1 /*
2  * Copyright (C) 2019 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "ExecutionBurstServer"
18 
19 #include "ExecutionBurstServer.h"
20 
21 #include <android-base/logging.h>
22 
23 #include <algorithm>
24 #include <cstring>
25 #include <limits>
26 #include <map>
27 #include <memory>
28 #include <tuple>
29 #include <utility>
30 #include <vector>
31 
32 #include "HalInterfaces.h"
33 #include "Tracing.h"
34 
35 namespace android::nn {
36 namespace {
37 
38 using namespace hal;
39 
40 using hardware::MQDescriptorSync;
41 using V1_2::FmqRequestDatum;
42 using V1_2::FmqResultDatum;
43 using V1_2::IBurstCallback;
44 using V1_2::IBurstContext;
45 
46 constexpr Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
47                               std::numeric_limits<uint64_t>::max()};
48 
49 // DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
50 // used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
51 // hidl_memory object, and the execution forwards calls to the provided
52 // IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
53 // must be mapped and unmapped for each execution.
54 class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
55    public:
DefaultBurstExecutorWithCache(V1_2::IPreparedModel * preparedModel)56     DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
57         : mpPreparedModel(preparedModel) {}
58 
isCacheEntryPresent(int32_t slot) const59     bool isCacheEntryPresent(int32_t slot) const override {
60         const auto it = mMemoryCache.find(slot);
61         return (it != mMemoryCache.end()) && it->second.valid();
62     }
63 
addCacheEntry(const hidl_memory & memory,int32_t slot)64     void addCacheEntry(const hidl_memory& memory, int32_t slot) override {
65         mMemoryCache[slot] = memory;
66     }
67 
removeCacheEntry(int32_t slot)68     void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
69 
execute(const V1_0::Request & request,const std::vector<int32_t> & slots,MeasureTiming measure)70     std::tuple<V1_0::ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
71             const V1_0::Request& request, const std::vector<int32_t>& slots,
72             MeasureTiming measure) override {
73         // convert slots to pools
74         hidl_vec<hidl_memory> pools(slots.size());
75         std::transform(slots.begin(), slots.end(), pools.begin(),
76                        [this](int32_t slot) { return mMemoryCache[slot]; });
77 
78         // create full request
79         V1_0::Request fullRequest = request;
80         fullRequest.pools = std::move(pools);
81 
82         // setup execution
83         V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
84         hidl_vec<OutputShape> returnedOutputShapes;
85         Timing returnedTiming;
86         auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
87                           V1_0::ErrorStatus status, const hidl_vec<OutputShape>& outputShapes,
88                           const Timing& timing) {
89             returnedStatus = status;
90             returnedOutputShapes = outputShapes;
91             returnedTiming = timing;
92         };
93 
94         // execute
95         const Return<void> ret = mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
96         if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
97             LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
98             return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
99         }
100 
101         return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
102     }
103 
104    private:
105     V1_2::IPreparedModel* const mpPreparedModel;
106     std::map<int32_t, hidl_memory> mMemoryCache;
107 };
108 
109 }  // anonymous namespace
110 
111 // serialize result
serialize(V1_0::ErrorStatus errorStatus,const std::vector<OutputShape> & outputShapes,Timing timing)112 std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
113                                       const std::vector<OutputShape>& outputShapes, Timing timing) {
114     // count how many elements need to be sent for a request
115     size_t count = 2 + outputShapes.size();
116     for (const auto& outputShape : outputShapes) {
117         count += outputShape.dimensions.size();
118     }
119 
120     // create buffer to temporarily store elements
121     std::vector<FmqResultDatum> data;
122     data.reserve(count);
123 
124     // package packetInfo
125     {
126         FmqResultDatum datum;
127         datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
128                                  /*.errorStatus=*/errorStatus,
129                                  /*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
130         data.push_back(datum);
131     }
132 
133     // package output shape data
134     for (const auto& operand : outputShapes) {
135         // package operand information
136         FmqResultDatum::OperandInformation info{};
137         info.isSufficient = operand.isSufficient;
138         info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
139 
140         FmqResultDatum datum;
141         datum.operandInformation(info);
142         data.push_back(datum);
143 
144         // package operand dimensions
145         for (uint32_t dimension : operand.dimensions) {
146             FmqResultDatum datum;
147             datum.operandDimensionValue(dimension);
