordering, SynchScope);
3485       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
3486       InstructionList.push_back(I);
3487       break;
3488     }
3489     case bitc::FUNC_CODE_INST_ATOMICRMW: {
3490       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3491       unsigned OpNum = 0;
3492       Value *Ptr, *Val;
3493       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3494           getValue(Record, OpNum,
3495                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3496           OpNum+4 != Record.size())
3497         return Error("Invalid record");
3498       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3499       if (Operation < AtomicRMWInst::FIRST_BINOP ||
3500           Operation > AtomicRMWInst::LAST_BINOP)
3501         return Error("Invalid record");
3502       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3503       if (Ordering == AtomicOrdering::NotAtomic ||
3504           Ordering == AtomicOrdering::Unordered)
3505         return Error("Invalid record");
3506       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3507       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3508       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3509       InstructionList.push_back(I);
3510       break;
3511     }
3512     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3513       if (2 != Record.size())
3514         return Error("Invalid record");
3515       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3516       if (Ordering == AtomicOrdering::NotAtomic ||
3517           Ordering == AtomicOrdering::Unordered ||
3518           Ordering == AtomicOrdering::Monotonic)
3519         return Error("Invalid record");
3520       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3521       I = new FenceInst(Context, Ordering, SynchScope);
3522       InstructionList.push_back(I);
3523       break;
3524     }
3525     case bitc::FUNC_CODE_INST_CALL: {
3526       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3527       if (Record.size() < 3)
3528         return Error("Invalid record");
3529 
3530       AttributeSet PAL = getAttributes(Record[0]);
3531       unsigned CCInfo = Record[1];
3532 
3533       unsigned OpNum = 2;
3534       Value *Callee;
3535       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3536         return Error("Invalid record");
3537 
3538       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3539       FunctionType *FTy = nullptr;
3540       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3541       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3542         return Error("Invalid record");
3543 
3544       SmallVector<Value*, 16> Args;
3545       // Read the fixed params.
3546       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3547         if (FTy->getParamType(i)->isLabelTy())
3548           Args.push_back(getBasicBlock(Record[OpNum]));
3549         else
3550           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
3551         if (!Args.back())
3552           return Error("Invalid record");
3553       }
3554 
3555       // Read type/value pairs for varargs params.
3556       if (!FTy->isVarArg()) {
3557         if (OpNum != Record.size())
3558           return Error("Invalid record");
3559       } else {
3560         while (OpNum != Record.size()) {
3561           Value *Op;
3562           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3563             return Error("Invalid record");
3564           Args.push_back(Op);
3565         }
3566       }
3567 
3568       I = CallInst::Create(Callee, Args);
3569       InstructionList.push_back(I);
3570       cast<CallInst>(I)->setCallingConv(
3571         static_cast<CallingConv::ID>(CCInfo>>1));
3572       cast<CallInst>(I)->setTailCall(CCInfo & 1);
3573       cast<CallInst>(I)->setAttributes(PAL);
3574       break;
3575     }
3576     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3577       if (Record.size() < 3)
3578         return Error("Invalid record");
3579       Type *OpTy = getTypeByID(Record[0]);
3580       Value *Op = getFnValueByID(Record[1], OpTy);
3581       Type *ResTy = getTypeByID(Record[2]);
3582       if (!OpTy || !Op || !ResTy)
3583         return Error("Invalid record");
3584       I = new VAArgInst(Op, ResTy);
3585       InstructionList.push_back(I);
3586       break;
3587     }
3588     }
3589 
3590     // Add instruction to end of current BB.  If there is no current BB, reject
3591     // this file.
3592     if (!CurBB) {
3593       delete I;
3594       return Error("Invalid instruction with no BB");
3595     }
3596     CurBB->getInstList().push_back(I);
3597 
3598     // If this was a terminator instruction, move to the next block.
3599     if (isa<TerminatorInst>(I)) {
3600       ++CurBBNo;
3601       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3602     }
3603 
3604     // Non-void values get registered in the value table for future use.
3605     if (I && !I->getType()->isVoidTy())
3606       ValueList.AssignValue(I, NextValueNo++);
3607   }
3608 
3609   // Check the function list for unresolved values.
3610   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3611     if (!A->getParent()) {
3612       // We found at least one unresolved value.  Nuke them all to avoid leaks.
3613       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3614         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3615           A->replaceAllUsesWith(UndefValue::get(A->getType()));
3616           delete A;
3617         }
3618       }
3619       return Error("Never resolved value found in function");
3620     }
3621   }
3622 
3623   // FIXME: Check for unresolved forward-declared metadata references
3624   // and clean up leaks.
3625 
3626   // See if anything took the address of blocks in this function.  If so,
3627   // resolve them now.
