1 /*
2 * Copyright 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "RenderEngine"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include <sched.h>
23 #include <cmath>
24 #include <fstream>
25 #include <sstream>
26 #include <unordered_set>
27
28 #include <GLES2/gl2.h>
29 #include <GLES2/gl2ext.h>
30 #include <android-base/stringprintf.h>
31 #include <cutils/compiler.h>
32 #include <cutils/properties.h>
33 #include <gui/DebugEGLImageTracker.h>
34 #include <renderengine/Mesh.h>
35 #include <renderengine/Texture.h>
36 #include <renderengine/private/Description.h>
37 #include <sync/sync.h>
38 #include <ui/ColorSpace.h>
39 #include <ui/DebugUtils.h>
40 #include <ui/GraphicBuffer.h>
41 #include <ui/Rect.h>
42 #include <ui/Region.h>
43 #include <utils/KeyedVector.h>
44 #include <utils/Trace.h>
45 #include "GLESRenderEngine.h"
46 #include "GLExtensions.h"
47 #include "GLFramebuffer.h"
48 #include "GLImage.h"
49 #include "GLShadowVertexGenerator.h"
50 #include "Program.h"
51 #include "ProgramCache.h"
52 #include "filters/BlurFilter.h"
53
54 extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
55
checkGlError(const char * op,int lineNumber)56 bool checkGlError(const char* op, int lineNumber) {
57 bool errorFound = false;
58 GLint error = glGetError();
59 while (error != GL_NO_ERROR) {
60 errorFound = true;
61 error = glGetError();
62 ALOGV("after %s() (line # %d) glError (0x%x)\n", op, lineNumber, error);
63 }
64 return errorFound;
65 }
66
67 static constexpr bool outputDebugPPMs = false;
68
writePPM(const char * basename,GLuint width,GLuint height)69 void writePPM(const char* basename, GLuint width, GLuint height) {
70 ALOGV("writePPM #%s: %d x %d", basename, width, height);
71
72 std::vector<GLubyte> pixels(width * height * 4);
73 std::vector<GLubyte> outBuffer(width * height * 3);
74
75 // TODO(courtneygo): We can now have float formats, need
76 // to remove this code or update to support.
77 // Make returned pixels fit in uint32_t, one byte per component
78 glReadPixels(0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels.data());
79 if (checkGlError(__FUNCTION__, __LINE__)) {
80 return;
81 }
82
83 std::string filename(basename);
84 filename.append(".ppm");
85 std::ofstream file(filename.c_str(), std::ios::binary);
86 if (!file.is_open()) {
87 ALOGE("Unable to open file: %s", filename.c_str());
88 ALOGE("You may need to do: \"adb shell setenforce 0\" to enable "
89 "surfaceflinger to write debug images");
90 return;
91 }
92
93 file << "P6\n";
94 file << width << "\n";
95 file << height << "\n";
96 file << 255 << "\n";
97
98 auto ptr = reinterpret_cast<char*>(pixels.data());
99 auto outPtr = reinterpret_cast<char*>(outBuffer.data());
100 for (int y = height - 1; y >= 0; y--) {
101 char* data = ptr + y * width * sizeof(uint32_t);
102
103 for (GLuint x = 0; x < width; x++) {
104 // Only copy R, G and B components
105 outPtr[0] = data[0];
106 outPtr[1] = data[1];
107 outPtr[2] = data[2];
108 data += sizeof(uint32_t);
109 outPtr += 3;
110 }
111 }
112 file.write(reinterpret_cast<char*>(outBuffer.data()), outBuffer.size());
113 }
114
115 namespace android {
116 namespace renderengine {
117 namespace gl {
118
119 using base::StringAppendF;
120 using ui::Dataspace;
121
selectConfigForAttribute(EGLDisplay dpy,EGLint const * attrs,EGLint attribute,EGLint wanted,EGLConfig * outConfig)122 static status_t selectConfigForAttribute(EGLDisplay dpy, EGLint const* attrs, EGLint attribute,
123 EGLint wanted, EGLConfig* outConfig) {
124 EGLint numConfigs = -1, n = 0;
125 eglGetConfigs(dpy, nullptr, 0, &numConfigs);
126 std::vector<EGLConfig> configs(numConfigs, EGL_NO_CONFIG_KHR);
127 eglChooseConfig(dpy, attrs, configs.data(), configs.size(), &n);
128 configs.resize(n);
129
130 if (!configs.empty()) {
131 if (attribute != EGL_NONE) {
132 for (EGLConfig config : configs) {
133 EGLint value = 0;
134 eglGetConfigAttrib(dpy, config, attribute, &value);
135 if (wanted == value) {
136 *outConfig = config;
137 return NO_ERROR;
138 }
139 }
140 } else {
141 // just pick the first one
142 *outConfig = configs[0];
143 return NO_ERROR;
144 }
145 }
146
147 return NAME_NOT_FOUND;
148 }
149
selectEGLConfig(EGLDisplay display,EGLint format,EGLint renderableType,EGLConfig * config)150 static status_t selectEGLConfig(EGLDisplay display, EGLint format, EGLint renderableType,
151 EGLConfig* config) {
152 // select our EGLConfig. It must support EGL_RECORDABLE_ANDROID if
153 // it is to be used with WIFI displays
154 status_t err;
155 EGLint wantedAttribute;
156 EGLint wantedAttributeValue;
157
158 std::vector<EGLint> attribs;
159 if (renderableType) {
160 const ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(format);
161 const bool is1010102 = pixelFormat == ui::PixelFormat::RGBA_1010102;
162
163 // Default to 8 bits per channel.
164 const EGLint tmpAttribs[] = {
165 EGL_RENDERABLE_TYPE,
166 renderableType,
167 EGL_RECORDABLE_ANDROID,
168 EGL_TRUE,
169 EGL_SURFACE_TYPE,
170 EGL_WINDOW_BIT | EGL_PBUFFER_BIT,
171 EGL_FRAMEBUFFER_TARGET_ANDROID,
172 EGL_TRUE,
173 EGL_RED_SIZE,
174 is1010102 ? 10 : 8,
175 EGL_GREEN_SIZE,
176 is1010102 ? 10 : 8,
177 EGL_BLUE_SIZE,
178 is1010102 ? 10 : 8,
179 EGL_ALPHA_SIZE,
180 is1010102 ? 2 : 8,
181 EGL_NONE,
182 };
183 std::copy(tmpAttribs, tmpAttribs + (sizeof(tmpAttribs) / sizeof(EGLint)),
184 std::back_inserter(attribs));
185 wantedAttribute = EGL_NONE;
186 wantedAttributeValue = EGL_NONE;
187 } else {
188 // if no renderable type specified, fallback to a simplified query
189 wantedAttribute = EGL_NATIVE_VISUAL_ID;
190 wantedAttributeValue = format;
191 }
192
193 err = selectConfigForAttribute(display, attribs.data(), wantedAttribute, wantedAttributeValue,
194 config);
195 if (err == NO_ERROR) {
196 EGLint caveat;
197 if (eglGetConfigAttrib(display, *config, EGL_CONFIG_CAVEAT, &caveat))
198 ALOGW_IF(caveat == EGL_SLOW_CONFIG, "EGL_SLOW_CONFIG selected!");
199 }
200
201 return err;
202 }
203
create(const RenderEngineCreationArgs & args)204 std::unique_ptr<GLESRenderEngine> GLESRenderEngine::create(const RenderEngineCreationArgs& args) {
205 // initialize EGL for the default display
206 EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
207 if (!eglInitialize(display, nullptr, nullptr)) {
208 LOG_ALWAYS_FATAL("failed to initialize EGL");
209 }
210
211 const auto eglVersion = eglQueryStringImplementationANDROID(display, EGL_VERSION);
212 if (!eglVersion) {
213 checkGlError(__FUNCTION__, __LINE__);
214 LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_VERSION) failed");
215 }
216
217 const auto eglExtensions = eglQueryStringImplementationANDROID(display, EGL_EXTENSIONS);
218 if (!eglExtensions) {
219 checkGlError(__FUNCTION__, __LINE__);
220 LOG_ALWAYS_FATAL("eglQueryStringImplementationANDROID(EGL_EXTENSIONS) failed");
221 }
222
223 GLExtensions& extensions = GLExtensions::getInstance();
224 extensions.initWithEGLStrings(eglVersion, eglExtensions);
225
226 // The code assumes that ES2 or later is available if this extension is
227 // supported.
228 EGLConfig config = EGL_NO_CONFIG;
229 if (!extensions.hasNoConfigContext()) {
230 config = chooseEglConfig(display, args.pixelFormat, /*logConfig*/ true);
231 }
232
233 bool useContextPriority =
234 extensions.hasContextPriority() && args.contextPriority == ContextPriority::HIGH;
235 EGLContext protectedContext = EGL_NO_CONTEXT;
236 if (args.enableProtectedContext && extensions.hasProtectedContent()) {
237 protectedContext = createEglContext(display, config, nullptr, useContextPriority,
238 Protection::PROTECTED);
239 ALOGE_IF(protectedContext == EGL_NO_CONTEXT, "Can't create protected context");
240 }
241
242 EGLContext ctxt = createEglContext(display, config, protectedContext, useContextPriority,
243 Protection::UNPROTECTED);
244
245 // if can't create a GL context, we can only abort.
