1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20
21 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
22 //#define LOG_NDEBUG 0
23
24 // This is needed for stdint.h to define INT64_MAX in C++
25 #define __STDC_LIMIT_MACROS
26
27 #include <math.h>
28
29 #include <algorithm>
30
31 #include <android-base/stringprintf.h>
32 #include <cutils/properties.h>
33 #include <log/log.h>
34 #include <utils/Thread.h>
35 #include <utils/Trace.h>
36
37 #include <ui/FenceTime.h>
38
39 #include "DispSync.h"
40 #include "EventLog/EventLog.h"
41 #include "SurfaceFlinger.h"
42
43 using android::base::StringAppendF;
44 using std::max;
45 using std::min;
46
47 namespace android {
48
49 DispSync::~DispSync() = default;
50 DispSync::Callback::~Callback() = default;
51
52 namespace impl {
53
54 // Setting this to true adds a zero-phase tracer for correlating with hardware
55 // vsync events
56 static const bool kEnableZeroPhaseTracer = false;
57
58 // This is the threshold used to determine when hardware vsync events are
59 // needed to re-synchronize the software vsync model with the hardware. The
60 // error metric used is the mean of the squared difference between each
61 // present time and the nearest software-predicted vsync.
62 static const nsecs_t kErrorThreshold = 160000000000; // 400 usec squared
63
64 #undef LOG_TAG
65 #define LOG_TAG "DispSyncThread"
66 class DispSyncThread : public Thread {
67 public:
DispSyncThread(const char * name,bool showTraceDetailedInfo)68 DispSyncThread(const char* name, bool showTraceDetailedInfo)
69 : mName(name),
70 mStop(false),
71 mModelLocked("DispSync:ModelLocked", false),
72 mPeriod(0),
73 mPhase(0),
74 mReferenceTime(0),
75 mWakeupLatency(0),
76 mFrameNumber(0),
77 mTraceDetailedInfo(showTraceDetailedInfo) {}
78
~DispSyncThread()79 virtual ~DispSyncThread() {}
80
updateModel(nsecs_t period,nsecs_t phase,nsecs_t referenceTime)81 void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
82 if (mTraceDetailedInfo) ATRACE_CALL();
83 Mutex::Autolock lock(mMutex);
84
85 mPhase = phase;
86 const bool referenceTimeChanged = mReferenceTime != referenceTime;
87 mReferenceTime = referenceTime;
88 if (mPeriod != 0 && mPeriod != period && mReferenceTime != 0) {
89 // Inflate the reference time to be the most recent predicted
90 // vsync before the current time.
91 const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
92 const nsecs_t baseTime = now - mReferenceTime;
93 const nsecs_t numOldPeriods = baseTime / mPeriod;
94 mReferenceTime = mReferenceTime + (numOldPeriods)*mPeriod;
95 }
96 mPeriod = period;
97 if (!mModelLocked && referenceTimeChanged) {
98 for (auto& eventListener : mEventListeners) {
99 eventListener.mLastEventTime = mReferenceTime + mPhase + eventListener.mPhase;
100 // If mLastEventTime is after mReferenceTime (can happen when positive phase offsets
101 // are used) we treat it as like it happened in previous period.