3628   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3629     BlockAddrFwdRefs.find(F);
3630   if (BAFRI != BlockAddrFwdRefs.end()) {
3631     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3632     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3633       unsigned BlockIdx = RefList[i].first;
3634       if (BlockIdx >= FunctionBBs.size())
3635         return Error("Invalid ID");
3636 
3637       GlobalVariable *FwdRef = RefList[i].second;
3638       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3639       FwdRef->eraseFromParent();
3640     }
3641 
3642     BlockAddrFwdRefs.erase(BAFRI);
3643   }
3644 
3645   // Trim the value list down to the size it was before we parsed this function.
3646   ValueList.shrinkTo(ModuleValueListSize);
3647   MDValueList.shrinkTo(ModuleMDValueListSize);
3648   std::vector<BasicBlock*>().swap(FunctionBBs);
3649   return std::error_code();
3650 }
3651 
3652 //===----------------------------------------------------------------------===//
3653 // GVMaterializer implementation
3654 //===----------------------------------------------------------------------===//
3655 
releaseBuffer()3656 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3657 
materialize(GlobalValue * GV)3658 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3659   if (std::error_code EC = materializeMetadata())
3660     return EC;
3661 
3662   Function *F = dyn_cast<Function>(GV);
3663   // If it's not a function or is already material, ignore the request.
3664   if (!F || !F->isMaterializable())
3665     return std::error_code();
3666 
3667   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3668   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3669 
3670   // Move the bit stream to the saved position of the deferred function body.
3671   Stream.JumpToBit(DFII->second);
3672 
3673   if (std::error_code EC = ParseFunctionBody(F))
3674     return EC;
3675   F->setIsMaterializable(false);
3676 
3677   // Upgrade any old intrinsic calls in the function.
3678   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3679        E = UpgradedIntrinsics.end(); I != E; ++I) {
3680     if (I->first != I->second) {
3681       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3682            UI != UE;) {
3683         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3684           UpgradeIntrinsicCall(CI, I->second);
3685       }
3686     }
3687   }
3688 
3689   return std::error_code();
3690 }
3691 
isDematerializable(const GlobalValue * GV) const3692 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3693   const Function *F = dyn_cast<Function>(GV);
3694   if (!F || F->isDeclaration())
3695     return false;
3696   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3697 }
3698 
dematerialize(GlobalValue * GV)3699 void BitcodeReader::dematerialize(GlobalValue *GV) {
3700   Function *F = dyn_cast<Function>(GV);
3701   // If this function isn't dematerializable, this is a noop.
3702   if (!F || !isDematerializable(F))
3703     return;
3704 
3705   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3706 
3707   // Just forget the function body, we can remat it later.
3708   F->deleteBody();
3709   F->setIsMaterializable(true);
3710 }
3711 
materializeModule()3712 std::error_code BitcodeReader::materializeModule() {
3713   // Iterate over the module, deserializing any functions that are still on
3714   // disk.
3715   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3716        F != E; ++F) {
3717     if (std::error_code EC = materialize(&*F))
3718       return EC;
3719   }
3720   // At this point, if there are any function bodies, the current bit is
3721   // pointing to the END_BLOCK record after them. Now make sure the rest
3722   // of the bits in the module have been read.
3723   if (NextUnreadBit)
3724     ParseModule(true);
3725 
3726   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3727   // delete the old functions to clean up. We can't do this unless the entire
3728   // module is materialized because there could always be another function body
3729   // with calls to the old function.
3730   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3731        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3732     if (I->first != I->second) {
3733       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3734            UI != UE;) {
3735         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3736           UpgradeIntrinsicCall(CI, I->second);
3737       }
3738       if (!I->first->use_empty())
3739         I->first->replaceAllUsesWith(I->second);
3740       I->first->eraseFromParent();
3741     }
3742   }
3743   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3744 
3745   // Upgrade to new EH scheme. N.B. This will go away in 3.1.
3746   UpgradeExceptionHandling(TheModule);
3747 
3748   // Check debug info intrinsics.
3749   CheckDebugInfoIntrinsics(TheModule);
3750 
3751   return std::error_code();
3752 }
3753 
getIdentifiedStructTypes() const3754 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3755   return IdentifiedStructTypes;
3756 }
3757 
InitStream()3758 std::error_code BitcodeReader::InitStream() {
3759   if (LazyStreamer)
3760     return InitLazyStream();
3761   return InitStreamFromBuffer();
3762 }
3763 
InitStreamFromBuffer()3764 std::error_code BitcodeReader::InitStreamFromBuffer() {
3765   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3766   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3767 
3768   if (Buffer->getBufferSize() & 3)
3769     return Error("Invalid bitcode signature");
3770 
3771   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3772   // The magic number is 0x0B17C0DE stored in little endian.
