1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "Operations"
18
19 #include "CpuOperationUtils.h"
20 #include "HalInterfaces.h"
21 #include "IndexedShapeWrapper.h"
22 #include "OperationResolver.h"
23
24 #include <vector>
25
26 namespace android {
27 namespace nn {
28 namespace slice {
29
30 constexpr char kOperationName[] = "SLICE";
31
32 constexpr uint32_t kNumInputs = 3;
33 constexpr uint32_t kInputTensor = 0;
34 constexpr uint32_t kBeginTensor = 1;
35 constexpr uint32_t kSizeTensor = 2;
36
37 constexpr uint32_t kNumOutputs = 1;
38 constexpr uint32_t kOutputTensor = 0;
39
40 using namespace hal;
41
42 namespace {
43
44 template <typename T>
addVectors(const std::vector<T> & a,const std::vector<T> & b,std::vector<T> * res)45 void addVectors(const std::vector<T>& a, const std::vector<T>& b, std::vector<T>* res) {
46 for (int i = 0; i < res->size(); ++i) {
47 res->at(i) = a[i] + b[i];
48 }
49 }
50
51 template <typename T>
evalGeneric(const T * inputData,const Shape & inputShape,const int32_t * beginData,const Shape & beginShape,const int32_t * sizeData,const Shape & sizeShape,T * outputData,const Shape & outputShape)52 bool evalGeneric(const T* inputData, const Shape& inputShape, const int32_t* beginData,
53 const Shape& beginShape, const int32_t* sizeData, const Shape& sizeShape,
54 T* outputData, const Shape& outputShape) {
55 const int outputSize = getNumberOfElements(outputShape);
56 const IndexedShapeWrapper indexedOutput = IndexedShapeWrapper(outputShape);
57 const IndexedShapeWrapper indexedInput = IndexedShapeWrapper(inputShape);
58 std::vector<uint32_t> outputIndex(getNumberOfDimensions(outputShape), 0);
59 std::vector<uint32_t> beginIndex(getSizeOfDimension(beginShape, 0));
60 std::vector<uint32_t> inputIndex(getNumberOfDimensions(inputShape));
61
62 for (int i = 0; i < beginIndex.size(); ++i) {
63 beginIndex[i] = static_cast<uint32_t>(beginData[i]);
64 }
65
66 bool lastIndex = false;
67 uint32_t outputOffset;
68 uint32_t inputOffset;
69
70 do {
71 addVectors(outputIndex, beginIndex, &inputIndex);
72
73 NN_RET_CHECK(indexedOutput.indexToFlatIndex(outputIndex, &outputOffset));
74 NN_RET_CHECK(indexedInput.indexToFlatIndex(inputIndex, &inputOffset));
75
76 outputData[outputOffset] = inputData[inputOffset];
77 NN_RET_CHECK(indexedOutput.nextIndexInplace(&outputIndex, &lastIndex));
78 } while (!lastIndex);
79 return true;
80 }
81
82 } // namespace
83
validate(const IOperationValidationContext * context)84 bool validate(const IOperationValidationContext* context) {
85 NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
86 NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
87
88 const OperandType inputType = context->getInputType(kInputTensor);
89 NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
90 inputType == OperandType::TENSOR_FLOAT32 ||
91 inputType == OperandType::TENSOR_INT32 ||
92 inputType == OperandType::TENSOR_QUANT8_ASYMM ||
93 inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
94 << "Unsupported tensor type for operation " << kOperationName;
95 if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
96 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_3));
97 } else {
98 NN_RET_CHECK(validateHalVersion(context, HalVersion::V1_2));
99 }
100 return validateInputTypes(context,
101 {inputType, OperandType::TENSOR_INT32, OperandType::TENSOR_INT32}) &&
102 validateOutputTypes(context, {inputType});
103 }
104
prepare(IOperationExecutionContext * context)105 bool prepare(IOperationExecutionContext* context) {
106 const Shape& inputShape = context->getInputShape(kInputTensor);
107 const int32_t n_dims = getNumberOfDimensions(inputShape);
108 NN_RET_CHECK(n_dims > 0);
109
110 const Shape& beginShape = context->getInputShape(kBeginTensor);
111 NN_RET_CHECK_EQ(getNumberOfDimensions(beginShape), 1);
112 NN_RET_CHECK_EQ(getSizeOfDimension(beginShape, 0), n_dims);
