1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #undef LOG_TAG
18 #define LOG_TAG "Scheduler"
19 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
20
21 #include "Scheduler.h"
22
23 #include <android-base/stringprintf.h>
24 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
25 #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
26 #include <configstore/Utils.h>
27 #include <cutils/properties.h>
28 #include <input/InputWindow.h>
29 #include <system/window.h>
30 #include <ui/DisplayStatInfo.h>
31 #include <utils/Timers.h>
32 #include <utils/Trace.h>
33
34 #include <algorithm>
35 #include <cinttypes>
36 #include <cstdint>
37 #include <functional>
38 #include <memory>
39 #include <numeric>
40
41 #include "../Layer.h"
42 #include "DispSync.h"
43 #include "DispSyncSource.h"
44 #include "EventControlThread.h"
45 #include "EventThread.h"
46 #include "InjectVSyncSource.h"
47 #include "OneShotTimer.h"
48 #include "SchedulerUtils.h"
49 #include "SurfaceFlingerProperties.h"
50 #include "Timer.h"
51 #include "VSyncDispatchTimerQueue.h"
52 #include "VSyncPredictor.h"
53 #include "VSyncReactor.h"
54
55 #define RETURN_IF_INVALID_HANDLE(handle, ...) \
56 do { \
57 if (mConnections.count(handle) == 0) { \
58 ALOGE("Invalid connection handle %" PRIuPTR, handle.id); \
59 return __VA_ARGS__; \
60 } \
61 } while (false)
62
63 namespace android {
64
createDispSync(bool supportKernelTimer)65 std::unique_ptr<DispSync> createDispSync(bool supportKernelTimer) {
66 // TODO (140302863) remove this and use the vsync_reactor system.
67 if (property_get_bool("debug.sf.vsync_reactor", true)) {
68 // TODO (144707443) tune Predictor tunables.
69 static constexpr int defaultRate = 60;
70 static constexpr auto initialPeriod =
71 std::chrono::duration<nsecs_t, std::ratio<1, defaultRate>>(1);
72 static constexpr size_t vsyncTimestampHistorySize = 20;
73 static constexpr size_t minimumSamplesForPrediction = 6;
74 static constexpr uint32_t discardOutlierPercent = 20;
75 auto tracker = std::make_unique<
76 scheduler::VSyncPredictor>(std::chrono::duration_cast<std::chrono::nanoseconds>(
77 initialPeriod)
78 .count(),
79 vsyncTimestampHistorySize, minimumSamplesForPrediction,
80 discardOutlierPercent);
81
82 static constexpr auto vsyncMoveThreshold =
83 std::chrono::duration_cast<std::chrono::nanoseconds>(3ms);
84 static constexpr auto timerSlack =
85 std::chrono::duration_cast<std::chrono::nanoseconds>(500us);
86 auto dispatch = std::make_unique<
87 scheduler::VSyncDispatchTimerQueue>(std::make_unique<scheduler::Timer>(), *tracker,
88 timerSlack.count(), vsyncMoveThreshold.count());
89
90 static constexpr size_t pendingFenceLimit = 20;
91 return std::make_unique<scheduler::VSyncReactor>(std::make_unique<scheduler::SystemClock>(),
92 std::move(dispatch), std::move(tracker),
93 pendingFenceLimit, supportKernelTimer);
94 } else {
95 return std::make_unique<impl::DispSync>("SchedulerDispSync",
96 sysprop::running_without_sync_framework(true));
97 }
98 }
99
Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function,const scheduler::RefreshRateConfigs & refreshRateConfig,ISchedulerCallback & schedulerCallback,bool useContentDetectionV2,bool useContentDetection)100 Scheduler::Scheduler(impl::EventControlThread::SetVSyncEnabledFunction function,