246 LOG_ALWAYS_FATAL_IF(ctxt == EGL_NO_CONTEXT, "EGLContext creation failed");
247
248 EGLSurface dummy = EGL_NO_SURFACE;
249 if (!extensions.hasSurfacelessContext()) {
250 dummy = createDummyEglPbufferSurface(display, config, args.pixelFormat,
251 Protection::UNPROTECTED);
252 LOG_ALWAYS_FATAL_IF(dummy == EGL_NO_SURFACE, "can't create dummy pbuffer");
253 }
254 EGLBoolean success = eglMakeCurrent(display, dummy, dummy, ctxt);
255 LOG_ALWAYS_FATAL_IF(!success, "can't make dummy pbuffer current");
256 extensions.initWithGLStrings(glGetString(GL_VENDOR), glGetString(GL_RENDERER),
257 glGetString(GL_VERSION), glGetString(GL_EXTENSIONS));
258
259 EGLSurface protectedDummy = EGL_NO_SURFACE;
260 if (protectedContext != EGL_NO_CONTEXT && !extensions.hasSurfacelessContext()) {
261 protectedDummy = createDummyEglPbufferSurface(display, config, args.pixelFormat,
262 Protection::PROTECTED);
263 ALOGE_IF(protectedDummy == EGL_NO_SURFACE, "can't create protected dummy pbuffer");
264 }
265
266 // now figure out what version of GL did we actually get
267 GlesVersion version = parseGlesVersion(extensions.getVersion());
268
269 LOG_ALWAYS_FATAL_IF(args.supportsBackgroundBlur && version < GLES_VERSION_3_0,
270 "Blurs require OpenGL ES 3.0. Please unset ro.surface_flinger.supports_background_blur");
271
272 // initialize the renderer while GL is current
273 std::unique_ptr<GLESRenderEngine> engine;
274 switch (version) {
275 case GLES_VERSION_1_0:
276 case GLES_VERSION_1_1:
277 LOG_ALWAYS_FATAL("SurfaceFlinger requires OpenGL ES 2.0 minimum to run.");
278 break;
279 case GLES_VERSION_2_0:
280 case GLES_VERSION_3_0:
281 engine = std::make_unique<GLESRenderEngine>(args, display, config, ctxt, dummy,
282 protectedContext, protectedDummy);
283 break;
284 }
285
286 ALOGI("OpenGL ES informations:");
287 ALOGI("vendor : %s", extensions.getVendor());
288 ALOGI("renderer : %s", extensions.getRenderer());
289 ALOGI("version : %s", extensions.getVersion());
290 ALOGI("extensions: %s", extensions.getExtensions());
291 ALOGI("GL_MAX_TEXTURE_SIZE = %zu", engine->getMaxTextureSize());
292 ALOGI("GL_MAX_VIEWPORT_DIMS = %zu", engine->getMaxViewportDims());
293
294 return engine;
295 }
296
chooseEglConfig(EGLDisplay display,int format,bool logConfig)297 EGLConfig GLESRenderEngine::chooseEglConfig(EGLDisplay display, int format, bool logConfig) {
298 status_t err;
299 EGLConfig config;
300
301 // First try to get an ES3 config
302 err = selectEGLConfig(display, format, EGL_OPENGL_ES3_BIT, &config);
303 if (err != NO_ERROR) {
304 // If ES3 fails, try to get an ES2 config
305 err = selectEGLConfig(display, format, EGL_OPENGL_ES2_BIT, &config);
306 if (err != NO_ERROR) {
307 // If ES2 still doesn't work, probably because we're on the emulator.
308 // try a simplified query
309 ALOGW("no suitable EGLConfig found, trying a simpler query");
310 err = selectEGLConfig(display, format, 0, &config);
311 if (err != NO_ERROR) {
312 // this EGL is too lame for android
313 LOG_ALWAYS_FATAL("no suitable EGLConfig found, giving up");
314 }
315 }
316 }
317
318 if (logConfig) {
319 // print some debugging info
320 EGLint r, g, b, a;
321 eglGetConfigAttrib(display, config, EGL_RED_SIZE, &r);
322 eglGetConfigAttrib(display, config, EGL_GREEN_SIZE, &g);
323 eglGetConfigAttrib(display, config, EGL_BLUE_SIZE, &b);
324 eglGetConfigAttrib(display, config, EGL_ALPHA_SIZE, &a);
325 ALOGI("EGL information:");
326 ALOGI("vendor : %s", eglQueryString(display, EGL_VENDOR));
327 ALOGI("version : %s", eglQueryString(display, EGL_VERSION));
328 ALOGI("extensions: %s", eglQueryString(display, EGL_EXTENSIONS));
329 ALOGI("Client API: %s", eglQueryString(display, EGL_CLIENT_APIS) ?: "Not Supported");
330 ALOGI("EGLSurface: %d-%d-%d-%d, config=%p", r, g, b, a, config);
331 }
332
333 return config;
334 }
335
GLESRenderEngine(const RenderEngineCreationArgs & args,EGLDisplay display,EGLConfig config,EGLContext ctxt,EGLSurface dummy,EGLContext protectedContext,EGLSurface protectedDummy)336 GLESRenderEngine::GLESRenderEngine(const RenderEngineCreationArgs& args, EGLDisplay display,
337 EGLConfig config, EGLContext ctxt, EGLSurface dummy,
338 EGLContext protectedContext, EGLSurface protectedDummy)
339 : renderengine::impl::RenderEngine(args),
340 mEGLDisplay(display),
341 mEGLConfig(config),
342 mEGLContext(ctxt),
343 mDummySurface(dummy),
344 mProtectedEGLContext(protectedContext),
345 mProtectedDummySurface(protectedDummy),
346 mVpWidth(0),
347 mVpHeight(0),
348 mFramebufferImageCacheSize(args.imageCacheSize),
349 mUseColorManagement(args.useColorManagement) {
350 glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize);
351 glGetIntegerv(GL_MAX_VIEWPORT_DIMS, mMaxViewportDims);
352
353 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
354 glPixelStorei(GL_PACK_ALIGNMENT, 4);
355
356 // Initialize protected EGL Context.
357 if (mProtectedEGLContext != EGL_NO_CONTEXT) {
358 EGLBoolean success = eglMakeCurrent(display, mProtectedDummySurface, mProtectedDummySurface,
359 mProtectedEGLContext);
360 ALOGE_IF(!success, "can't make protected context current");
361 glPixelStorei(GL_UNPACK_ALIGNMENT, 4);
362 glPixelStorei(GL_PACK_ALIGNMENT, 4);
363 success = eglMakeCurrent(display, mDummySurface, mDummySurface, mEGLContext);
364 LOG_ALWAYS_FATAL_IF(!success, "can't make default context current");
365 }
366
367 // mColorBlindnessCorrection = M;
368
369 if (mUseColorManagement) {
370 const ColorSpace srgb(ColorSpace::sRGB());
371 const ColorSpace displayP3(ColorSpace::DisplayP3());
372 const ColorSpace bt2020(ColorSpace::BT2020());
373
374 // no chromatic adaptation needed since all color spaces use D65 for their white points.
375 mSrgbToXyz = mat4(srgb.getRGBtoXYZ());
376 mDisplayP3ToXyz = mat4(displayP3.getRGBtoXYZ());
377 mBt2020ToXyz = mat4(bt2020.getRGBtoXYZ());
378 mXyzToSrgb = mat4(srgb.getXYZtoRGB());
379 mXyzToDisplayP3 = mat4(displayP3.getXYZtoRGB());
380 mXyzToBt2020 = mat4(bt2020.getXYZtoRGB());
381
382 // Compute sRGB to Display P3 and BT2020 transform matrix.
383 // NOTE: For now, we are limiting output wide color space support to
384 // Display-P3 and BT2020 only.
385 mSrgbToDisplayP3 = mXyzToDisplayP3 * mSrgbToXyz;
386 mSrgbToBt2020 = mXyzToBt2020 * mSrgbToXyz;
387
388 // Compute Display P3 to sRGB and BT2020 transform matrix.
389 mDisplayP3ToSrgb = mXyzToSrgb * mDisplayP3ToXyz;
390 mDisplayP3ToBt2020 = mXyzToBt2020 * mDisplayP3ToXyz;
391
392 // Compute BT2020 to sRGB and Display P3 transform matrix
393 mBt2020ToSrgb = mXyzToSrgb * mBt2020ToXyz;
394 mBt2020ToDisplayP3 = mXyzToDisplayP3 * mBt2020ToXyz;
395 }
396
397 char value[PROPERTY_VALUE_MAX];
398 property_get("debug.egl.traceGpuCompletion", value, "0");
399 if (atoi(value)) {
400 mTraceGpuCompletion = true;
401 mFlushTracer = std::make_unique<FlushTracer>(this);
402 }
403
404 if (args.supportsBackgroundBlur) {
405 mBlurFilter = new BlurFilter(*this);
406 checkErrors("BlurFilter creation");
407 }
408
409 mImageManager = std::make_unique<ImageManager>(this);
410 mImageManager->initThread();
411 mDrawingBuffer = createFramebuffer();
412 }
413
~GLESRenderEngine()414 GLESRenderEngine::~GLESRenderEngine() {
415 // Destroy the image manager first.
416 mImageManager = nullptr;
417 std::lock_guard<std::mutex> lock(mRenderingMutex);
418 unbindFrameBuffer(mDrawingBuffer.get());
419 mDrawingBuffer = nullptr;
420 while (!mFramebufferImageCache.empty()) {
421 EGLImageKHR expired = mFramebufferImageCache.front().second;
422 mFramebufferImageCache.pop_front();
423 eglDestroyImageKHR(mEGLDisplay, expired);
424 DEBUG_EGL_IMAGE_TRACKER_DESTROY();
425 }
426 mImageCache.clear();
427 eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
428 eglTerminate(mEGLDisplay);
429 }
430
createFramebuffer()431 std::unique_ptr<Framebuffer> GLESRenderEngine::createFramebuffer() {
432 return std::make_unique<GLFramebuffer>(*this);
433 }
434
createImage()435 std::unique_ptr<Image> GLESRenderEngine::createImage() {
436 return std::make_unique<GLImage>(*this);
437 }
438
getFramebufferForDrawing()439 Framebuffer* GLESRenderEngine::getFramebufferForDrawing() {
440 return mDrawingBuffer.get();
441 }
442
primeCache() const443 void GLESRenderEngine::primeCache() const {
444 ProgramCache::getInstance().primeCache(mInProtectedContext ? mProtectedEGLContext : mEGLContext,
445 mArgs.useColorManagement,
446 mArgs.precacheToneMapperShaderOnly);
447 }
448
flush()449 base::unique_fd GLESRenderEngine::flush() {
450 ATRACE_CALL();
451 if (!GLExtensions::getInstance().hasNativeFenceSync()) {
452 return base::unique_fd();
453 }
454
455 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, nullptr);
456 if (sync == EGL_NO_SYNC_KHR) {
457 ALOGW("failed to create EGL native fence sync: %#x", eglGetError());
458 return base::unique_fd();
459 }
460
461 // native fence fd will not be populated until flush() is done.