3773   if (isBitcodeWrapper(BufPtr, BufEnd))
3774     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3775       return Error("Invalid bitcode wrapper header");
3776 
3777   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3778   Stream.init(&*StreamFile);
3779 
3780   return std::error_code();
3781 }
3782 
InitLazyStream()3783 std::error_code BitcodeReader::InitLazyStream() {
3784   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3785   // see it.
3786   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(
3787       std::move(LazyStreamer));
3788   StreamingMemoryObject &Bytes = *OwnedBytes;
3789   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3790   Stream.init(&*StreamFile);
3791 
3792   unsigned char buf[16];
3793   if (Bytes.readBytes(buf, 16, 0) != 16)
3794     return Error("Invalid bitcode signature");
3795 
3796   if (!isBitcode(buf, buf + 16))
3797     return Error("Invalid bitcode signature");
3798 
3799   if (isBitcodeWrapper(buf, buf + 4)) {
3800     const unsigned char *bitcodeStart = buf;
3801     const unsigned char *bitcodeEnd = buf + 16;
3802     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3803     Bytes.dropLeadingBytes(bitcodeStart - buf);
3804     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3805   }
3806   return std::error_code();
3807 }
3808 
3809 namespace {
3810 class BitcodeErrorCategoryType : public std::error_category {
name() const3811   const char *name() const LLVM_NOEXCEPT override {
3812     return "llvm.bitcode";
3813   }
message(int IE) const3814   std::string message(int IE) const override {
3815     BitcodeError E = static_cast<BitcodeError>(IE);
3816     switch (E) {
3817     case BitcodeError::InvalidBitcodeSignature:
3818       return "Invalid bitcode signature";
3819     case BitcodeError::CorruptedBitcode:
3820       return "Corrupted bitcode";
3821     }
3822     llvm_unreachable("Unknown error type!");
3823   }
3824 };
3825 }
3826 
3827 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3828 
BitcodeErrorCategory()3829 const std::error_category &BitcodeReader::BitcodeErrorCategory() {
3830   return *ErrorCategory;
3831 }
3832 
3833 //===----------------------------------------------------------------------===//
3834 // External interface
3835 //===----------------------------------------------------------------------===//
3836 
3837 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3838 ///
3839 static llvm::ErrorOr<llvm::Module *>
getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,bool WillMaterializeAll,const DiagnosticHandlerFunction & DiagnosticHandler)3840 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3841                          LLVMContext &Context, bool WillMaterializeAll,
3842                          const DiagnosticHandlerFunction &DiagnosticHandler) {
3843   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3844   BitcodeReader *R =
3845       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3846   M->setMaterializer(R);
3847 
3848   auto cleanupOnError = [&](std::error_code EC) {
3849     R->releaseBuffer(); // Never take ownership on error.
3850     delete M;  // Also deletes R.
3851     return EC;
3852   };
3853 
3854   if (std::error_code EC = R->ParseBitcodeInto(M))
3855     return cleanupOnError(EC);
3856 
3857   Buffer.release(); // The BitcodeReader owns it now.
3858   return M;
3859 }
3860 
3861 llvm::ErrorOr<Module *>
getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> && Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3862 llvm_3_0::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3863                            LLVMContext &Context,
3864                            const DiagnosticHandlerFunction &DiagnosticHandler) {
3865   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3866                                   DiagnosticHandler);
3867 }
3868 
3869 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3870 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3871 llvm::ErrorOr<llvm::Module *>
parseBitcodeFile(MemoryBufferRef Buffer,LLVMContext & Context,const DiagnosticHandlerFunction & DiagnosticHandler)3872 llvm_3_0::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3873                        const DiagnosticHandlerFunction &DiagnosticHandler) {
3874   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3875   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3876       std::move(Buf), Context, true, DiagnosticHandler);
3877   if (!ModuleOrErr)
3878     return ModuleOrErr;
3879   Module *M = ModuleOrErr.get();
3880   // Read in the entire module, and destroy the BitcodeReader.
3881   if (std::error_code EC = M->materializeAll()) {
3882     delete M;
3883     return EC;
3884   }
3885 
3886   return M;
3887 }
3888 
3889 std::string
getBitcodeTargetTriple(MemoryBufferRef Buffer,LLVMContext & Context,DiagnosticHandlerFunction DiagnosticHandler)3890 llvm_3_0::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3891                              DiagnosticHandlerFunction DiagnosticHandler) {
3892   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3893   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3894                                             DiagnosticHandler);
3895   ErrorOr<std::string> Triple = R->parseTriple();
3896   if (Triple.getError())
3897     return "";
3898   return Triple.get();
3899 }
3900