102 if (eventListener.mLastEventTime > mReferenceTime) {
103 eventListener.mLastEventTime -= mPeriod;
104 }
105 }
106 }
107 if (mTraceDetailedInfo) {
108 ATRACE_INT64("DispSync:Period", mPeriod);
109 ATRACE_INT64("DispSync:Phase", mPhase + mPeriod / 2);
110 ATRACE_INT64("DispSync:Reference Time", mReferenceTime);
111 }
112 ALOGV("[%s] updateModel: mPeriod = %" PRId64 ", mPhase = %" PRId64
113 " mReferenceTime = %" PRId64,
114 mName, ns2us(mPeriod), ns2us(mPhase), ns2us(mReferenceTime));
115 mCond.signal();
116 }
117
stop()118 void stop() {
119 if (mTraceDetailedInfo) ATRACE_CALL();
120 Mutex::Autolock lock(mMutex);
121 mStop = true;
122 mCond.signal();
123 }
124
lockModel()125 void lockModel() {
126 Mutex::Autolock lock(mMutex);
127 mModelLocked = true;
128 }
129
unlockModel()130 void unlockModel() {
131 Mutex::Autolock lock(mMutex);
132 mModelLocked = false;
133 }
134
threadLoop()135 virtual bool threadLoop() {
136 status_t err;
137 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
138
139 while (true) {
140 std::vector<CallbackInvocation> callbackInvocations;
141
142 nsecs_t targetTime = 0;
143
144 { // Scope for lock
145 Mutex::Autolock lock(mMutex);
146
147 if (mTraceDetailedInfo) {
148 ATRACE_INT64("DispSync:Frame", mFrameNumber);
149 }
150 ALOGV("[%s] Frame %" PRId64, mName, mFrameNumber);
151 ++mFrameNumber;
152
153 if (mStop) {
154 return false;
155 }
156
157 if (mPeriod == 0) {
158 err = mCond.wait(mMutex);
159 if (err != NO_ERROR) {
160 ALOGE("error waiting for new events: %s (%d)", strerror(-err), err);
161 return false;
162 }
163 continue;
164 }
165
166 targetTime = computeNextEventTimeLocked(now);
167
168 bool isWakeup = false;
169
170 if (now < targetTime) {
171 if (mTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
172
173 if (targetTime == INT64_MAX) {
174 ALOGV("[%s] Waiting forever", mName);
175 err = mCond.wait(mMutex);
176 } else {
177 ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
178 err = mCond.waitRelative(mMutex, targetTime - now);
179 }
180
181 if (err == TIMED_OUT) {
182 isWakeup = true;
183 } else if (err != NO_ERROR) {
184 ALOGE("error waiting for next event: %s (%d)", strerror(-err), err);
185 return false;
186 }
187 }
188
189 now = systemTime(SYSTEM_TIME_MONOTONIC);
190
191 // Don't correct by more than 1.5 ms
192 static const nsecs_t kMaxWakeupLatency = us2ns(1500);
193
194 if (isWakeup) {
195 mWakeupLatency = ((mWakeupLatency * 63) + (now - targetTime)) / 64;
196 mWakeupLatency = min(mWakeupLatency, kMaxWakeupLatency);
197 if (mTraceDetailedInfo) {
198 ATRACE_INT64("DispSync:WakeupLat", now - targetTime);
199 ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
200 }
201 }
202
203 callbackInvocations =
204 gatherCallbackInvocationsLocked(now, computeNextRefreshLocked(0, now));
205 }
206
207 if (callbackInvocations.size() > 0) {
208 fireCallbackInvocations(callbackInvocations);
209 }
210 }
211
212 return false;
213 }
214
addEventListener(const char * name,nsecs_t phase,DispSync::Callback * callback,nsecs_t lastCallbackTime)215 status_t addEventListener(const char* name, nsecs_t phase, DispSync::Callback* callback,
216 nsecs_t lastCallbackTime) {
217 if (mTraceDetailedInfo) ATRACE_CALL();
218 Mutex::Autolock lock(mMutex);
219
220 for (size_t i = 0; i < mEventListeners.size(); i++) {
221 if (mEventListeners[i].mCallback == callback) {
222 return BAD_VALUE;
223 }
224 }
225
226 EventListener listener;
227 listener.mName = name;
228 listener.mPhase = phase;
229 listener.mCallback = callback;
230
231 // We want to allow the firstmost future event to fire without
232 // allowing any past events to fire. To do this extrapolate from
233 // mReferenceTime the most recent hardware vsync, and pin the
234 // last event time there.
235 const nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
236 if (mPeriod != 0) {
237 const nsecs_t baseTime = now - mReferenceTime;
238 const nsecs_t numPeriodsSinceReference = baseTime / mPeriod;
239 const nsecs_t predictedReference = mReferenceTime + numPeriodsSinceReference * mPeriod;
240 const nsecs_t phaseCorrection = mPhase + listener.mPhase;
241 const nsecs_t predictedLastEventTime = predictedReference + phaseCorrection;
242 if (predictedLastEventTime >= now) {
243 // Make sure that the last event time does not exceed the current time.
244 // If it would, then back the last event time by a period.
245 listener.mLastEventTime = predictedLastEventTime - mPeriod;
246 } else {
247 listener.mLastEventTime = predictedLastEventTime;
248 }
249 } else {
250 listener.mLastEventTime = now + mPhase - mWakeupLatency;
251 }
252
253 if (lastCallbackTime <= 0) {
254 // If there is no prior callback time, try to infer one based on the
255 // logical last event time.