462 glFlush();
463
464 // get the fence fd
465 base::unique_fd fenceFd(eglDupNativeFenceFDANDROID(mEGLDisplay, sync));
466 eglDestroySyncKHR(mEGLDisplay, sync);
467 if (fenceFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
468 ALOGW("failed to dup EGL native fence sync: %#x", eglGetError());
469 }
470
471 // Only trace if we have a valid fence, as current usage falls back to
472 // calling finish() if the fence fd is invalid.
473 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer) && fenceFd.get() >= 0) {
474 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
475 }
476
477 return fenceFd;
478 }
479
finish()480 bool GLESRenderEngine::finish() {
481 ATRACE_CALL();
482 if (!GLExtensions::getInstance().hasFenceSync()) {
483 ALOGW("no synchronization support");
484 return false;
485 }
486
487 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr);
488 if (sync == EGL_NO_SYNC_KHR) {
489 ALOGW("failed to create EGL fence sync: %#x", eglGetError());
490 return false;
491 }
492
493 if (CC_UNLIKELY(mTraceGpuCompletion && mFlushTracer)) {
494 mFlushTracer->queueSync(eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, nullptr));
495 }
496
497 return waitSync(sync, EGL_SYNC_FLUSH_COMMANDS_BIT_KHR);
498 }
499
waitSync(EGLSyncKHR sync,EGLint flags)500 bool GLESRenderEngine::waitSync(EGLSyncKHR sync, EGLint flags) {
501 EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync, flags, 2000000000 /*2 sec*/);
502 EGLint error = eglGetError();
503 eglDestroySyncKHR(mEGLDisplay, sync);
504 if (result != EGL_CONDITION_SATISFIED_KHR) {
505 if (result == EGL_TIMEOUT_EXPIRED_KHR) {
506 ALOGW("fence wait timed out");
507 } else {
508 ALOGW("error waiting on EGL fence: %#x", error);
509 }
510 return false;
511 }
512
513 return true;
514 }
515
waitFence(base::unique_fd fenceFd)516 bool GLESRenderEngine::waitFence(base::unique_fd fenceFd) {
517 if (!GLExtensions::getInstance().hasNativeFenceSync() ||
518 !GLExtensions::getInstance().hasWaitSync()) {
519 return false;
520 }
521
522 // release the fd and transfer the ownership to EGLSync
523 EGLint attribs[] = {EGL_SYNC_NATIVE_FENCE_FD_ANDROID, fenceFd.release(), EGL_NONE};
524 EGLSyncKHR sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, attribs);
525 if (sync == EGL_NO_SYNC_KHR) {
526 ALOGE("failed to create EGL native fence sync: %#x", eglGetError());
527 return false;
528 }
529
530 // XXX: The spec draft is inconsistent as to whether this should return an
531 // EGLint or void. Ignore the return value for now, as it's not strictly
532 // needed.
533 eglWaitSyncKHR(mEGLDisplay, sync, 0);
534 EGLint error = eglGetError();
535 eglDestroySyncKHR(mEGLDisplay, sync);
536 if (error != EGL_SUCCESS) {
537 ALOGE("failed to wait for EGL native fence sync: %#x", error);
538 return false;
539 }
540
541 return true;
542 }
543
clearWithColor(float red,float green,float blue,float alpha)544 void GLESRenderEngine::clearWithColor(float red, float green, float blue, float alpha) {
545 ATRACE_CALL();
546 glDisable(GL_BLEND);
547 glClearColor(red, green, blue, alpha);
548 glClear(GL_COLOR_BUFFER_BIT);
549 }
550
fillRegionWithColor(const Region & region,float red,float green,float blue,float alpha)551 void GLESRenderEngine::fillRegionWithColor(const Region& region, float red, float green, float blue,
552 float alpha) {
553 size_t c;
554 Rect const* r = region.getArray(&c);
555 Mesh mesh = Mesh::Builder()
556 .setPrimitive(Mesh::TRIANGLES)
557 .setVertices(c * 6 /* count */, 2 /* size */)
558 .build();
559 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
560 for (size_t i = 0; i < c; i++, r++) {
561 position[i * 6 + 0].x = r->left;
562 position[i * 6 + 0].y = r->top;
563 position[i * 6 + 1].x = r->left;
564 position[i * 6 + 1].y = r->bottom;
565 position[i * 6 + 2].x = r->right;
566 position[i * 6 + 2].y = r->bottom;
567 position[i * 6 + 3].x = r->left;
568 position[i * 6 + 3].y = r->top;
569 position[i * 6 + 4].x = r->right;
570 position[i * 6 + 4].y = r->bottom;
571 position[i * 6 + 5].x = r->right;
572 position[i * 6 + 5].y = r->top;
573 }
574 setupFillWithColor(red, green, blue, alpha);
575 drawMesh(mesh);
576 }
577
setScissor(const Rect & region)578 void GLESRenderEngine::setScissor(const Rect& region) {
579 glScissor(region.left, region.top, region.getWidth(), region.getHeight());
580 glEnable(GL_SCISSOR_TEST);
581 }
582
disableScissor()583 void GLESRenderEngine::disableScissor() {
584 glDisable(GL_SCISSOR_TEST);
585 }
586
genTextures(size_t count,uint32_t * names)587 void GLESRenderEngine::genTextures(size_t count, uint32_t* names) {
588 glGenTextures(count, names);
589 }
590
deleteTextures(size_t count,uint32_t const * names)591 void GLESRenderEngine::deleteTextures(size_t count, uint32_t const* names) {
592 glDeleteTextures(count, names);
593 }
594
bindExternalTextureImage(uint32_t texName,const Image & image)595 void GLESRenderEngine::bindExternalTextureImage(uint32_t texName, const Image& image) {
596 ATRACE_CALL();
597 const GLImage& glImage = static_cast<const GLImage&>(image);
598 const GLenum target = GL_TEXTURE_EXTERNAL_OES;
599
600 glBindTexture(target, texName);
601 if (glImage.getEGLImage() != EGL_NO_IMAGE_KHR) {
602 glEGLImageTargetTexture2DOES(target, static_cast<GLeglImageOES>(glImage.getEGLImage()));
603 }
604 }
605
bindExternalTextureBuffer(uint32_t texName,const sp<GraphicBuffer> & buffer,const sp<Fence> & bufferFence)606 status_t GLESRenderEngine::bindExternalTextureBuffer(uint32_t texName,
607 const sp<GraphicBuffer>& buffer,
608 const sp<Fence>& bufferFence) {
609 if (buffer == nullptr) {
610 return BAD_VALUE;
611 }
612
613 ATRACE_CALL();
614
615 bool found = false;
616 {
617 std::lock_guard<std::mutex> lock(mRenderingMutex);
618 auto cachedImage = mImageCache.find(buffer->getId());
619 found = (cachedImage != mImageCache.end());
620 }
621
622 // If we couldn't find the image in the cache at this time, then either
623 // SurfaceFlinger messed up registering the buffer ahead of time or we got
624 // backed up creating other EGLImages.
625 if (!found) {
626 status_t cacheResult = mImageManager->cache(buffer);
627 if (cacheResult != NO_ERROR) {
628 return cacheResult;
629 }
630 }
631
632 // Whether or not we needed to cache, re-check mImageCache to make sure that
633 // there's an EGLImage. The current threading model guarantees that we don't
634 // destroy a cached image until it's really not needed anymore (i.e. this
635 // function should not be called), so the only possibility is that something
636 // terrible went wrong and we should just bind something and move on.
637 {
638 std::lock_guard<std::mutex> lock(mRenderingMutex);
639 auto cachedImage = mImageCache.find(buffer->getId());
640
641 if (cachedImage == mImageCache.end()) {
642 // We failed creating the image if we got here, so bail out.
643 ALOGE("Failed to create an EGLImage when rendering");
644 bindExternalTextureImage(texName, *createImage());
645 return NO_INIT;
646 }
647
648 bindExternalTextureImage(texName, *cachedImage->second);
649 }
650
651 // Wait for the new buffer to be ready.
652 if (bufferFence != nullptr && bufferFence->isValid()) {
653 if (GLExtensions::getInstance().hasWaitSync()) {
654 base::unique_fd fenceFd(bufferFence->dup());
655 if (fenceFd == -1) {
656 ALOGE("error dup'ing fence fd: %d", errno);
657 return -errno;
658 }
659 if (!waitFence(std::move(fenceFd))) {
660 ALOGE("failed to wait on fence fd");
661 return UNKNOWN_ERROR;
662 }
663 } else {
664 status_t err = bufferFence->waitForever("RenderEngine::bindExternalTextureBuffer");
665 if (err != NO_ERROR) {
666 ALOGE("error waiting for fence: %d", err);
667 return err;
668 }
669 }
670 }
671
672 return NO_ERROR;
673 }
674
cacheExternalTextureBuffer(const sp<GraphicBuffer> & buffer)675 void GLESRenderEngine::cacheExternalTextureBuffer(const sp<GraphicBuffer>& buffer) {
676 mImageManager->cacheAsync(buffer, nullptr);
677 }
678
cacheExternalTextureBufferForTesting(const sp<GraphicBuffer> & buffer)679 std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::cacheExternalTextureBufferForTesting(
680 const sp<GraphicBuffer>& buffer) {
681 auto barrier = std::make_shared<ImageManager::Barrier>();
682 mImageManager->cacheAsync(buffer, barrier);
683 return barrier;
684 }
685
cacheExternalTextureBufferInternal(const sp<GraphicBuffer> & buffer)686 status_t GLESRenderEngine::cacheExternalTextureBufferInternal(const sp<GraphicBuffer>& buffer) {
687 if (buffer == nullptr) {
688 return BAD_VALUE;
689 }
690
691 {
692 std::lock_guard<std::mutex> lock(mRenderingMutex);
693 if (mImageCache.count(buffer->getId()) > 0) {
694 // If there's already an image then fail fast here.