148             data.push_back(datum);
149         }
150     }
151 
152     // package executionTiming
153     {
154         FmqResultDatum datum;
155         datum.executionTiming(timing);
156         data.push_back(datum);
157     }
158 
159     // return result
160     return data;
161 }
162 
163 // deserialize request
deserialize(const std::vector<FmqRequestDatum> & data)164 std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>> deserialize(
165         const std::vector<FmqRequestDatum>& data) {
166     using discriminator = FmqRequestDatum::hidl_discriminator;
167 
168     size_t index = 0;
169 
170     // validate packet information
171     if (data.size() == 0 || data[index].getDiscriminator() != discriminator::packetInformation) {
172         LOG(ERROR) << "FMQ Request packet ill-formed";
173         return std::nullopt;
174     }
175 
176     // unpackage packet information
177     const FmqRequestDatum::PacketInformation& packetInfo = data[index].packetInformation();
178     index++;
179     const uint32_t packetSize = packetInfo.packetSize;
180     const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
181     const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
182     const uint32_t numberOfPools = packetInfo.numberOfPools;
183 
184     // verify packet size
185     if (data.size() != packetSize) {
186         LOG(ERROR) << "FMQ Request packet ill-formed";
187         return std::nullopt;
188     }
189 
190     // unpackage input operands
191     std::vector<RequestArgument> inputs;
192     inputs.reserve(numberOfInputOperands);
193     for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
194         // validate input operand information
195         if (data[index].getDiscriminator() != discriminator::inputOperandInformation) {
196             LOG(ERROR) << "FMQ Request packet ill-formed";
197             return std::nullopt;
198         }
199 
200         // unpackage operand information
201         const FmqRequestDatum::OperandInformation& operandInfo =
202                 data[index].inputOperandInformation();
203         index++;
204         const bool hasNoValue = operandInfo.hasNoValue;
205         const DataLocation location = operandInfo.location;
206         const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
207 
208         // unpackage operand dimensions
209         std::vector<uint32_t> dimensions;
210         dimensions.reserve(numberOfDimensions);
211         for (size_t i = 0; i < numberOfDimensions; ++i) {
212             // validate dimension
213             if (data[index].getDiscriminator() != discriminator::inputOperandDimensionValue) {
214                 LOG(ERROR) << "FMQ Request packet ill-formed";
215                 return std::nullopt;
216             }
217 
218             // unpackage dimension
219             const uint32_t dimension = data[index].inputOperandDimensionValue();
220             index++;
221 
222             // store result
223             dimensions.push_back(dimension);
224         }
225 
226         // store result
227         inputs.push_back(
228                 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
229     }
230 
231     // unpackage output operands
232     std::vector<RequestArgument> outputs;
233     outputs.reserve(numberOfOutputOperands);
234     for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
235         // validate output operand information
236         if (data[index].getDiscriminator() != discriminator::outputOperandInformation) {
237             LOG(ERROR) << "FMQ Request packet ill-formed";
238             return std::nullopt;
239         }
240 
241         // unpackage operand information
242         const FmqRequestDatum::OperandInformation& operandInfo =
243                 data[index].outputOperandInformation();
244         index++;
245         const bool hasNoValue = operandInfo.hasNoValue;
246         const DataLocation location = operandInfo.location;
247         const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
248 
249         // unpackage operand dimensions
250         std::vector<uint32_t> dimensions;
251         dimensions.reserve(numberOfDimensions);
252         for (size_t i = 0; i < numberOfDimensions; ++i) {
253             // validate dimension
254             if (data[index].getDiscriminator() != discriminator::outputOperandDimensionValue) {
255                 LOG(ERROR) << "FMQ Request packet ill-formed";
256                 return std::nullopt;
257             }
258 
259             // unpackage dimension
260             const uint32_t dimension = data[index].outputOperandDimensionValue();
261             index++;
262 
263             // store result
264             dimensions.push_back(dimension);
265         }
266 
267         // store result
268         outputs.push_back(
269                 {/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
270     }
271 
272     // unpackage pools
273     std::vector<int32_t> slots;
274     slots.reserve(numberOfPools);
275     for (size_t pool = 0; pool < numberOfPools; ++pool) {
276         // validate input operand information
277         if (data[index].getDiscriminator() != discriminator::poolIdentifier) {
278             LOG(ERROR) << "FMQ Request packet ill-formed";
279             return std::nullopt;
280         }
281 
282         // unpackage operand information