256 listener.mLastCallbackTime = listener.mLastEventTime + mWakeupLatency;
257 } else {
258 listener.mLastCallbackTime = lastCallbackTime;
259 }
260
261 mEventListeners.push_back(listener);
262
263 mCond.signal();
264
265 return NO_ERROR;
266 }
267
removeEventListener(DispSync::Callback * callback,nsecs_t * outLastCallback)268 status_t removeEventListener(DispSync::Callback* callback, nsecs_t* outLastCallback) {
269 if (mTraceDetailedInfo) ATRACE_CALL();
270 Mutex::Autolock lock(mMutex);
271
272 for (std::vector<EventListener>::iterator it = mEventListeners.begin();
273 it != mEventListeners.end(); ++it) {
274 if (it->mCallback == callback) {
275 *outLastCallback = it->mLastCallbackTime;
276 mEventListeners.erase(it);
277 mCond.signal();
278 return NO_ERROR;
279 }
280 }
281
282 return BAD_VALUE;
283 }
284
changePhaseOffset(DispSync::Callback * callback,nsecs_t phase)285 status_t changePhaseOffset(DispSync::Callback* callback, nsecs_t phase) {
286 if (mTraceDetailedInfo) ATRACE_CALL();
287 Mutex::Autolock lock(mMutex);
288
289 for (auto& eventListener : mEventListeners) {
290 if (eventListener.mCallback == callback) {
291 const nsecs_t oldPhase = eventListener.mPhase;
292 eventListener.mPhase = phase;
293
294 // Pretend that the last time this event was handled at the same frame but with the
295 // new offset to allow for a seamless offset change without double-firing or
296 // skipping.
297 nsecs_t diff = oldPhase - phase;
298 eventListener.mLastEventTime -= diff;
299 eventListener.mLastCallbackTime -= diff;
300 mCond.signal();
301 return NO_ERROR;
302 }
303 }
304 return BAD_VALUE;
305 }
306
computeNextRefresh(int periodOffset,nsecs_t now) const307 nsecs_t computeNextRefresh(int periodOffset, nsecs_t now) const {
308 Mutex::Autolock lock(mMutex);
309 return computeNextRefreshLocked(periodOffset, now);
310 }
311
312 private:
313 struct EventListener {
314 const char* mName;
315 nsecs_t mPhase;
316 nsecs_t mLastEventTime;
317 nsecs_t mLastCallbackTime;
318 DispSync::Callback* mCallback;
319 };
320
321 struct CallbackInvocation {
322 DispSync::Callback* mCallback;
323 nsecs_t mEventTime;
324 nsecs_t mExpectedVSyncTime;
325 };
326
computeNextEventTimeLocked(nsecs_t now)327 nsecs_t computeNextEventTimeLocked(nsecs_t now) {
328 if (mTraceDetailedInfo) ATRACE_CALL();
329 ALOGV("[%s] computeNextEventTimeLocked", mName);
330 nsecs_t nextEventTime = INT64_MAX;
331 for (size_t i = 0; i < mEventListeners.size(); i++) {
332 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], now);
333
334 if (t < nextEventTime) {
335 nextEventTime = t;
336 }
337 }
338
339 ALOGV("[%s] nextEventTime = %" PRId64, mName, ns2us(nextEventTime));
340 return nextEventTime;
341 }
342
343 // Sanity check that the duration is close enough in length to a period without
344 // falling into double-rate vsyncs.
isCloseToPeriod(nsecs_t duration)345 bool isCloseToPeriod(nsecs_t duration) {
346 // Ratio of 3/5 is arbitrary, but it must be greater than 1/2.