695 return NO_ERROR;
696 }
697 }
698 ATRACE_CALL();
699
700 // Create the image without holding a lock so that we don't block anything.
701 std::unique_ptr<Image> newImage = createImage();
702
703 bool created = newImage->setNativeWindowBuffer(buffer->getNativeBuffer(),
704 buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
705 if (!created) {
706 ALOGE("Failed to create image. size=%ux%u st=%u usage=%#" PRIx64 " fmt=%d",
707 buffer->getWidth(), buffer->getHeight(), buffer->getStride(), buffer->getUsage(),
708 buffer->getPixelFormat());
709 return NO_INIT;
710 }
711
712 {
713 std::lock_guard<std::mutex> lock(mRenderingMutex);
714 if (mImageCache.count(buffer->getId()) > 0) {
715 // In theory it's possible for another thread to recache the image,
716 // so bail out if another thread won.
717 return NO_ERROR;
718 }
719 mImageCache.insert(std::make_pair(buffer->getId(), std::move(newImage)));
720 }
721
722 return NO_ERROR;
723 }
724
unbindExternalTextureBuffer(uint64_t bufferId)725 void GLESRenderEngine::unbindExternalTextureBuffer(uint64_t bufferId) {
726 mImageManager->releaseAsync(bufferId, nullptr);
727 }
728
unbindExternalTextureBufferForTesting(uint64_t bufferId)729 std::shared_ptr<ImageManager::Barrier> GLESRenderEngine::unbindExternalTextureBufferForTesting(
730 uint64_t bufferId) {
731 auto barrier = std::make_shared<ImageManager::Barrier>();
732 mImageManager->releaseAsync(bufferId, barrier);
733 return barrier;
734 }
735
unbindExternalTextureBufferInternal(uint64_t bufferId)736 void GLESRenderEngine::unbindExternalTextureBufferInternal(uint64_t bufferId) {
737 std::unique_ptr<Image> image;
738 {
739 std::lock_guard<std::mutex> lock(mRenderingMutex);
740 const auto& cachedImage = mImageCache.find(bufferId);
741
742 if (cachedImage != mImageCache.end()) {
743 ALOGV("Destroying image for buffer: %" PRIu64, bufferId);
744 // Move the buffer out of cache first, so that we can destroy
745 // without holding the cache's lock.
746 image = std::move(cachedImage->second);
747 mImageCache.erase(bufferId);
748 return;
749 }
750 }
751 ALOGV("Failed to find image for buffer: %" PRIu64, bufferId);
752 }
753
setupLayerCropping(const LayerSettings & layer,Mesh & mesh)754 FloatRect GLESRenderEngine::setupLayerCropping(const LayerSettings& layer, Mesh& mesh) {
755 // Translate win by the rounded corners rect coordinates, to have all values in
756 // layer coordinate space.
757 FloatRect cropWin = layer.geometry.boundaries;
758 const FloatRect& roundedCornersCrop = layer.geometry.roundedCornersCrop;
759 cropWin.left -= roundedCornersCrop.left;
760 cropWin.right -= roundedCornersCrop.left;
761 cropWin.top -= roundedCornersCrop.top;
762 cropWin.bottom -= roundedCornersCrop.top;
763 Mesh::VertexArray<vec2> cropCoords(mesh.getCropCoordArray<vec2>());
764 cropCoords[0] = vec2(cropWin.left, cropWin.top);
765 cropCoords[1] = vec2(cropWin.left, cropWin.top + cropWin.getHeight());
766 cropCoords[2] = vec2(cropWin.right, cropWin.top + cropWin.getHeight());
767 cropCoords[3] = vec2(cropWin.right, cropWin.top);
768
769 setupCornerRadiusCropSize(roundedCornersCrop.getWidth(), roundedCornersCrop.getHeight());
770 return cropWin;
771 }
772
handleRoundedCorners(const DisplaySettings & display,const LayerSettings & layer,const Mesh & mesh)773 void GLESRenderEngine::handleRoundedCorners(const DisplaySettings& display,
774 const LayerSettings& layer, const Mesh& mesh) {
775 // We separate the layer into 3 parts essentially, such that we only turn on blending for the
776 // top rectangle and the bottom rectangle, and turn off blending for the middle rectangle.
777 FloatRect bounds = layer.geometry.roundedCornersCrop;
778
779 // Explicitly compute the transform from the clip rectangle to the physical
780 // display. Normally, this is done in glViewport but we explicitly compute
781 // it here so that we can get the scissor bounds correct.
782 const Rect& source = display.clip;
783 const Rect& destination = display.physicalDisplay;
784 // Here we compute the following transform:
785 // 1. Translate the top left corner of the source clip to (0, 0)
786 // 2. Rotate the clip rectangle about the origin in accordance with the
787 // orientation flag
788 // 3. Translate the top left corner back to the origin.
789 // 4. Scale the clip rectangle to the destination rectangle dimensions
790 // 5. Translate the top left corner to the destination rectangle's top left
791 // corner.
792 const mat4 translateSource = mat4::translate(vec4(-source.left, -source.top, 0, 1));
793 mat4 rotation;
794 int displacementX = 0;
795 int displacementY = 0;
796 float destinationWidth = static_cast<float>(destination.getWidth());
797 float destinationHeight = static_cast<float>(destination.getHeight());
798 float sourceWidth = static_cast<float>(source.getWidth());
799 float sourceHeight = static_cast<float>(source.getHeight());
800 const float rot90InRadians = 2.0f * static_cast<float>(M_PI) / 4.0f;
801 switch (display.orientation) {
802 case ui::Transform::ROT_90:
803 rotation = mat4::rotate(rot90InRadians, vec3(0, 0, 1));
804 displacementX = source.getHeight();
805 std::swap(sourceHeight, sourceWidth);
806 break;
807 case ui::Transform::ROT_180:
808 rotation = mat4::rotate(rot90InRadians * 2.0f, vec3(0, 0, 1));
809 displacementY = source.getHeight();
810 displacementX = source.getWidth();
811 break;
812 case ui::Transform::ROT_270:
813 rotation = mat4::rotate(rot90InRadians * 3.0f, vec3(0, 0, 1));
814 displacementY = source.getWidth();
815 std::swap(sourceHeight, sourceWidth);
816 break;
817 default:
818 break;
819 }
820
821 const mat4 intermediateTranslation = mat4::translate(vec4(displacementX, displacementY, 0, 1));
822 const mat4 scale = mat4::scale(
823 vec4(destinationWidth / sourceWidth, destinationHeight / sourceHeight, 1, 1));
824 const mat4 translateDestination =
825 mat4::translate(vec4(destination.left, destination.top, 0, 1));
826 const mat4 globalTransform =
827 translateDestination * scale * intermediateTranslation * rotation * translateSource;
828
829 const mat4 transformMatrix = globalTransform * layer.geometry.positionTransform;
830 const vec4 leftTopCoordinate(bounds.left, bounds.top, 1.0, 1.0);
831 const vec4 rightBottomCoordinate(bounds.right, bounds.bottom, 1.0, 1.0);
832 const vec4 leftTopCoordinateInBuffer = transformMatrix * leftTopCoordinate;
833 const vec4 rightBottomCoordinateInBuffer = transformMatrix * rightBottomCoordinate;
834 bounds = FloatRect(std::min(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]),
835 std::min(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]),
836 std::max(leftTopCoordinateInBuffer[0], rightBottomCoordinateInBuffer[0]),
837 std::max(leftTopCoordinateInBuffer[1], rightBottomCoordinateInBuffer[1]));
838
839 // Finally, we cut the layer into 3 parts, with top and bottom parts having rounded corners
840 // and the middle part without rounded corners.
841 const int32_t radius = ceil(layer.geometry.roundedCornersRadius);
842 const Rect topRect(bounds.left, bounds.top, bounds.right, bounds.top + radius);
843 setScissor(topRect);
844 drawMesh(mesh);
845 const Rect bottomRect(bounds.left, bounds.bottom - radius, bounds.right, bounds.bottom);
846 setScissor(bottomRect);
847 drawMesh(mesh);
848
849 // The middle part of the layer can turn off blending.
850 if (topRect.bottom < bottomRect.top) {
851 const Rect middleRect(bounds.left, bounds.top + radius, bounds.right,
852 bounds.bottom - radius);
853 setScissor(middleRect);
854 mState.cornerRadius = 0.0;
855 disableBlending();
856 drawMesh(mesh);
857 }
858 disableScissor();
859 }
860
bindFrameBuffer(Framebuffer * framebuffer)861 status_t GLESRenderEngine::bindFrameBuffer(Framebuffer* framebuffer) {
862 ATRACE_CALL();
863 GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(framebuffer);
864 EGLImageKHR eglImage = glFramebuffer->getEGLImage();
865 uint32_t textureName = glFramebuffer->getTextureName();
866 uint32_t framebufferName = glFramebuffer->getFramebufferName();
867
868 // Bind the texture and turn our EGLImage into a texture
869 glBindTexture(GL_TEXTURE_2D, textureName);
870 glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, (GLeglImageOES)eglImage);
871
872 // Bind the Framebuffer to render into
873 glBindFramebuffer(GL_FRAMEBUFFER, framebufferName);
874 glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, textureName, 0);
875
876 uint32_t glStatus = glCheckFramebufferStatus(GL_FRAMEBUFFER);
877 ALOGE_IF(glStatus != GL_FRAMEBUFFER_COMPLETE_OES, "glCheckFramebufferStatusOES error %d",
878 glStatus);
879
880 return glStatus == GL_FRAMEBUFFER_COMPLETE_OES ? NO_ERROR : BAD_VALUE;
881 }
882
unbindFrameBuffer(Framebuffer *)883 void GLESRenderEngine::unbindFrameBuffer(Framebuffer* /*framebuffer*/) {
884 ATRACE_CALL();
885
886 // back to main framebuffer
887 glBindFramebuffer(GL_FRAMEBUFFER, 0);
888 }
889
cleanupPostRender()890 bool GLESRenderEngine::cleanupPostRender() {
891 ATRACE_CALL();
892
893 if (mPriorResourcesCleaned ||
894 (mLastDrawFence != nullptr && mLastDrawFence->getStatus() != Fence::Status::Signaled)) {
895 // If we don't have a prior frame needing cleanup, then don't do anything.