283         const int32_t poolId = data[index].poolIdentifier();
284         index++;
285 
286         // store result
287         slots.push_back(poolId);
288     }
289 
290     // validate measureTiming
291     if (data[index].getDiscriminator() != discriminator::measureTiming) {
292         LOG(ERROR) << "FMQ Request packet ill-formed";
293         return std::nullopt;
294     }
295 
296     // unpackage measureTiming
297     const MeasureTiming measure = data[index].measureTiming();
298     index++;
299 
300     // validate packet information
301     if (index != packetSize) {
302         LOG(ERROR) << "FMQ Result packet ill-formed";
303         return std::nullopt;
304     }
305 
306     // return request
307     V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
308     return std::make_tuple(std::move(request), std::move(slots), measure);
309 }
310 
311 // RequestChannelReceiver methods
312 
create(const FmqRequestDescriptor & requestChannel,std::chrono::microseconds pollingTimeWindow)313 std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
314         const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
315     std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
316             std::make_unique<FmqRequestChannel>(requestChannel);
317 
318     if (!fmqRequestChannel->isValid()) {
319         LOG(ERROR) << "Unable to create RequestChannelReceiver";
320         return nullptr;
321     }
322     if (fmqRequestChannel->getEventFlagWord() == nullptr) {
323         LOG(ERROR)
324                 << "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
325         return nullptr;
326     }
327 
328     return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
329                                                     pollingTimeWindow);
330 }
331 
RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,std::chrono::microseconds pollingTimeWindow)332 RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
333                                                std::chrono::microseconds pollingTimeWindow)
334     : mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
335 
336 std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, MeasureTiming>>
getBlocking()337 RequestChannelReceiver::getBlocking() {
338     const auto packet = getPacketBlocking();
339     if (!packet) {
340         return std::nullopt;
341     }
342 
343     return deserialize(*packet);
344 }
345 
invalidate()346 void RequestChannelReceiver::invalidate() {
347     mTeardown = true;
348 
349     // force unblock
350     // ExecutionBurstServer is by default waiting on a request packet. If the
351     // client process destroys its burst object, the server may still be waiting
352     // on the futex. This force unblock wakes up any thread waiting on the
353     // futex.
354     // TODO: look for a different/better way to signal/notify the futex to wake
355     // up any thread waiting on it
356     FmqRequestDatum datum;
357     datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
358                              /*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
359     mFmqRequestChannel->writeBlocking(&datum, 1);
360 }
361 
getPacketBlocking()362 std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
363     using discriminator = FmqRequestDatum::hidl_discriminator;
364 
365     if (mTeardown) {
366         return std::nullopt;
367     }
368 
369     // First spend time polling if results are available in FMQ instead of
370     // waiting on the futex. Polling is more responsive (yielding lower
371     // latencies), but can take up more power, so only poll for a limited period
372     // of time.
373 
374     auto& getCurrentTime = std::chrono::high_resolution_clock::now;
375     const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
376 
377     while (getCurrentTime() < timeToStopPolling) {
378         // if class is being torn down, immediately return
379         if (mTeardown.load(std::memory_order_relaxed)) {
380             return std::nullopt;
381         }
382 
383         // Check if data is available. If it is, immediately retrieve it and
384         // return.
385         const size_t available = mFmqRequestChannel->availableToRead();
386         if (available > 0) {
387             // This is the first point when we know an execution is occurring,
388             // so begin to collect systraces. Note that a similar systrace does
389             // not exist at the corresponding point in
390             // ResultChannelReceiver::getPacketBlocking because the execution is
391             // already in flight.
392             NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
393                          "ExecutionBurstServer getting packet");
394             std::vector<FmqRequestDatum> packet(available);
395             const bool success = mFmqRequestChannel->read(packet.data(), available);
396             if (!success) {
397                 LOG(ERROR) << "Error receiving packet";
398                 return std::nullopt;
399             }
400             return std::make_optional(std::move(packet));
401         }
402     }
403 
404     // If we get to this point, we either stopped polling because it was taking
405     // too long or polling was not allowed. Instead, perform a blocking call
406     // which uses a futex to save power.