347 return duration < (3 * mPeriod) / 5;
348 }
349
gatherCallbackInvocationsLocked(nsecs_t now,nsecs_t expectedVSyncTime)350 std::vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now,
351 nsecs_t expectedVSyncTime) {
352 if (mTraceDetailedInfo) ATRACE_CALL();
353 ALOGV("[%s] gatherCallbackInvocationsLocked @ %" PRId64, mName, ns2us(now));
354
355 std::vector<CallbackInvocation> callbackInvocations;
356 nsecs_t onePeriodAgo = now - mPeriod;
357
358 for (auto& eventListener : mEventListeners) {
359 nsecs_t t = computeListenerNextEventTimeLocked(eventListener, onePeriodAgo);
360
361 if (t < now) {
362 if (isCloseToPeriod(now - eventListener.mLastCallbackTime)) {
363 eventListener.mLastEventTime = t;
364 ALOGV("[%s] [%s] Skipping event due to model error", mName,
365 eventListener.mName);
366 continue;
367 }
368
369 CallbackInvocation ci;
370 ci.mCallback = eventListener.mCallback;
371 ci.mEventTime = t;
372 ci.mExpectedVSyncTime = expectedVSyncTime;
373 if (eventListener.mPhase < 0) {
374 ci.mExpectedVSyncTime += mPeriod;
375 }
376 ALOGV("[%s] [%s] Preparing to fire, latency: %" PRId64, mName, eventListener.mName,
377 t - eventListener.mLastEventTime);
378 callbackInvocations.push_back(ci);
379 eventListener.mLastEventTime = t;
380 eventListener.mLastCallbackTime = now;
381 }
382 }
383
384 return callbackInvocations;
385 }
386
computeListenerNextEventTimeLocked(const EventListener & listener,nsecs_t baseTime)387 nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener, nsecs_t baseTime) {
388 if (mTraceDetailedInfo) ATRACE_CALL();
389 ALOGV("[%s] [%s] computeListenerNextEventTimeLocked(%" PRId64 ")", mName, listener.mName,
390 ns2us(baseTime));
391
392 nsecs_t lastEventTime = listener.mLastEventTime + mWakeupLatency;
393 ALOGV("[%s] lastEventTime: %" PRId64, mName, ns2us(lastEventTime));
394 if (baseTime < lastEventTime) {
395 baseTime = lastEventTime;
396 ALOGV("[%s] Clamping baseTime to lastEventTime -> %" PRId64, mName, ns2us(baseTime));
397 }
398
399 baseTime -= mReferenceTime;
400 ALOGV("[%s] Relative baseTime = %" PRId64, mName, ns2us(baseTime));
401 nsecs_t phase = mPhase + listener.mPhase;
402 ALOGV("[%s] Phase = %" PRId64, mName, ns2us(phase));
403 baseTime -= phase;
404 ALOGV("[%s] baseTime - phase = %" PRId64, mName, ns2us(baseTime));
405
406 // If our previous time is before the reference (because the reference
407 // has since been updated), the division by mPeriod will truncate
408 // towards zero instead of computing the floor. Since in all cases
409 // before the reference we want the next time to be effectively now, we
410 // set baseTime to -mPeriod so that numPeriods will be -1.
411 // When we add 1 and the phase, we will be at the correct event time for
412 // this period.
413 if (baseTime < 0) {
414 ALOGV("[%s] Correcting negative baseTime", mName);
415 baseTime = -mPeriod;
416 }
417
418 nsecs_t numPeriods = baseTime / mPeriod;
419 ALOGV("[%s] numPeriods = %" PRId64, mName, numPeriods);
420 nsecs_t t = (numPeriods + 1) * mPeriod + phase;
421 ALOGV("[%s] t = %" PRId64, mName, ns2us(t));
422 t += mReferenceTime;
423 ALOGV("[%s] Absolute t = %" PRId64, mName, ns2us(t));
424
425 // Check that it's been slightly more than half a period since the last
426 // event so that we don't accidentally fall into double-rate vsyncs
427 if (isCloseToPeriod(t - listener.mLastEventTime)) {
428 t += mPeriod;
429 ALOGV("[%s] Modifying t -> %" PRId64, mName, ns2us(t));
430 }
431
432 t -= mWakeupLatency;
433 ALOGV("[%s] Corrected for wakeup latency -> %" PRId64, mName, ns2us(t));
434
435 return t;
436 }
437
fireCallbackInvocations(const std::vector<CallbackInvocation> & callbacks)438 void fireCallbackInvocations(const std::vector<CallbackInvocation>& callbacks) {
439 if (mTraceDetailedInfo) ATRACE_CALL();
440 for (size_t i = 0; i < callbacks.size(); i++) {
441 callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime,
442 callbacks[i].mExpectedVSyncTime);
443 }
444 }
445
computeNextRefreshLocked(int periodOffset,nsecs_t now) const446 nsecs_t computeNextRefreshLocked(int periodOffset, nsecs_t now) const {
447 nsecs_t phase = mReferenceTime + mPhase;
448 if (mPeriod == 0) {
449 return 0;
450 }
451 return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
452 }
453
454 const char* const mName;
455
456 bool mStop;
457 TracedOrdinal<bool> mModelLocked;
458
459 nsecs_t mPeriod;
460 nsecs_t mPhase;
461 nsecs_t mReferenceTime;
462 nsecs_t mWakeupLatency;
463
464 int64_t mFrameNumber;
465
466 std::vector<EventListener> mEventListeners;
467
468 mutable Mutex mMutex;
469 Condition mCond;
470
471 // Flag to turn on logging in systrace.