896 return false;
897 }
898
899 // Bind the texture to dummy data so that backing image data can be freed.
900 GLFramebuffer* glFramebuffer = static_cast<GLFramebuffer*>(getFramebufferForDrawing());
901 glFramebuffer->allocateBuffers(1, 1, mPlaceholderDrawBuffer);
902 // Release the cached fence here, so that we don't churn reallocations when
903 // we could no-op repeated calls of this method instead.
904 mLastDrawFence = nullptr;
905 mPriorResourcesCleaned = true;
906 return true;
907 }
908
checkErrors() const909 void GLESRenderEngine::checkErrors() const {
910 checkErrors(nullptr);
911 }
912
checkErrors(const char * tag) const913 void GLESRenderEngine::checkErrors(const char* tag) const {
914 do {
915 // there could be more than one error flag
916 GLenum error = glGetError();
917 if (error == GL_NO_ERROR) break;
918 if (tag == nullptr) {
919 ALOGE("GL error 0x%04x", int(error));
920 } else {
921 ALOGE("GL error: %s -> 0x%04x", tag, int(error));
922 }
923 } while (true);
924 }
925
supportsProtectedContent() const926 bool GLESRenderEngine::supportsProtectedContent() const {
927 return mProtectedEGLContext != EGL_NO_CONTEXT;
928 }
929
useProtectedContext(bool useProtectedContext)930 bool GLESRenderEngine::useProtectedContext(bool useProtectedContext) {
931 if (useProtectedContext == mInProtectedContext) {
932 return true;
933 }
934 if (useProtectedContext && mProtectedEGLContext == EGL_NO_CONTEXT) {
935 return false;
936 }
937 const EGLSurface surface = useProtectedContext ? mProtectedDummySurface : mDummySurface;
938 const EGLContext context = useProtectedContext ? mProtectedEGLContext : mEGLContext;
939 const bool success = eglMakeCurrent(mEGLDisplay, surface, surface, context) == EGL_TRUE;
940 if (success) {
941 mInProtectedContext = useProtectedContext;
942 }
943 return success;
944 }
createFramebufferImageIfNeeded(ANativeWindowBuffer * nativeBuffer,bool isProtected,bool useFramebufferCache)945 EGLImageKHR GLESRenderEngine::createFramebufferImageIfNeeded(ANativeWindowBuffer* nativeBuffer,
946 bool isProtected,
947 bool useFramebufferCache) {
948 sp<GraphicBuffer> graphicBuffer = GraphicBuffer::from(nativeBuffer);
949 if (useFramebufferCache) {
950 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
951 for (const auto& image : mFramebufferImageCache) {
952 if (image.first == graphicBuffer->getId()) {
953 return image.second;
954 }
955 }
956 }
957 EGLint attributes[] = {
958 isProtected ? EGL_PROTECTED_CONTENT_EXT : EGL_NONE,
959 isProtected ? EGL_TRUE : EGL_NONE,
960 EGL_NONE,
961 };
962 EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID,
963 nativeBuffer, attributes);
964 if (useFramebufferCache) {
965 if (image != EGL_NO_IMAGE_KHR) {
966 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
967 if (mFramebufferImageCache.size() >= mFramebufferImageCacheSize) {
968 EGLImageKHR expired = mFramebufferImageCache.front().second;
969 mFramebufferImageCache.pop_front();
970 eglDestroyImageKHR(mEGLDisplay, expired);
971 DEBUG_EGL_IMAGE_TRACKER_DESTROY();
972 }
973 mFramebufferImageCache.push_back({graphicBuffer->getId(), image});
974 }
975 }
976
977 if (image != EGL_NO_IMAGE_KHR) {
978 DEBUG_EGL_IMAGE_TRACKER_CREATE();
979 }
980 return image;
981 }
982
drawLayers(const DisplaySettings & display,const std::vector<const LayerSettings * > & layers,ANativeWindowBuffer * const buffer,const bool useFramebufferCache,base::unique_fd && bufferFence,base::unique_fd * drawFence)983 status_t GLESRenderEngine::drawLayers(const DisplaySettings& display,
984 const std::vector<const LayerSettings*>& layers,
985 ANativeWindowBuffer* const buffer,
986 const bool useFramebufferCache, base::unique_fd&& bufferFence,
987 base::unique_fd* drawFence) {
988 ATRACE_CALL();
989 if (layers.empty()) {
990 ALOGV("Drawing empty layer stack");
991 return NO_ERROR;
992 }
993
994 if (bufferFence.get() >= 0) {
995 // Duplicate the fence for passing to waitFence.
996 base::unique_fd bufferFenceDup(dup(bufferFence.get()));
997 if (bufferFenceDup < 0 || !waitFence(std::move(bufferFenceDup))) {
998 ATRACE_NAME("Waiting before draw");
999 sync_wait(bufferFence.get(), -1);
1000 }
1001 }
1002
1003 if (buffer == nullptr) {
1004 ALOGE("No output buffer provided. Aborting GPU composition.");
1005 return BAD_VALUE;
1006 }
1007
1008 std::unique_ptr<BindNativeBufferAsFramebuffer> fbo;
1009 // Gathering layers that requested blur, we'll need them to decide when to render to an
1010 // offscreen buffer, and when to render to the native buffer.
1011 std::deque<const LayerSettings*> blurLayers;
1012 if (CC_LIKELY(mBlurFilter != nullptr)) {
1013 for (auto layer : layers) {
1014 if (layer->backgroundBlurRadius > 0) {
1015 blurLayers.push_back(layer);
1016 }
1017 }
1018 }
1019 const auto blurLayersSize = blurLayers.size();
1020
1021 if (blurLayersSize == 0) {
1022 fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, buffer, useFramebufferCache);
1023 if (fbo->getStatus() != NO_ERROR) {
1024 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).",
1025 buffer->handle);
1026 checkErrors();
1027 return fbo->getStatus();
1028 }
1029 setViewportAndProjection(display.physicalDisplay, display.clip);
1030 } else {
1031 setViewportAndProjection(display.physicalDisplay, display.clip);
1032 auto status =
1033 mBlurFilter->setAsDrawTarget(display, blurLayers.front()->backgroundBlurRadius);
1034 if (status != NO_ERROR) {
1035 ALOGE("Failed to prepare blur filter! Aborting GPU composition for buffer (%p).",
1036 buffer->handle);
1037 checkErrors();
1038 return status;
1039 }
1040 }
1041
1042 // clear the entire buffer, sometimes when we reuse buffers we'd persist
1043 // ghost images otherwise.
1044 // we also require a full transparent framebuffer for overlays. This is
1045 // probably not quite efficient on all GPUs, since we could filter out
1046 // opaque layers.
1047 clearWithColor(0.0, 0.0, 0.0, 0.0);
1048
1049 setOutputDataSpace(display.outputDataspace);
1050 setDisplayMaxLuminance(display.maxLuminance);
1051
1052 const mat4 projectionMatrix =
1053 ui::Transform(display.orientation).asMatrix4() * mState.projectionMatrix;
1054 if (!display.clearRegion.isEmpty()) {
1055 glDisable(GL_BLEND);
1056 fillRegionWithColor(display.clearRegion, 0.0, 0.0, 0.0, 1.0);
1057 }
1058
1059 Mesh mesh = Mesh::Builder()
1060 .setPrimitive(Mesh::TRIANGLE_FAN)
1061 .setVertices(4 /* count */, 2 /* size */)
1062 .setTexCoords(2 /* size */)
1063 .setCropCoords(2 /* size */)
1064 .build();
1065 for (auto const layer : layers) {
1066 if (blurLayers.size() > 0 && blurLayers.front() == layer) {
1067 blurLayers.pop_front();
1068
1069 auto status = mBlurFilter->prepare();
1070 if (status != NO_ERROR) {
1071 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).",
1072 buffer->handle);
1073 checkErrors("Can't render first blur pass");
1074 return status;
1075 }
1076
1077 if (blurLayers.size() == 0) {
1078 // Done blurring, time to bind the native FBO and render our blur onto it.
1079 fbo = std::make_unique<BindNativeBufferAsFramebuffer>(*this, buffer,
1080 useFramebufferCache);
1081 status = fbo->getStatus();
1082 setViewportAndProjection(display.physicalDisplay, display.clip);
1083 } else {
1084 // There's still something else to blur, so let's keep rendering to our FBO
1085 // instead of to the display.