101 const scheduler::RefreshRateConfigs& refreshRateConfig,
102 ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
103 bool useContentDetection)
104 : mSupportKernelTimer(sysprop::support_kernel_idle_timer(false)),
105 mPrimaryDispSync(createDispSync(mSupportKernelTimer)),
106 mEventControlThread(new impl::EventControlThread(std::move(function))),
107 mSchedulerCallback(schedulerCallback),
108 mRefreshRateConfigs(refreshRateConfig),
109 mUseContentDetection(useContentDetection),
110 mUseContentDetectionV2(useContentDetectionV2) {
111 using namespace sysprop;
112
113 if (mUseContentDetectionV2) {
114 mLayerHistory = std::make_unique<scheduler::impl::LayerHistoryV2>(refreshRateConfig);
115 } else {
116 mLayerHistory = std::make_unique<scheduler::impl::LayerHistory>();
117 }
118
119 const int setIdleTimerMs = property_get_int32("debug.sf.set_idle_timer_ms", 0);
120
121 if (const auto millis = setIdleTimerMs ? setIdleTimerMs : set_idle_timer_ms(0); millis > 0) {
122 const auto callback = mSupportKernelTimer ? &Scheduler::kernelIdleTimerCallback
123 : &Scheduler::idleTimerCallback;
124 mIdleTimer.emplace(
125 std::chrono::milliseconds(millis),
126 [this, callback] { std::invoke(callback, this, TimerState::Reset); },
127 [this, callback] { std::invoke(callback, this, TimerState::Expired); });
128 mIdleTimer->start();
129 }
130
131 if (const int64_t millis = set_touch_timer_ms(0); millis > 0) {
132 // Touch events are coming to SF every 100ms, so the timer needs to be higher than that
133 mTouchTimer.emplace(
134 std::chrono::milliseconds(millis),
135 [this] { touchTimerCallback(TimerState::Reset); },
136 [this] { touchTimerCallback(TimerState::Expired); });
137 mTouchTimer->start();
138 }
139
140 if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
141 mDisplayPowerTimer.emplace(
142 std::chrono::milliseconds(millis),
143 [this] { displayPowerTimerCallback(TimerState::Reset); },
144 [this] { displayPowerTimerCallback(TimerState::Expired); });
145 mDisplayPowerTimer->start();
146 }
147 }
148
Scheduler(std::unique_ptr<DispSync> primaryDispSync,std::unique_ptr<EventControlThread> eventControlThread,const scheduler::RefreshRateConfigs & configs,ISchedulerCallback & schedulerCallback,bool useContentDetectionV2,bool useContentDetection)149 Scheduler::Scheduler(std::unique_ptr<DispSync> primaryDispSync,
150 std::unique_ptr<EventControlThread> eventControlThread,
151 const scheduler::RefreshRateConfigs& configs,
152 ISchedulerCallback& schedulerCallback, bool useContentDetectionV2,
153 bool useContentDetection)
154 : mSupportKernelTimer(false),
155 mPrimaryDispSync(std::move(primaryDispSync)),
156 mEventControlThread(std::move(eventControlThread)),
157 mSchedulerCallback(schedulerCallback),
158 mRefreshRateConfigs(configs),
159 mUseContentDetection(useContentDetection),
160 mUseContentDetectionV2(useContentDetectionV2) {}
161
~Scheduler()162 Scheduler::~Scheduler() {
163 // Ensure the OneShotTimer threads are joined before we start destroying state.