472 const bool mTraceDetailedInfo;
473 };
474
475 #undef LOG_TAG
476 #define LOG_TAG "DispSync"
477
478 class ZeroPhaseTracer : public DispSync::Callback {
479 public:
ZeroPhaseTracer()480 ZeroPhaseTracer() : mParity("ZERO_PHASE_VSYNC", false) {}
481
onDispSyncEvent(nsecs_t,nsecs_t)482 virtual void onDispSyncEvent(nsecs_t /*when*/, nsecs_t /*expectedVSyncTimestamp*/) {
483 mParity = !mParity;
484 }
485
486 private:
487 TracedOrdinal<bool> mParity;
488 };
489
DispSync(const char * name,bool hasSyncFramework)490 DispSync::DispSync(const char* name, bool hasSyncFramework)
491 : mName(name), mIgnorePresentFences(!hasSyncFramework) {
492 // This flag offers the ability to turn on systrace logging from the shell.
493 char value[PROPERTY_VALUE_MAX];
494 property_get("debug.sf.dispsync_trace_detailed_info", value, "0");
495 mTraceDetailedInfo = atoi(value);
496
497 mThread = new DispSyncThread(name, mTraceDetailedInfo);
498 mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
499
500 // set DispSync to SCHED_FIFO to minimize jitter
501 struct sched_param param = {0};
502 param.sched_priority = 2;
503 if (sched_setscheduler(mThread->getTid(), SCHED_FIFO, ¶m) != 0) {
504 ALOGE("Couldn't set SCHED_FIFO for DispSyncThread");
505 }
506
507 beginResync();
508
509 if (mTraceDetailedInfo && kEnableZeroPhaseTracer) {
510 mZeroPhaseTracer = std::make_unique<ZeroPhaseTracer>();
511 addEventListener("ZeroPhaseTracer", 0, mZeroPhaseTracer.get(), 0);
512 }
513 }
514
~DispSync()515 DispSync::~DispSync() {
516 mThread->stop();
517 mThread->requestExitAndWait();
518 }
519
reset()520 void DispSync::reset() {
521 Mutex::Autolock lock(mMutex);
522 resetLocked();
523 }
524
resetLocked()525 void DispSync::resetLocked() {
526 mPhase = 0;
527 const size_t lastSampleIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
528 // Keep the most recent sample, when we resync to hardware we'll overwrite this
529 // with a more accurate signal
530 if (mResyncSamples[lastSampleIdx] != 0) {
531 mReferenceTime = mResyncSamples[lastSampleIdx];
532 }
533 mModelUpdated = false;
534 for (size_t i = 0; i < MAX_RESYNC_SAMPLES; i++) {
535 mResyncSamples[i] = 0;
536 }
537 mNumResyncSamples = 0;
538 mFirstResyncSample = 0;
539 mNumResyncSamplesSincePresent = 0;
540 mThread->unlockModel();
541 resetErrorLocked();
542 }
543
addPresentFence(const std::shared_ptr<FenceTime> & fenceTime)544 bool DispSync::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
545 Mutex::Autolock lock(mMutex);
546
547 if (mIgnorePresentFences) {
548 return true;
549 }
550
551 mPresentFences[mPresentSampleOffset] = fenceTime;
552 mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
553 mNumResyncSamplesSincePresent = 0;
554
555 updateErrorLocked();
556
557 return !mModelUpdated || mError > kErrorThreshold;
558 }
559
beginResync()560 void DispSync::beginResync() {
561 Mutex::Autolock lock(mMutex);
562 ALOGV("[%s] beginResync", mName);
563 resetLocked();
564 }
565
addResyncSample(nsecs_t timestamp,std::optional<nsecs_t>,bool * periodFlushed)566 bool DispSync::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> /*hwcVsyncPeriod*/,
567 bool* periodFlushed) {
568 Mutex::Autolock lock(mMutex);
569
570 ALOGV("[%s] addResyncSample(%" PRId64 ")", mName, ns2us(timestamp));
571
572 *periodFlushed = false;
573 const size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
574 mResyncSamples[idx] = timestamp;
575 if (mNumResyncSamples == 0) {
576 mPhase = 0;
577 ALOGV("[%s] First resync sample: mPeriod = %" PRId64 ", mPhase = 0, "
578 "mReferenceTime = %" PRId64,
579 mName, ns2us(mPeriod), ns2us(timestamp));
580 } else if (mPendingPeriod > 0) {
581 // mNumResyncSamples > 0, so priorIdx won't overflow
582 const size_t priorIdx = (mFirstResyncSample + mNumResyncSamples - 1) % MAX_RESYNC_SAMPLES;
583 const nsecs_t lastTimestamp = mResyncSamples[priorIdx];
584
585 const nsecs_t observedVsync = std::abs(timestamp - lastTimestamp);
586 if (std::abs(observedVsync - mPendingPeriod) <= std::abs(observedVsync - mIntendedPeriod)) {
587 // Either the observed vsync is closer to the pending period, (and
588 // thus we detected a period change), or the period change will
589 // no-op. In either case, reset the model and flush the pending
590 // period.