1086 status = mBlurFilter->setAsDrawTarget(display,
1087 blurLayers.front()->backgroundBlurRadius);
1088 }
1089 if (status != NO_ERROR) {
1090 ALOGE("Failed to bind framebuffer! Aborting GPU composition for buffer (%p).",
1091 buffer->handle);
1092 checkErrors("Can't bind native framebuffer");
1093 return status;
1094 }
1095
1096 status = mBlurFilter->render(blurLayersSize > 1);
1097 if (status != NO_ERROR) {
1098 ALOGE("Failed to render blur effect! Aborting GPU composition for buffer (%p).",
1099 buffer->handle);
1100 checkErrors("Can't render blur filter");
1101 return status;
1102 }
1103 }
1104
1105 mState.maxMasteringLuminance = layer->source.buffer.maxMasteringLuminance;
1106 mState.maxContentLuminance = layer->source.buffer.maxContentLuminance;
1107 mState.projectionMatrix = projectionMatrix * layer->geometry.positionTransform;
1108
1109 const FloatRect bounds = layer->geometry.boundaries;
1110 Mesh::VertexArray<vec2> position(mesh.getPositionArray<vec2>());
1111 position[0] = vec2(bounds.left, bounds.top);
1112 position[1] = vec2(bounds.left, bounds.bottom);
1113 position[2] = vec2(bounds.right, bounds.bottom);
1114 position[3] = vec2(bounds.right, bounds.top);
1115
1116 setupLayerCropping(*layer, mesh);
1117 setColorTransform(display.colorTransform * layer->colorTransform);
1118
1119 bool usePremultipliedAlpha = true;
1120 bool disableTexture = true;
1121 bool isOpaque = false;
1122 if (layer->source.buffer.buffer != nullptr) {
1123 disableTexture = false;
1124 isOpaque = layer->source.buffer.isOpaque;
1125
1126 sp<GraphicBuffer> gBuf = layer->source.buffer.buffer;
1127 bindExternalTextureBuffer(layer->source.buffer.textureName, gBuf,
1128 layer->source.buffer.fence);
1129
1130 usePremultipliedAlpha = layer->source.buffer.usePremultipliedAlpha;
1131 Texture texture(Texture::TEXTURE_EXTERNAL, layer->source.buffer.textureName);
1132 mat4 texMatrix = layer->source.buffer.textureTransform;
1133
1134 texture.setMatrix(texMatrix.asArray());
1135 texture.setFiltering(layer->source.buffer.useTextureFiltering);
1136
1137 texture.setDimensions(gBuf->getWidth(), gBuf->getHeight());
1138 setSourceY410BT2020(layer->source.buffer.isY410BT2020);
1139
1140 renderengine::Mesh::VertexArray<vec2> texCoords(mesh.getTexCoordArray<vec2>());
1141 texCoords[0] = vec2(0.0, 0.0);
1142 texCoords[1] = vec2(0.0, 1.0);
1143 texCoords[2] = vec2(1.0, 1.0);
1144 texCoords[3] = vec2(1.0, 0.0);
1145 setupLayerTexturing(texture);
1146 }
1147
1148 const half3 solidColor = layer->source.solidColor;
1149 const half4 color = half4(solidColor.r, solidColor.g, solidColor.b, layer->alpha);
1150 // Buffer sources will have a black solid color ignored in the shader,
1151 // so in that scenario the solid color passed here is arbitrary.
1152 setupLayerBlending(usePremultipliedAlpha, isOpaque, disableTexture, color,
1153 layer->geometry.roundedCornersRadius);
1154 if (layer->disableBlending) {
1155 glDisable(GL_BLEND);
1156 }
1157 setSourceDataSpace(layer->sourceDataspace);
1158
1159 if (layer->shadow.length > 0.0f) {
1160 handleShadow(layer->geometry.boundaries, layer->geometry.roundedCornersRadius,
1161 layer->shadow);
1162 }
1163 // We only want to do a special handling for rounded corners when having rounded corners
1164 // is the only reason it needs to turn on blending, otherwise, we handle it like the
1165 // usual way since it needs to turn on blending anyway.
1166 else if (layer->geometry.roundedCornersRadius > 0.0 && color.a >= 1.0f && isOpaque) {
1167 handleRoundedCorners(display, *layer, mesh);
1168 } else {
1169 drawMesh(mesh);
1170 }
1171
1172 // Cleanup if there's a buffer source
1173 if (layer->source.buffer.buffer != nullptr) {
1174 disableBlending();
1175 setSourceY410BT2020(false);
1176 disableTexturing();
1177 }
1178 }
1179
1180 if (drawFence != nullptr) {
1181 *drawFence = flush();
1182 }
1183 // If flush failed or we don't support native fences, we need to force the
1184 // gl command stream to be executed.
1185 if (drawFence == nullptr || drawFence->get() < 0) {
1186 bool success = finish();
1187 if (!success) {
1188 ALOGE("Failed to flush RenderEngine commands");
1189 checkErrors();
1190 // Chances are, something illegal happened (either the caller passed
1191 // us bad parameters, or we messed up our shader generation).
1192 return INVALID_OPERATION;
1193 }
1194 mLastDrawFence = nullptr;
1195 } else {
1196 // The caller takes ownership of drawFence, so we need to duplicate the
1197 // fd here.
1198 mLastDrawFence = new Fence(dup(drawFence->get()));
1199 }
1200 mPriorResourcesCleaned = false;
1201
1202 checkErrors();
1203 return NO_ERROR;
1204 }
1205
setViewportAndProjection(Rect viewport,Rect clip)1206 void GLESRenderEngine::setViewportAndProjection(Rect viewport, Rect clip) {
1207 ATRACE_CALL();
1208 mVpWidth = viewport.getWidth();
1209 mVpHeight = viewport.getHeight();
1210
1211 // We pass the the top left corner instead of the bottom left corner,
1212 // because since we're rendering off-screen first.
1213 glViewport(viewport.left, viewport.top, mVpWidth, mVpHeight);
1214
1215 mState.projectionMatrix = mat4::ortho(clip.left, clip.right, clip.top, clip.bottom, 0, 1);
1216 }
1217
setupLayerBlending(bool premultipliedAlpha,bool opaque,bool disableTexture,const half4 & color,float cornerRadius)1218 void GLESRenderEngine::setupLayerBlending(bool premultipliedAlpha, bool opaque, bool disableTexture,
1219 const half4& color, float cornerRadius) {
1220 mState.isPremultipliedAlpha = premultipliedAlpha;
1221 mState.isOpaque = opaque;
1222 mState.color = color;
1223 mState.cornerRadius = cornerRadius;
1224
1225 if (disableTexture) {
1226 mState.textureEnabled = false;
1227 }
1228
1229 if (color.a < 1.0f || !opaque || cornerRadius > 0.0f) {
1230 glEnable(GL_BLEND);
1231 glBlendFunc(premultipliedAlpha ? GL_ONE : GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
1232 } else {
1233 glDisable(GL_BLEND);
1234 }
1235 }
1236
setSourceY410BT2020(bool enable)1237 void GLESRenderEngine::setSourceY410BT2020(bool enable) {
1238 mState.isY410BT2020 = enable;
1239 }
1240
setSourceDataSpace(Dataspace source)1241 void GLESRenderEngine::setSourceDataSpace(Dataspace source) {
1242 mDataSpace = source;
1243 }
1244
setOutputDataSpace(Dataspace dataspace)1245 void GLESRenderEngine::setOutputDataSpace(Dataspace dataspace) {
1246 mOutputDataSpace = dataspace;
1247 }
1248
setDisplayMaxLuminance(const float maxLuminance)1249 void GLESRenderEngine::setDisplayMaxLuminance(const float maxLuminance) {
1250 mState.displayMaxLuminance = maxLuminance;
1251 }
1252
setupLayerTexturing(const Texture & texture)1253 void GLESRenderEngine::setupLayerTexturing(const Texture& texture) {
1254 GLuint target = texture.getTextureTarget();
1255 glBindTexture(target, texture.getTextureName());
1256 GLenum filter = GL_NEAREST;
1257 if (texture.getFiltering()) {
1258 filter = GL_LINEAR;
1259 }
1260 glTexParameteri(target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
1261 glTexParameteri(target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
1262 glTexParameteri(target, GL_TEXTURE_MAG_FILTER, filter);
1263 glTexParameteri(target, GL_TEXTURE_MIN_FILTER, filter);
1264
1265 mState.texture = texture;
1266 mState.textureEnabled = true;
1267 }
1268
setColorTransform(const mat4 & colorTransform)1269 void GLESRenderEngine::setColorTransform(const mat4& colorTransform) {
1270 mState.colorMatrix = colorTransform;
1271 }
1272
disableTexturing()1273 void GLESRenderEngine::disableTexturing() {
1274 mState.textureEnabled = false;
1275 }
1276
disableBlending()1277 void GLESRenderEngine::disableBlending() {
1278 glDisable(GL_BLEND);
1279 }
1280
setupFillWithColor(float r,float g,float b,float a)1281 void GLESRenderEngine::setupFillWithColor(float r, float g, float b, float a) {
1282 mState.isPremultipliedAlpha = true;
1283 mState.isOpaque = false;
1284 mState.color = half4(r, g, b, a);
1285 mState.textureEnabled = false;
1286 glDisable(GL_BLEND);
1287 }
1288
setupCornerRadiusCropSize(float width,float height)1289 void GLESRenderEngine::setupCornerRadiusCropSize(float width, float height) {
1290 mState.cropSize = half2(width, height);
1291 }
1292
drawMesh(const Mesh & mesh)1293 void GLESRenderEngine::drawMesh(const Mesh& mesh) {
1294 ATRACE_CALL();
1295 if (mesh.getTexCoordsSize()) {
1296 glEnableVertexAttribArray(Program::texCoords);
1297 glVertexAttribPointer(Program::texCoords, mesh.getTexCoordsSize(), GL_FLOAT, GL_FALSE,
1298 mesh.getByteStride(), mesh.getTexCoords());
1299 }
1300
1301 glVertexAttribPointer(Program::position, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1302 mesh.getByteStride(), mesh.getPositions());
1303
1304 if (mState.cornerRadius > 0.0f) {
1305 glEnableVertexAttribArray(Program::cropCoords);
1306 glVertexAttribPointer(Program::cropCoords, mesh.getVertexSize(), GL_FLOAT, GL_FALSE,
1307 mesh.getByteStride(), mesh.getCropCoords());
1308 }
1309
1310 if (mState.drawShadows) {
1311 glEnableVertexAttribArray(Program::shadowColor);
1312 glVertexAttribPointer(Program::shadowColor, mesh.getShadowColorSize(), GL_FLOAT, GL_FALSE,
1313 mesh.getByteStride(), mesh.getShadowColor());
1314
1315 glEnableVertexAttribArray(Program::shadowParams);
1316 glVertexAttribPointer(Program::shadowParams, mesh.getShadowParamsSize(), GL_FLOAT, GL_FALSE,
1317 mesh.getByteStride(), mesh.getShadowParams());
1318 }
1319
1320 Description managedState = mState;
1321 // By default, DISPLAY_P3 is the only supported wide color output. However,
1322 // when HDR content is present, hardware composer may be able to handle
1323 // BT2020 data space, in that case, the output data space is set to be
1324 // BT2020_HLG or BT2020_PQ respectively. In GPU fall back we need
1325 // to respect this and convert non-HDR content to HDR format.