113
114 const Shape& sizeShape = context->getInputShape(kSizeTensor);
115 NN_RET_CHECK_EQ(getNumberOfDimensions(sizeShape), 1);
116 NN_RET_CHECK_EQ(getSizeOfDimension(sizeShape, 0), n_dims);
117
118 const int32_t* beginData = context->getInputBuffer<int32_t>(kBeginTensor);
119 const int32_t* sizeData = context->getInputBuffer<int32_t>(kSizeTensor);
120
121 Shape outputShape = context->getOutputShape(kOutputTensor);
122 outputShape.dimensions.resize(n_dims);
123 for (int i = 0; i < n_dims; ++i) {
124 const int32_t sliceBegin = beginData[i];
125 int32_t sliceSize = sizeData[i];
126 if (sliceSize == -1) {
127 sliceSize = getSizeOfDimension(inputShape, i) - sliceBegin;
128 }
129 NN_RET_CHECK_LE(beginData[i], getSizeOfDimension(inputShape, i));
130 NN_RET_CHECK_GE(sliceSize, 0);
131 NN_RET_CHECK_LE(sliceBegin + sliceSize, getSizeOfDimension(inputShape, i));
132 outputShape.dimensions[i] = sliceSize;
133 }
134 return context->setOutputShape(kOutputTensor, outputShape);
135 }
136
execute(IOperationExecutionContext * context)137 bool execute(IOperationExecutionContext* context) {
138 // Bypass execution in the case of zero-sized input.
139 if (getNumberOfElements(context->getOutputShape(kOutputTensor)) == 0) return true;
140 switch (context->getInputType(kInputTensor)) {
141 case OperandType::TENSOR_FLOAT16:
142 return evalGeneric(context->getInputBuffer<_Float16>(kInputTensor),
143 context->getInputShape(kInputTensor),
144 context->getInputBuffer<int32_t>(kBeginTensor),
145 context->getInputShape(kBeginTensor),
146 context->getInputBuffer<int32_t>(kSizeTensor),
147 context->getInputShape(kSizeTensor),
148 context->getOutputBuffer<_Float16>(kOutputTensor),
149 context->getOutputShape(kOutputTensor));
150 case OperandType::TENSOR_FLOAT32:
151 return evalGeneric(context->getInputBuffer<float>(kInputTensor),
152 context->getInputShape(kInputTensor),
153 context->getInputBuffer<int32_t>(kBeginTensor),
154 context->getInputShape(kBeginTensor),
155 context->getInputBuffer<int32_t>(kSizeTensor),
156 context->getInputShape(kSizeTensor),
157 context->getOutputBuffer<float>(kOutputTensor),
158 context->getOutputShape(kOutputTensor));
159 case OperandType::TENSOR_INT32:
160 return evalGeneric(context->getInputBuffer<int32_t>(kInputTensor),
161 context->getInputShape(kInputTensor),
162 context->getInputBuffer<int32_t>(kBeginTensor),
163 context->getInputShape(kBeginTensor),
164 context->getInputBuffer<int32_t>(kSizeTensor),
165 context->getInputShape(kSizeTensor),
166 context->getOutputBuffer<int32_t>(kOutputTensor),
167 context->getOutputShape(kOutputTensor));
168 case OperandType::TENSOR_QUANT8_ASYMM:
169 return evalGeneric(context->getInputBuffer<uint8_t>(kInputTensor),
170 context->getInputShape(kInputTensor),
171 context->getInputBuffer<int32_t>(kBeginTensor),
172 context->getInputShape(kBeginTensor),
173 context->getInputBuffer<int32_t>(kSizeTensor),
174 context->getInputShape(kSizeTensor),
175 context->getOutputBuffer<uint8_t>(kOutputTensor),
176 context->getOutputShape(kOutputTensor));
177 case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
178 return evalGeneric(context->getInputBuffer<int8_t>(kInputTensor),
179 context->getInputShape(kInputTensor),
180 context->getInputBuffer<int32_t>(kBeginTensor),
181 context->getInputShape(kBeginTensor),
182 context->getInputBuffer<int32_t>(kSizeTensor),
183 context->getInputShape(kSizeTensor),
184 context->getOutputBuffer<int8_t>(kOutputTensor),
185 context->getOutputShape(kOutputTensor));
186 default:
187 NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName;
188 }
189 }
190
191 } // namespace slice
192
193 NN_REGISTER_OPERATION(SLICE, slice::kOperationName, slice::validate, slice::prepare, slice::execute,
194 .allowZeroSizedInput = true);
195
196 } // namespace nn
197 } // namespace android
198