591 resetLocked();
592 mIntendedPeriod = mPendingPeriod;
593 mPeriod = mPendingPeriod;
594 mPendingPeriod = 0;
595 if (mTraceDetailedInfo) {
596 ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
597 ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
598 }
599 *periodFlushed = true;
600 }
601 }
602 // Always update the reference time with the most recent timestamp.
603 mReferenceTime = timestamp;
604 mThread->updateModel(mPeriod, mPhase, mReferenceTime);
605
606 if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
607 mNumResyncSamples++;
608 } else {
609 mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
610 }
611
612 updateModelLocked();
613
614 if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
615 resetErrorLocked();
616 }
617
618 if (mIgnorePresentFences) {
619 // If we're ignoring the present fences we have no way to know whether
620 // or not we're synchronized with the HW vsyncs, so we just request
621 // that the HW vsync events be turned on.
622 return true;
623 }
624
625 // Check against kErrorThreshold / 2 to add some hysteresis before having to
626 // resync again
627 bool modelLocked = mModelUpdated && mError < (kErrorThreshold / 2) && mPendingPeriod == 0;
628 ALOGV("[%s] addResyncSample returning %s", mName, modelLocked ? "locked" : "unlocked");
629 if (modelLocked) {
630 *periodFlushed = true;
631 mThread->lockModel();
632 }
633 return !modelLocked;
634 }
635
endResync()636 void DispSync::endResync() {
637 mThread->lockModel();
638 }
639
addEventListener(const char * name,nsecs_t phase,Callback * callback,nsecs_t lastCallbackTime)640 status_t DispSync::addEventListener(const char* name, nsecs_t phase, Callback* callback,
641 nsecs_t lastCallbackTime) {
642 Mutex::Autolock lock(mMutex);
643 return mThread->addEventListener(name, phase, callback, lastCallbackTime);
644 }
645
removeEventListener(Callback * callback,nsecs_t * outLastCallbackTime)646 status_t DispSync::removeEventListener(Callback* callback, nsecs_t* outLastCallbackTime) {
647 Mutex::Autolock lock(mMutex);
648 return mThread->removeEventListener(callback, outLastCallbackTime);
649 }
650
changePhaseOffset(Callback * callback,nsecs_t phase)651 status_t DispSync::changePhaseOffset(Callback* callback, nsecs_t phase) {
652 Mutex::Autolock lock(mMutex);
653 return mThread->changePhaseOffset(callback, phase);
654 }
655
setPeriod(nsecs_t period)656 void DispSync::setPeriod(nsecs_t period) {
657 Mutex::Autolock lock(mMutex);
658
659 const bool pendingPeriodShouldChange =
660 period != mIntendedPeriod || (period == mIntendedPeriod && mPendingPeriod != 0);
661
662 if (pendingPeriodShouldChange) {
663 mPendingPeriod = period;
664 }
665 if (mTraceDetailedInfo) {
666 ATRACE_INT("DispSync:IntendedPeriod", mIntendedPeriod);
667 ATRACE_INT("DispSync:PendingPeriod", mPendingPeriod);
668 }
669 }
670
getPeriod()671 nsecs_t DispSync::getPeriod() {
672 // lock mutex as mPeriod changes multiple times in updateModelLocked
673 Mutex::Autolock lock(mMutex);
674 return mPeriod;
675 }
676
updateModelLocked()677 void DispSync::updateModelLocked() {
678 ALOGV("[%s] updateModelLocked %zu", mName, mNumResyncSamples);
679 if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
680 ALOGV("[%s] Computing...", mName);
681 nsecs_t durationSum = 0;
682 nsecs_t minDuration = INT64_MAX;
683 nsecs_t maxDuration = 0;
684 // We skip the first 2 samples because the first vsync duration on some
685 // devices may be much more inaccurate than on other devices, e.g. due
686 // to delays in ramping up from a power collapse. By doing so this
687 // actually increases the accuracy of the DispSync model even though
688 // we're effectively relying on fewer sample points.