1326 if (mUseColorManagement) {
1327 Dataspace inputStandard = static_cast<Dataspace>(mDataSpace & Dataspace::STANDARD_MASK);
1328 Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1329 Dataspace outputStandard =
1330 static_cast<Dataspace>(mOutputDataSpace & Dataspace::STANDARD_MASK);
1331 Dataspace outputTransfer =
1332 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1333 bool needsXYZConversion = needsXYZTransformMatrix();
1334
1335 // NOTE: if the input standard of the input dataspace is not STANDARD_DCI_P3 or
1336 // STANDARD_BT2020, it will be treated as STANDARD_BT709
1337 if (inputStandard != Dataspace::STANDARD_DCI_P3 &&
1338 inputStandard != Dataspace::STANDARD_BT2020) {
1339 inputStandard = Dataspace::STANDARD_BT709;
1340 }
1341
1342 if (needsXYZConversion) {
1343 // The supported input color spaces are standard RGB, Display P3 and BT2020.
1344 switch (inputStandard) {
1345 case Dataspace::STANDARD_DCI_P3:
1346 managedState.inputTransformMatrix = mDisplayP3ToXyz;
1347 break;
1348 case Dataspace::STANDARD_BT2020:
1349 managedState.inputTransformMatrix = mBt2020ToXyz;
1350 break;
1351 default:
1352 managedState.inputTransformMatrix = mSrgbToXyz;
1353 break;
1354 }
1355
1356 // The supported output color spaces are BT2020, Display P3 and standard RGB.
1357 switch (outputStandard) {
1358 case Dataspace::STANDARD_BT2020:
1359 managedState.outputTransformMatrix = mXyzToBt2020;
1360 break;
1361 case Dataspace::STANDARD_DCI_P3:
1362 managedState.outputTransformMatrix = mXyzToDisplayP3;
1363 break;
1364 default:
1365 managedState.outputTransformMatrix = mXyzToSrgb;
1366 break;
1367 }
1368 } else if (inputStandard != outputStandard) {
1369 // At this point, the input data space and output data space could be both
1370 // HDR data spaces, but they match each other, we do nothing in this case.
1371 // In addition to the case above, the input data space could be
1372 // - scRGB linear
1373 // - scRGB non-linear
1374 // - sRGB
1375 // - Display P3
1376 // - BT2020
1377 // The output data spaces could be
1378 // - sRGB
1379 // - Display P3
1380 // - BT2020
1381 switch (outputStandard) {
1382 case Dataspace::STANDARD_BT2020:
1383 if (inputStandard == Dataspace::STANDARD_BT709) {
1384 managedState.outputTransformMatrix = mSrgbToBt2020;
1385 } else if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1386 managedState.outputTransformMatrix = mDisplayP3ToBt2020;
1387 }
1388 break;
1389 case Dataspace::STANDARD_DCI_P3:
1390 if (inputStandard == Dataspace::STANDARD_BT709) {
1391 managedState.outputTransformMatrix = mSrgbToDisplayP3;
1392 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1393 managedState.outputTransformMatrix = mBt2020ToDisplayP3;
1394 }
1395 break;
1396 default:
1397 if (inputStandard == Dataspace::STANDARD_DCI_P3) {
1398 managedState.outputTransformMatrix = mDisplayP3ToSrgb;
1399 } else if (inputStandard == Dataspace::STANDARD_BT2020) {
1400 managedState.outputTransformMatrix = mBt2020ToSrgb;
1401 }
1402 break;
1403 }
1404 }
1405
1406 // we need to convert the RGB value to linear space and convert it back when:
1407 // - there is a color matrix that is not an identity matrix, or
1408 // - there is an output transform matrix that is not an identity matrix, or
1409 // - the input transfer function doesn't match the output transfer function.
1410 if (managedState.hasColorMatrix() || managedState.hasOutputTransformMatrix() ||
1411 inputTransfer != outputTransfer) {
1412 managedState.inputTransferFunction =
1413 Description::dataSpaceToTransferFunction(inputTransfer);
1414 managedState.outputTransferFunction =
1415 Description::dataSpaceToTransferFunction(outputTransfer);
1416 }
1417 }
1418
1419 ProgramCache::getInstance().useProgram(mInProtectedContext ? mProtectedEGLContext : mEGLContext,
1420 managedState);
1421
1422 if (mState.drawShadows) {
1423 glDrawElements(mesh.getPrimitive(), mesh.getIndexCount(), GL_UNSIGNED_SHORT,
1424 mesh.getIndices());
1425 } else {
1426 glDrawArrays(mesh.getPrimitive(), 0, mesh.getVertexCount());
1427 }
1428
1429 if (mUseColorManagement && outputDebugPPMs) {
1430 static uint64_t managedColorFrameCount = 0;
1431 std::ostringstream out;
1432 out << "/data/texture_out" << managedColorFrameCount++;
1433 writePPM(out.str().c_str(), mVpWidth, mVpHeight);
1434 }
1435
1436 if (mesh.getTexCoordsSize()) {
1437 glDisableVertexAttribArray(Program::texCoords);
1438 }
1439
1440 if (mState.cornerRadius > 0.0f) {
1441 glDisableVertexAttribArray(Program::cropCoords);
1442 }
1443
1444 if (mState.drawShadows) {
1445 glDisableVertexAttribArray(Program::shadowColor);
1446 glDisableVertexAttribArray(Program::shadowParams);
1447 }
1448 }
1449
getMaxTextureSize() const1450 size_t GLESRenderEngine::getMaxTextureSize() const {
1451 return mMaxTextureSize;
1452 }
1453
getMaxViewportDims() const1454 size_t GLESRenderEngine::getMaxViewportDims() const {
1455 return mMaxViewportDims[0] < mMaxViewportDims[1] ? mMaxViewportDims[0] : mMaxViewportDims[1];
1456 }
1457
dump(std::string & result)1458 void GLESRenderEngine::dump(std::string& result) {
1459 const GLExtensions& extensions = GLExtensions::getInstance();
1460 ProgramCache& cache = ProgramCache::getInstance();
1461
1462 StringAppendF(&result, "EGL implementation : %s\n", extensions.getEGLVersion());
1463 StringAppendF(&result, "%s\n", extensions.getEGLExtensions());
1464 StringAppendF(&result, "GLES: %s, %s, %s\n", extensions.getVendor(), extensions.getRenderer(),
1465 extensions.getVersion());
1466 StringAppendF(&result, "%s\n", extensions.getExtensions());
1467 StringAppendF(&result, "RenderEngine supports protected context: %d\n",
1468 supportsProtectedContent());
1469 StringAppendF(&result, "RenderEngine is in protected context: %d\n", mInProtectedContext);
1470 StringAppendF(&result, "RenderEngine program cache size for unprotected context: %zu\n",
1471 cache.getSize(mEGLContext));
1472 StringAppendF(&result, "RenderEngine program cache size for protected context: %zu\n",
1473 cache.getSize(mProtectedEGLContext));
1474 StringAppendF(&result, "RenderEngine last dataspace conversion: (%s) to (%s)\n",
1475 dataspaceDetails(static_cast<android_dataspace>(mDataSpace)).c_str(),
1476 dataspaceDetails(static_cast<android_dataspace>(mOutputDataSpace)).c_str());
1477 {
1478 std::lock_guard<std::mutex> lock(mRenderingMutex);
1479 StringAppendF(&result, "RenderEngine image cache size: %zu\n", mImageCache.size());
1480 StringAppendF(&result, "Dumping buffer ids...\n");
1481 for (const auto& [id, unused] : mImageCache) {
1482 StringAppendF(&result, "0x%" PRIx64 "\n", id);
1483 }
1484 }
1485 {
1486 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
1487 StringAppendF(&result, "RenderEngine framebuffer image cache size: %zu\n",
1488 mFramebufferImageCache.size());
1489 StringAppendF(&result, "Dumping buffer ids...\n");
1490 for (const auto& [id, unused] : mFramebufferImageCache) {
1491 StringAppendF(&result, "0x%" PRIx64 "\n", id);
1492 }
1493 }
1494 }
1495
parseGlesVersion(const char * str)1496 GLESRenderEngine::GlesVersion GLESRenderEngine::parseGlesVersion(const char* str) {
1497 int major, minor;
1498 if (sscanf(str, "OpenGL ES-CM %d.%d", &major, &minor) != 2) {
1499 if (sscanf(str, "OpenGL ES %d.%d", &major, &minor) != 2) {
1500 ALOGW("Unable to parse GL_VERSION string: \"%s\"", str);
1501 return GLES_VERSION_1_0;
1502 }
1503 }
1504
1505 if (major == 1 && minor == 0) return GLES_VERSION_1_0;
1506 if (major == 1 && minor >= 1) return GLES_VERSION_1_1;
1507 if (major == 2 && minor >= 0) return GLES_VERSION_2_0;
1508 if (major == 3 && minor >= 0) return GLES_VERSION_3_0;
1509
1510 ALOGW("Unrecognized OpenGL ES version: %d.%d", major, minor);
1511 return GLES_VERSION_1_0;
1512 }
1513
createEglContext(EGLDisplay display,EGLConfig config,EGLContext shareContext,bool useContextPriority,Protection protection)1514 EGLContext GLESRenderEngine::createEglContext(EGLDisplay display, EGLConfig config,
1515 EGLContext shareContext, bool useContextPriority,
1516 Protection protection) {
1517 EGLint renderableType = 0;
1518 if (config == EGL_NO_CONFIG) {
1519 renderableType = EGL_OPENGL_ES3_BIT;
1520 } else if (!eglGetConfigAttrib(display, config, EGL_RENDERABLE_TYPE, &renderableType)) {
1521 LOG_ALWAYS_FATAL("can't query EGLConfig RENDERABLE_TYPE");
1522 }
1523 EGLint contextClientVersion = 0;
1524 if (renderableType & EGL_OPENGL_ES3_BIT) {
1525 contextClientVersion = 3;
1526 } else if (renderableType & EGL_OPENGL_ES2_BIT) {
1527 contextClientVersion = 2;
1528 } else if (renderableType & EGL_OPENGL_ES_BIT) {
1529 contextClientVersion = 1;
1530 } else {
1531 LOG_ALWAYS_FATAL("no supported EGL_RENDERABLE_TYPEs");
1532 }
1533
1534 std::vector<EGLint> contextAttributes;
1535 contextAttributes.reserve(7);
1536 contextAttributes.push_back(EGL_CONTEXT_CLIENT_VERSION);
1537 contextAttributes.push_back(contextClientVersion);
1538 if (useContextPriority) {
1539 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_LEVEL_IMG);
1540 contextAttributes.push_back(EGL_CONTEXT_PRIORITY_HIGH_IMG);
1541 }
1542 if (protection == Protection::PROTECTED) {
1543 contextAttributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1544 contextAttributes.push_back(EGL_TRUE);
1545 }
1546 contextAttributes.push_back(EGL_NONE);
1547
1548 EGLContext context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1549
1550 if (contextClientVersion == 3 && context == EGL_NO_CONTEXT) {
1551 // eglGetConfigAttrib indicated we can create GLES 3 context, but we failed, thus
1552 // EGL_NO_CONTEXT so that we can abort.