164 mDisplayPowerTimer.reset();
165 mTouchTimer.reset();
166 mIdleTimer.reset();
167 }
168
getPrimaryDispSync()169 DispSync& Scheduler::getPrimaryDispSync() {
170 return *mPrimaryDispSync;
171 }
172
makePrimaryDispSyncSource(const char * name,nsecs_t phaseOffsetNs)173 std::unique_ptr<VSyncSource> Scheduler::makePrimaryDispSyncSource(const char* name,
174 nsecs_t phaseOffsetNs) {
175 return std::make_unique<DispSyncSource>(mPrimaryDispSync.get(), phaseOffsetNs,
176 true /* traceVsync */, name);
177 }
178
createConnection(const char * connectionName,nsecs_t phaseOffsetNs,impl::EventThread::InterceptVSyncsCallback interceptCallback)179 Scheduler::ConnectionHandle Scheduler::createConnection(
180 const char* connectionName, nsecs_t phaseOffsetNs,
181 impl::EventThread::InterceptVSyncsCallback interceptCallback) {
182 auto vsyncSource = makePrimaryDispSyncSource(connectionName, phaseOffsetNs);
183 auto eventThread = std::make_unique<impl::EventThread>(std::move(vsyncSource),
184 std::move(interceptCallback));
185 return createConnection(std::move(eventThread));
186 }
187
createConnection(std::unique_ptr<EventThread> eventThread)188 Scheduler::ConnectionHandle Scheduler::createConnection(std::unique_ptr<EventThread> eventThread) {
189 const ConnectionHandle handle = ConnectionHandle{mNextConnectionHandleId++};
190 ALOGV("Creating a connection handle with ID %" PRIuPTR, handle.id);
191
192 auto connection =
193 createConnectionInternal(eventThread.get(), ISurfaceComposer::eConfigChangedSuppress);
194
195 mConnections.emplace(handle, Connection{connection, std::move(eventThread)});
196 return handle;
197 }
198
createConnectionInternal(EventThread * eventThread,ISurfaceComposer::ConfigChanged configChanged)199 sp<EventThreadConnection> Scheduler::createConnectionInternal(
200 EventThread* eventThread, ISurfaceComposer::ConfigChanged configChanged) {
201 return eventThread->createEventConnection([&] { resync(); }, configChanged);
202 }
203
createDisplayEventConnection(ConnectionHandle handle,ISurfaceComposer::ConfigChanged configChanged)204 sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
205 ConnectionHandle handle, ISurfaceComposer::ConfigChanged configChanged) {
206 RETURN_IF_INVALID_HANDLE(handle, nullptr);
207 return createConnectionInternal(mConnections[handle].thread.get(), configChanged);
208 }
209
getEventConnection(ConnectionHandle handle)210 sp<EventThreadConnection> Scheduler::getEventConnection(ConnectionHandle handle) {
211 RETURN_IF_INVALID_HANDLE(handle, nullptr);
212 return mConnections[handle].connection;
213 }
214
onHotplugReceived(ConnectionHandle handle,PhysicalDisplayId displayId,bool connected)215 void Scheduler::onHotplugReceived(ConnectionHandle handle, PhysicalDisplayId displayId,
216 bool connected) {
217 RETURN_IF_INVALID_HANDLE(handle);
218 mConnections[handle].thread->onHotplugReceived(displayId, connected);
219 }
220
onScreenAcquired(ConnectionHandle handle)221 void Scheduler::onScreenAcquired(ConnectionHandle handle) {
222 RETURN_IF_INVALID_HANDLE(handle);
223 mConnections[handle].thread->onScreenAcquired();
224 }
225
onScreenReleased(ConnectionHandle handle)226 void Scheduler::onScreenReleased(ConnectionHandle handle) {
227 RETURN_IF_INVALID_HANDLE(handle);
228 mConnections[handle].thread->onScreenReleased();
229 }
230
onPrimaryDisplayConfigChanged(ConnectionHandle handle,PhysicalDisplayId displayId,HwcConfigIndexType configId,nsecs_t vsyncPeriod)231 void Scheduler::onPrimaryDisplayConfigChanged(ConnectionHandle handle, PhysicalDisplayId displayId,
232 HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
233 std::lock_guard<std::mutex> lock(mFeatureStateLock);
234 // Cache the last reported config for primary display.