689 static constexpr size_t numSamplesSkipped = 2;
690 for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
691 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
692 size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
693 nsecs_t duration = mResyncSamples[idx] - mResyncSamples[prev];
694 durationSum += duration;
695 minDuration = min(minDuration, duration);
696 maxDuration = max(maxDuration, duration);
697 }
698
699 // Exclude the min and max from the average
700 durationSum -= minDuration + maxDuration;
701 mPeriod = durationSum / (mNumResyncSamples - numSamplesSkipped - 2);
702
703 ALOGV("[%s] mPeriod = %" PRId64, mName, ns2us(mPeriod));
704
705 double sampleAvgX = 0;
706 double sampleAvgY = 0;
707 double scale = 2.0 * M_PI / double(mPeriod);
708 for (size_t i = numSamplesSkipped; i < mNumResyncSamples; i++) {
709 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
710 nsecs_t sample = mResyncSamples[idx] - mReferenceTime;
711 double samplePhase = double(sample % mPeriod) * scale;
712 sampleAvgX += cos(samplePhase);
713 sampleAvgY += sin(samplePhase);
714 }
715
716 sampleAvgX /= double(mNumResyncSamples - numSamplesSkipped);
717 sampleAvgY /= double(mNumResyncSamples - numSamplesSkipped);
718
719 mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
720
721 ALOGV("[%s] mPhase = %" PRId64, mName, ns2us(mPhase));
722
723 if (mPhase < -(mPeriod / 2)) {
724 mPhase += mPeriod;
725 ALOGV("[%s] Adjusting mPhase -> %" PRId64, mName, ns2us(mPhase));
726 }
727
728 mThread->updateModel(mPeriod, mPhase, mReferenceTime);
729 mModelUpdated = true;
730 }
731 }
732
updateErrorLocked()733 void DispSync::updateErrorLocked() {
734 if (!mModelUpdated) {
735 return;
736 }
737
738 int numErrSamples = 0;
739 nsecs_t sqErrSum = 0;
740
741 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
742 // Only check for the cached value of signal time to avoid unecessary
743 // syscalls. It is the responsibility of the DispSync owner to
744 // call getSignalTime() periodically so the cache is updated when the
745 // fence signals.
746 nsecs_t time = mPresentFences[i]->getCachedSignalTime();
747 if (time == Fence::SIGNAL_TIME_PENDING || time == Fence::SIGNAL_TIME_INVALID) {
748 continue;
749 }
750
751 nsecs_t sample = time - mReferenceTime;
752 if (sample <= mPhase) {
753 continue;
754 }
755
756 nsecs_t sampleErr = (sample - mPhase) % mPeriod;
757 if (sampleErr > mPeriod / 2) {
758 sampleErr -= mPeriod;
759 }
760 sqErrSum += sampleErr * sampleErr;
761 numErrSamples++;
762 }
763
764 if (numErrSamples > 0) {
765 mError = sqErrSum / numErrSamples;
766 mZeroErrSamplesCount = 0;
767 } else {
768 mError = 0;
769 // Use mod ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT to avoid log spam.