1553 if (config != EGL_NO_CONFIG) {
1554 return context;
1555 }
1556 // If |config| is EGL_NO_CONFIG, we speculatively try to create GLES 3 context, so we should
1557 // try to fall back to GLES 2.
1558 contextAttributes[1] = 2;
1559 context = eglCreateContext(display, config, shareContext, contextAttributes.data());
1560 }
1561
1562 return context;
1563 }
1564
createDummyEglPbufferSurface(EGLDisplay display,EGLConfig config,int hwcFormat,Protection protection)1565 EGLSurface GLESRenderEngine::createDummyEglPbufferSurface(EGLDisplay display, EGLConfig config,
1566 int hwcFormat, Protection protection) {
1567 EGLConfig dummyConfig = config;
1568 if (dummyConfig == EGL_NO_CONFIG) {
1569 dummyConfig = chooseEglConfig(display, hwcFormat, /*logConfig*/ true);
1570 }
1571 std::vector<EGLint> attributes;
1572 attributes.reserve(7);
1573 attributes.push_back(EGL_WIDTH);
1574 attributes.push_back(1);
1575 attributes.push_back(EGL_HEIGHT);
1576 attributes.push_back(1);
1577 if (protection == Protection::PROTECTED) {
1578 attributes.push_back(EGL_PROTECTED_CONTENT_EXT);
1579 attributes.push_back(EGL_TRUE);
1580 }
1581 attributes.push_back(EGL_NONE);
1582
1583 return eglCreatePbufferSurface(display, dummyConfig, attributes.data());
1584 }
1585
isHdrDataSpace(const Dataspace dataSpace) const1586 bool GLESRenderEngine::isHdrDataSpace(const Dataspace dataSpace) const {
1587 const Dataspace standard = static_cast<Dataspace>(dataSpace & Dataspace::STANDARD_MASK);
1588 const Dataspace transfer = static_cast<Dataspace>(dataSpace & Dataspace::TRANSFER_MASK);
1589 return standard == Dataspace::STANDARD_BT2020 &&
1590 (transfer == Dataspace::TRANSFER_ST2084 || transfer == Dataspace::TRANSFER_HLG);
1591 }
1592
1593 // For convenience, we want to convert the input color space to XYZ color space first,
1594 // and then convert from XYZ color space to output color space when
1595 // - SDR and HDR contents are mixed, either SDR content will be converted to HDR or
1596 // HDR content will be tone-mapped to SDR; Or,
1597 // - there are HDR PQ and HLG contents presented at the same time, where we want to convert
1598 // HLG content to PQ content.
1599 // In either case above, we need to operate the Y value in XYZ color space. Thus, when either
1600 // input data space or output data space is HDR data space, and the input transfer function
1601 // doesn't match the output transfer function, we would enable an intermediate transfrom to
1602 // XYZ color space.
needsXYZTransformMatrix() const1603 bool GLESRenderEngine::needsXYZTransformMatrix() const {
1604 const bool isInputHdrDataSpace = isHdrDataSpace(mDataSpace);
1605 const bool isOutputHdrDataSpace = isHdrDataSpace(mOutputDataSpace);
1606 const Dataspace inputTransfer = static_cast<Dataspace>(mDataSpace & Dataspace::TRANSFER_MASK);
1607 const Dataspace outputTransfer =
1608 static_cast<Dataspace>(mOutputDataSpace & Dataspace::TRANSFER_MASK);
1609
1610 return (isInputHdrDataSpace || isOutputHdrDataSpace) && inputTransfer != outputTransfer;
1611 }
1612
isImageCachedForTesting(uint64_t bufferId)1613 bool GLESRenderEngine::isImageCachedForTesting(uint64_t bufferId) {
1614 std::lock_guard<std::mutex> lock(mRenderingMutex);
1615 const auto& cachedImage = mImageCache.find(bufferId);
1616 return cachedImage != mImageCache.end();
1617 }
1618
isFramebufferImageCachedForTesting(uint64_t bufferId)1619 bool GLESRenderEngine::isFramebufferImageCachedForTesting(uint64_t bufferId) {
1620 std::lock_guard<std::mutex> lock(mFramebufferImageCacheMutex);
1621 return std::any_of(mFramebufferImageCache.cbegin(), mFramebufferImageCache.cend(),
1622 [=](std::pair<uint64_t, EGLImageKHR> image) {
1623 return image.first == bufferId;
1624 });
1625 }
1626
1627 // FlushTracer implementation
FlushTracer(GLESRenderEngine * engine)1628 GLESRenderEngine::FlushTracer::FlushTracer(GLESRenderEngine* engine) : mEngine(engine) {
1629 mThread = std::thread(&GLESRenderEngine::FlushTracer::loop, this);
1630 }
1631
~FlushTracer()1632 GLESRenderEngine::FlushTracer::~FlushTracer() {
1633 {
1634 std::lock_guard<std::mutex> lock(mMutex);
1635 mRunning = false;
1636 }
1637 mCondition.notify_all();
1638 if (mThread.joinable()) {
1639 mThread.join();
1640 }
1641 }
1642
queueSync(EGLSyncKHR sync)1643 void GLESRenderEngine::FlushTracer::queueSync(EGLSyncKHR sync) {
1644 std::lock_guard<std::mutex> lock(mMutex);
1645 char name[64];
1646 const uint64_t frameNum = mFramesQueued++;
1647 snprintf(name, sizeof(name), "Queueing sync for frame: %lu",
1648 static_cast<unsigned long>(frameNum));
1649 ATRACE_NAME(name);
1650 mQueue.push({sync, frameNum});
1651 ATRACE_INT("GPU Frames Outstanding", mQueue.size());
1652 mCondition.notify_one();
1653 }
1654
loop()1655 void GLESRenderEngine::FlushTracer::loop() {
1656 while (mRunning) {
1657 QueueEntry entry;
1658 {
1659 std::lock_guard<std::mutex> lock(mMutex);
1660
1661 mCondition.wait(mMutex,
1662 [&]() REQUIRES(mMutex) { return !mQueue.empty() || !mRunning; });
1663
1664 if (!mRunning) {
1665 // if mRunning is false, then FlushTracer is being destroyed, so
1666 // bail out now.
1667 break;
1668 }
1669 entry = mQueue.front();
1670 mQueue.pop();
1671 }
1672 {
1673 char name[64];
1674 snprintf(name, sizeof(name), "waiting for frame %lu",
1675 static_cast<unsigned long>(entry.mFrameNum));
1676 ATRACE_NAME(name);
1677 mEngine->waitSync(entry.mSync, 0);
1678 }
1679 }
1680 }
1681
handleShadow(const FloatRect & casterRect,float casterCornerRadius,const ShadowSettings & settings)1682 void GLESRenderEngine::handleShadow(const FloatRect& casterRect, float casterCornerRadius,
1683 const ShadowSettings& settings) {
1684 ATRACE_CALL();
1685 const float casterZ = settings.length / 2.0f;
1686 const GLShadowVertexGenerator shadows(casterRect, casterCornerRadius, casterZ,
1687 settings.casterIsTranslucent, settings.ambientColor,
1688 settings.spotColor, settings.lightPos,
1689 settings.lightRadius);
1690
1691 // setup mesh for both shadows
1692 Mesh mesh = Mesh::Builder()
1693 .setPrimitive(Mesh::TRIANGLES)
1694 .setVertices(shadows.getVertexCount(), 2 /* size */)
1695 .setShadowAttrs()
1696 .setIndices(shadows.getIndexCount())
1697 .build();
1698
1699 Mesh::VertexArray<vec2> position = mesh.getPositionArray<vec2>();
1700 Mesh::VertexArray<vec4> shadowColor = mesh.getShadowColorArray<vec4>();
1701 Mesh::VertexArray<vec3> shadowParams = mesh.getShadowParamsArray<vec3>();
1702 shadows.fillVertices(position, shadowColor, shadowParams);
1703 shadows.fillIndices(mesh.getIndicesArray());
1704
1705 mState.cornerRadius = 0.0f;
1706 mState.drawShadows = true;
1707 setupLayerTexturing(mShadowTexture.getTexture());
1708 drawMesh(mesh);
1709 mState.drawShadows = false;
1710 }
1711
1712 } // namespace gl
1713 } // namespace renderengine
1714 } // namespace android
1715