235 mFeatures.cachedConfigChangedParams = {handle, displayId, configId, vsyncPeriod};
236 onNonPrimaryDisplayConfigChanged(handle, displayId, configId, vsyncPeriod);
237 }
238
dispatchCachedReportedConfig()239 void Scheduler::dispatchCachedReportedConfig() {
240 const auto configId = *mFeatures.configId;
241 const auto vsyncPeriod =
242 mRefreshRateConfigs.getRefreshRateFromConfigId(configId).getVsyncPeriod();
243
244 // If there is no change from cached config, there is no need to dispatch an event
245 if (configId == mFeatures.cachedConfigChangedParams->configId &&
246 vsyncPeriod == mFeatures.cachedConfigChangedParams->vsyncPeriod) {
247 return;
248 }
249
250 mFeatures.cachedConfigChangedParams->configId = configId;
251 mFeatures.cachedConfigChangedParams->vsyncPeriod = vsyncPeriod;
252 onNonPrimaryDisplayConfigChanged(mFeatures.cachedConfigChangedParams->handle,
253 mFeatures.cachedConfigChangedParams->displayId,
254 mFeatures.cachedConfigChangedParams->configId,
255 mFeatures.cachedConfigChangedParams->vsyncPeriod);
256 }
257
onNonPrimaryDisplayConfigChanged(ConnectionHandle handle,PhysicalDisplayId displayId,HwcConfigIndexType configId,nsecs_t vsyncPeriod)258 void Scheduler::onNonPrimaryDisplayConfigChanged(ConnectionHandle handle,
259 PhysicalDisplayId displayId,
260 HwcConfigIndexType configId, nsecs_t vsyncPeriod) {
261 RETURN_IF_INVALID_HANDLE(handle);
262 mConnections[handle].thread->onConfigChanged(displayId, configId, vsyncPeriod);
263 }
264
getEventThreadConnectionCount(ConnectionHandle handle)265 size_t Scheduler::getEventThreadConnectionCount(ConnectionHandle handle) {
266 RETURN_IF_INVALID_HANDLE(handle, 0);
267 return mConnections[handle].thread->getEventThreadConnectionCount();
268 }
269
dump(ConnectionHandle handle,std::string & result) const270 void Scheduler::dump(ConnectionHandle handle, std::string& result) const {
271 RETURN_IF_INVALID_HANDLE(handle);
272 mConnections.at(handle).thread->dump(result);
273 }
274
setPhaseOffset(ConnectionHandle handle,nsecs_t phaseOffset)275 void Scheduler::setPhaseOffset(ConnectionHandle handle, nsecs_t phaseOffset) {
276 RETURN_IF_INVALID_HANDLE(handle);
277 mConnections[handle].thread->setPhaseOffset(phaseOffset);
278 }
279
getDisplayStatInfo(DisplayStatInfo * stats)280 void Scheduler::getDisplayStatInfo(DisplayStatInfo* stats) {
281 stats->vsyncTime = mPrimaryDispSync->computeNextRefresh(0, systemTime());
282 stats->vsyncPeriod = mPrimaryDispSync->getPeriod();
283 }
284
enableVSyncInjection(bool enable)285 Scheduler::ConnectionHandle Scheduler::enableVSyncInjection(bool enable) {
286 if (mInjectVSyncs == enable) {
287 return {};
288 }
289
290 ALOGV("%s VSYNC injection", enable ? "Enabling" : "Disabling");
291
292 if (!mInjectorConnectionHandle) {
293 auto vsyncSource = std::make_unique<InjectVSyncSource>();
294 mVSyncInjector = vsyncSource.get();
295
296 auto eventThread =
297 std::make_unique<impl::EventThread>(std::move(vsyncSource),
298 impl::EventThread::InterceptVSyncsCallback());
299
300 mInjectorConnectionHandle = createConnection(std::move(eventThread));
301 }
302
303 mInjectVSyncs = enable;
304 return mInjectorConnectionHandle;
305 }
306
injectVSync(nsecs_t when,nsecs_t expectedVSyncTime)307 bool Scheduler::injectVSync(nsecs_t when, nsecs_t expectedVSyncTime) {
308 if (!mInjectVSyncs || !mVSyncInjector) {
309 return false;
310 }
311
312 mVSyncInjector->onInjectSyncEvent(when, expectedVSyncTime);
313 return true;
314 }
315
enableHardwareVsync()316 void Scheduler::enableHardwareVsync() {
317 std::lock_guard<std::mutex> lock(mHWVsyncLock);
318 if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