407 
408     // wait for request packet and read first element of request packet
409     FmqRequestDatum datum;
410     bool success = mFmqRequestChannel->readBlocking(&datum, 1);
411 
412     // This is the first point when we know an execution is occurring, so begin
413     // to collect systraces. Note that a similar systrace does not exist at the
414     // corresponding point in ResultChannelReceiver::getPacketBlocking because
415     // the execution is already in flight.
416     NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
417 
418     // retrieve remaining elements
419     // NOTE: all of the data is already available at this point, so there's no
420     // need to do a blocking wait to wait for more data. This is known because
421     // in FMQ, all writes are published (made available) atomically. Currently,
422     // the producer always publishes the entire packet in one function call, so
423     // if the first element of the packet is available, the remaining elements
424     // are also available.
425     const size_t count = mFmqRequestChannel->availableToRead();
426     std::vector<FmqRequestDatum> packet(count + 1);
427     std::memcpy(&packet.front(), &datum, sizeof(datum));
428     success &= mFmqRequestChannel->read(packet.data() + 1, count);
429 
430     // terminate loop
431     if (mTeardown) {
432         return std::nullopt;
433     }
434 
435     // ensure packet was successfully received
436     if (!success) {
437         LOG(ERROR) << "Error receiving packet";
438         return std::nullopt;
439     }
440 
441     return std::make_optional(std::move(packet));
442 }
443 
444 // ResultChannelSender methods
445 
create(const FmqResultDescriptor & resultChannel)446 std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
447         const FmqResultDescriptor& resultChannel) {
448     std::unique_ptr<FmqResultChannel> fmqResultChannel =
449             std::make_unique<FmqResultChannel>(resultChannel);
450 
451     if (!fmqResultChannel->isValid()) {
452         LOG(ERROR) << "Unable to create RequestChannelSender";
453         return nullptr;
454     }
455     if (fmqResultChannel->getEventFlagWord() == nullptr) {
456         LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
457         return nullptr;
458     }
459 
460     return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
461 }
462 
ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)463 ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
464     : mFmqResultChannel(std::move(fmqResultChannel)) {}
465 
send(V1_0::ErrorStatus errorStatus,const std::vector<OutputShape> & outputShapes,Timing timing)466 bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
467                                const std::vector<OutputShape>& outputShapes, Timing timing) {
468     const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
469     return sendPacket(serialized);
470 }
471 
sendPacket(const std::vector<FmqResultDatum> & packet)472 bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
473     if (packet.size() > mFmqResultChannel->availableToWrite()) {
474         LOG(ERROR)
475                 << "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
476         const std::vector<FmqResultDatum> errorPacket =
477                 serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
478 
479         // Always send the packet with "blocking" because this signals the futex
480         // and unblocks the consumer if it is waiting on the futex.
481         return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
482     }
483 
484     // Always send the packet with "blocking" because this signals the futex and
485     // unblocks the consumer if it is waiting on the futex.
486     return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
487 }
488 
489 // ExecutionBurstServer methods
490 
create(const sp<IBurstCallback> & callback,const MQDescriptorSync<FmqRequestDatum> & requestChannel,const MQDescriptorSync<FmqResultDatum> & resultChannel,std::shared_ptr<IBurstExecutorWithCache> executorWithCache,std::chrono::microseconds pollingTimeWindow)491 sp<ExecutionBurstServer> ExecutionBurstServer::create(
492         const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
493         const MQDescriptorSync<FmqResultDatum>& resultChannel,
494         std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
495         std::chrono::microseconds pollingTimeWindow) {
496     // check inputs
497     if (callback == nullptr || executorWithCache == nullptr) {
498         LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
499         return nullptr;
500     }
501 
502     // create FMQ objects
503     std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
504             RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
505     std::unique_ptr<ResultChannelSender> resultChannelSender =
506             ResultChannelSender::create(resultChannel);
507 
508     // check FMQ objects
509     if (!requestChannelReceiver || !resultChannelSender) {
510         LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
511         return nullptr;
512     }
513 
514     // make and return context
515     return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
516                                     std::move(resultChannelSender), std::move(executorWithCache));
517 }
518 
create(const sp<IBurstCallback> & callback,const MQDescriptorSync<FmqRequestDatum> & requestChannel,const MQDescriptorSync<FmqResultDatum> & resultChannel,V1_2::IPreparedModel * preparedModel,std::chrono::microseconds pollingTimeWindow)519 sp<ExecutionBurstServer> ExecutionBurstServer::create(