770 mZeroErrSamplesCount++;
771 ALOGE_IF((mZeroErrSamplesCount % ACCEPTABLE_ZERO_ERR_SAMPLES_COUNT) == 0,
772 "No present times for model error.");
773 }
774
775 if (mTraceDetailedInfo) {
776 ATRACE_INT64("DispSync:Error", mError);
777 }
778 }
779
resetErrorLocked()780 void DispSync::resetErrorLocked() {
781 mPresentSampleOffset = 0;
782 mError = 0;
783 mZeroErrSamplesCount = 0;
784 if (mTraceDetailedInfo) {
785 ATRACE_INT64("DispSync:Error", mError);
786 }
787 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
788 mPresentFences[i] = FenceTime::NO_FENCE;
789 }
790 }
791
computeNextRefresh(int periodOffset,nsecs_t now) const792 nsecs_t DispSync::computeNextRefresh(int periodOffset, nsecs_t now) const {
793 Mutex::Autolock lock(mMutex);
794 nsecs_t phase = mReferenceTime + mPhase;
795 if (mPeriod == 0) {
796 return 0;
797 }
798 return (((now - phase) / mPeriod) + periodOffset + 1) * mPeriod + phase;
799 }
800
setIgnorePresentFences(bool ignore)801 void DispSync::setIgnorePresentFences(bool ignore) {
802 Mutex::Autolock lock(mMutex);
803 if (mIgnorePresentFences != ignore) {
804 mIgnorePresentFences = ignore;
805 resetLocked();
806 }
807 }
808
dump(std::string & result) const809 void DispSync::dump(std::string& result) const {
810 Mutex::Autolock lock(mMutex);
811 StringAppendF(&result, "present fences are %s\n", mIgnorePresentFences ? "ignored" : "used");
812 StringAppendF(&result, "mPeriod: %" PRId64 " ns (%.3f fps)\n", mPeriod, 1000000000.0 / mPeriod);
813 StringAppendF(&result, "mPhase: %" PRId64 " ns\n", mPhase);
814 StringAppendF(&result, "mError: %" PRId64 " ns (sqrt=%.1f)\n", mError, sqrt(mError));
815 StringAppendF(&result, "mNumResyncSamplesSincePresent: %d (limit %d)\n",
816 mNumResyncSamplesSincePresent, MAX_RESYNC_SAMPLES_WITHOUT_PRESENT);
817 StringAppendF(&result, "mNumResyncSamples: %zd (max %d)\n", mNumResyncSamples,
818 MAX_RESYNC_SAMPLES);
819
820 result.append("mResyncSamples:\n");
821 nsecs_t previous = -1;
822 for (size_t i = 0; i < mNumResyncSamples; i++) {
823 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
824 nsecs_t sampleTime = mResyncSamples[idx];
825 if (i == 0) {
826 StringAppendF(&result, " %" PRId64 "\n", sampleTime);
827 } else {
828 StringAppendF(&result, " %" PRId64 " (+%" PRId64 ")\n", sampleTime,
829 sampleTime - previous);
830 }
831 previous = sampleTime;
832 }
833
834 StringAppendF(&result, "mPresentFences [%d]:\n", NUM_PRESENT_SAMPLES);
835 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
836 previous = Fence::SIGNAL_TIME_INVALID;
837 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
838 size_t idx = (i + mPresentSampleOffset) % NUM_PRESENT_SAMPLES;
839 nsecs_t presentTime = mPresentFences[idx]->getSignalTime();
840 if (presentTime == Fence::SIGNAL_TIME_PENDING) {
841 StringAppendF(&result, " [unsignaled fence]\n");
842 } else if (presentTime == Fence::SIGNAL_TIME_INVALID) {
843 StringAppendF(&result, " [invalid fence]\n");
844 } else if (previous == Fence::SIGNAL_TIME_PENDING ||
845 previous == Fence::SIGNAL_TIME_INVALID) {
846 StringAppendF(&result, " %" PRId64 " (%.3f ms ago)\n", presentTime,
847 (now - presentTime) / 1000000.0);
848 } else {
849 StringAppendF(&result, " %" PRId64 " (+%" PRId64 " / %.3f) (%.3f ms ago)\n",
850 presentTime, presentTime - previous,
851 (presentTime - previous) / (double)mPeriod,
852 (now - presentTime) / 1000000.0);
853 }
854 previous = presentTime;
855 }
856
857 StringAppendF(&result, "current monotonic time: %" PRId64 "\n", now);
858 }
859
expectedPresentTime(nsecs_t now)860 nsecs_t DispSync::expectedPresentTime(nsecs_t now) {
861 // The HWC doesn't currently have a way to report additional latency.
862 // Assume that whatever we submit now will appear right after the flip.
863 // For a smart panel this might be 1. This is expressed in frames,
864 // rather than time, because we expect to have a constant frame delay
865 // regardless of the refresh rate.
866 const uint32_t hwcLatency = 0;
867
868 // Ask DispSync when the next refresh will be (CLOCK_MONOTONIC).
869 return mThread->computeNextRefresh(hwcLatency, now);
870 }
871
872 } // namespace impl
873
874 } // namespace android
875
876 // TODO(b/129481165): remove the #pragma below and fix conversion issues
877 #pragma clang diagnostic pop // ignored "-Wconversion"
878