1# 2# Copyright (C) 2018 The Android Open Source Project 3# 4# Licensed under the Apache License, Version 2.0 (the "License"); 5# you may not use this file except in compliance with the License. 6# You may obtain a copy of the License at 7# 8# http://www.apache.org/licenses/LICENSE-2.0 9# 10# Unless required by applicable law or agreed to in writing, software 11# distributed under the License is distributed on an "AS IS" BASIS, 12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13# See the License for the specific language governing permissions and 14# limitations under the License. 15# 16 17import numpy as np 18 19num_values = 300 20values = list(np.linspace(-10, 10, num_values)) 21 22for input_type in ["TENSOR_FLOAT32", "TENSOR_FLOAT16"]: 23 for scale, offset in [(1.0, 0), 24 (1.0, 1), 25 (0.01, 120), 26 (10.0, 120)]: 27 input0 = Input("input0", input_type, "{%d}" % num_values) 28 output0 = Output("output0", input_type, "{%d}" % num_values) 29 30 model = Model().Operation("QUANTIZE", input0).To(output0) 31 32 quantizeOutput = DataTypeConverter().Identify({ 33 output0: ["TENSOR_QUANT8_ASYMM", scale, offset], 34 }) 35 36 Example({ 37 input0: values, 38 output0: values, 39 }).AddVariations(quantizeOutput, includeDefault=False) 40 41 42# Zero-sized input 43 44# Use BOX_WITH_NMS_LIMIT op to generate a zero-sized internal tensor for box cooridnates. 45p1 = Parameter("scores", "TENSOR_FLOAT32", "{1, 2}", [0.90, 0.10]) # scores 46p2 = Parameter("roi", "TENSOR_FLOAT32", "{1, 8}", [1, 1, 10, 10, 0, 0, 10, 10]) # roi 47o1 = Output("scoresOut", "TENSOR_FLOAT32", "{0}") # scores out 48o2 = Output("classesOut", "TENSOR_INT32", "{0}") # classes out 49tmp1 = Internal("roiOut", "TENSOR_FLOAT32", "{0, 4}") # roi out 50tmp2 = Internal("batchSplitOut", "TENSOR_INT32", "{0}") # batch split out 51model = Model("zero_sized").Operation("BOX_WITH_NMS_LIMIT", p1, p2, [0], 0.3, -1, 0, 0.4, 1.0, 0.3).To(o1, tmp1, o2, tmp2) 52 53# Use ROI_ALIGN op to convert into zero-sized feature map. 54layout = BoolScalar("layout", False) # NHWC 55i1 = Input("in", "TENSOR_FLOAT32", "{1, 1, 1, 1}") 56zero_sized = Internal("featureMap", "TENSOR_FLOAT32", "{0, 2, 2, 1}") 57model = model.Operation("ROI_ALIGN", i1, tmp1, tmp2, 2, 2, 2.0, 2.0, 4, 4, layout).To(zero_sized) 58 59# QUANTIZE op with numBatches = 0. 60o3 = Output("out", "TENSOR_QUANT8_ASYMM", "{0, 2, 2, 1}, 0.1f, 128") # out 61model = model.Operation("QUANTIZE", zero_sized).To(o3) 62 63Example({ 64 i1: [1], 65 o1: [], 66 o2: [], 67 o3: [], 68}).AddVariations("relaxed", "float16") 69