520         const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
521         const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
522         std::chrono::microseconds pollingTimeWindow) {
523     // check relevant input
524     if (preparedModel == nullptr) {
525         LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
526         return nullptr;
527     }
528 
529     // adapt IPreparedModel to have caching
530     const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
531             std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
532 
533     // make and return context
534     return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
535                                         preparedModelAdapter, pollingTimeWindow);
536 }
537 
ExecutionBurstServer(const sp<IBurstCallback> & callback,std::unique_ptr<RequestChannelReceiver> requestChannel,std::unique_ptr<ResultChannelSender> resultChannel,std::shared_ptr<IBurstExecutorWithCache> executorWithCache)538 ExecutionBurstServer::ExecutionBurstServer(
539         const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
540         std::unique_ptr<ResultChannelSender> resultChannel,
541         std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
542     : mCallback(callback),
543       mRequestChannelReceiver(std::move(requestChannel)),
544       mResultChannelSender(std::move(resultChannel)),
545       mExecutorWithCache(std::move(executorWithCache)) {
546     // TODO: highly document the threading behavior of this class
547     mWorker = std::thread([this] { task(); });
548 }
549 
~ExecutionBurstServer()550 ExecutionBurstServer::~ExecutionBurstServer() {
551     // set teardown flag
552     mTeardown = true;
553     mRequestChannelReceiver->invalidate();
554 
555     // wait for task thread to end
556     mWorker.join();
557 }
558 
freeMemory(int32_t slot)559 Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
560     std::lock_guard<std::mutex> hold(mMutex);
561     mExecutorWithCache->removeCacheEntry(slot);
562     return Void();
563 }
564 
ensureCacheEntriesArePresentLocked(const std::vector<int32_t> & slots)565 void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
566     const auto slotIsKnown = [this](int32_t slot) {
567         return mExecutorWithCache->isCacheEntryPresent(slot);
568     };
569 
570     // find unique unknown slots
571     std::vector<int32_t> unknownSlots = slots;
572     auto unknownSlotsEnd = unknownSlots.end();
573     std::sort(unknownSlots.begin(), unknownSlotsEnd);
574     unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
575     unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
576     unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
577 
578     // quick-exit if all slots are known
579     if (unknownSlots.empty()) {
580         return;
581     }
582 
583     V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
584     std::vector<hidl_memory> returnedMemories;
585     auto cb = [&errorStatus, &returnedMemories](V1_0::ErrorStatus status,
586                                                 const hidl_vec<hidl_memory>& memories) {
587         errorStatus = status;
588         returnedMemories = memories;
589     };
590 
591     const Return<void> ret = mCallback->getMemories(unknownSlots, cb);
592 
593     if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
594         returnedMemories.size() != unknownSlots.size()) {
595         LOG(ERROR) << "Error retrieving memories";
596         return;
597     }
598 
599     // add memories to unknown slots
600     for (size_t i = 0; i < unknownSlots.size(); ++i) {
601         mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
602     }
603 }
604 
task()605 void ExecutionBurstServer::task() {
606     // loop until the burst object is being destroyed
607     while (!mTeardown) {
608         // receive request
609         auto arguments = mRequestChannelReceiver->getBlocking();
610 
611         // if the request packet was not properly received, return a generic
612         // error and skip the execution
613         //
614         // if the  burst is being torn down, skip the execution exection so the
615         // "task" function can end
616         if (!arguments) {
617             if (!mTeardown) {
618                 mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
619             }
620             continue;
621         }
622 
623         // otherwise begin tracing execution
624         NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
625                      "ExecutionBurstServer getting memory, executing, and returning results");
626 
627         // unpack the arguments; types are Request, std::vector<int32_t>, and
628         // MeasureTiming, respectively
629         const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
630 
631         // ensure executor with cache has required memory
632         std::lock_guard<std::mutex> hold(mMutex);
633         ensureCacheEntriesArePresentLocked(slotsOfPools);
634 
635         // perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
636         // and Timing, respectively
637         const auto [errorStatus, outputShapes, returnedTiming] =
638                 mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
639 
640         // return result
641         mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
642     }
643 }
644 
645 }  // namespace android::nn
646