319 mPrimaryDispSync->beginResync();
320 mEventControlThread->setVsyncEnabled(true);
321 mPrimaryHWVsyncEnabled = true;
322 }
323 }
324
disableHardwareVsync(bool makeUnavailable)325 void Scheduler::disableHardwareVsync(bool makeUnavailable) {
326 std::lock_guard<std::mutex> lock(mHWVsyncLock);
327 if (mPrimaryHWVsyncEnabled) {
328 mEventControlThread->setVsyncEnabled(false);
329 mPrimaryDispSync->endResync();
330 mPrimaryHWVsyncEnabled = false;
331 }
332 if (makeUnavailable) {
333 mHWVsyncAvailable = false;
334 }
335 }
336
resyncToHardwareVsync(bool makeAvailable,nsecs_t period)337 void Scheduler::resyncToHardwareVsync(bool makeAvailable, nsecs_t period) {
338 {
339 std::lock_guard<std::mutex> lock(mHWVsyncLock);
340 if (makeAvailable) {
341 mHWVsyncAvailable = makeAvailable;
342 } else if (!mHWVsyncAvailable) {
343 // Hardware vsync is not currently available, so abort the resync
344 // attempt for now
345 return;
346 }
347 }
348
349 if (period <= 0) {
350 return;
351 }
352
353 setVsyncPeriod(period);
354 }
355
resync()356 void Scheduler::resync() {
357 static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
358
359 const nsecs_t now = systemTime();
360 const nsecs_t last = mLastResyncTime.exchange(now);
361
362 if (now - last > kIgnoreDelay) {
363 resyncToHardwareVsync(false, mRefreshRateConfigs.getCurrentRefreshRate().getVsyncPeriod());
364 }
365 }
366
setVsyncPeriod(nsecs_t period)367 void Scheduler::setVsyncPeriod(nsecs_t period) {
368 std::lock_guard<std::mutex> lock(mHWVsyncLock);
369 mPrimaryDispSync->setPeriod(period);
370
371 if (!mPrimaryHWVsyncEnabled) {
372 mPrimaryDispSync->beginResync();
373 mEventControlThread->setVsyncEnabled(true);
374 mPrimaryHWVsyncEnabled = true;
375 }
376 }
377
addResyncSample(nsecs_t timestamp,std::optional<nsecs_t> hwcVsyncPeriod,bool * periodFlushed)378 void Scheduler::addResyncSample(nsecs_t timestamp, std::optional<nsecs_t> hwcVsyncPeriod,
379 bool* periodFlushed) {
380 bool needsHwVsync = false;
381 *periodFlushed = false;
382 { // Scope for the lock
383 std::lock_guard<std::mutex> lock(mHWVsyncLock);
384 if (mPrimaryHWVsyncEnabled) {
385 needsHwVsync =
386 mPrimaryDispSync->addResyncSample(timestamp, hwcVsyncPeriod, periodFlushed);
387 }
388 }
389
390 if (needsHwVsync) {
391 enableHardwareVsync();
392 } else {
393 disableHardwareVsync(false);
394 }
395 }
396
addPresentFence(const std::shared_ptr<FenceTime> & fenceTime)397 void Scheduler::addPresentFence(const std::shared_ptr<FenceTime>& fenceTime) {
398 if (mPrimaryDispSync->addPresentFence(fenceTime)) {
399 enableHardwareVsync();
400 } else {
401 disableHardwareVsync(false);
402 }
403 }
404
setIgnorePresentFences(bool ignore)405 void Scheduler::setIgnorePresentFences(bool ignore) {
406 mPrimaryDispSync->setIgnorePresentFences(ignore);
407 }
408
getDispSyncExpectedPresentTime(nsecs_t now)409 nsecs_t Scheduler::getDispSyncExpectedPresentTime(nsecs_t now) {
410 return mPrimaryDispSync->expectedPresentTime(now);
411 }
412
registerLayer(Layer * layer)413 void Scheduler::registerLayer(Layer* layer) {
414 if (!mLayerHistory) return;
415
416 const auto minFps = mRefreshRateConfigs.getMinRefreshRate().getFps();
417 const auto maxFps = mRefreshRateConfigs.getMaxRefreshRate().getFps();
418
419 if (layer->getWindowType() == InputWindowInfo::TYPE_STATUS_BAR) {
420 mLayerHistory->registerLayer(layer, minFps, maxFps,
421 scheduler::LayerHistory::LayerVoteType::NoVote);
422 } else if (!mUseContentDetection) {
423 // If the content detection feature is off, all layers are registered at Max. We still keep
424 // the layer history, since we use it for other features (like Frame Rate API), so layers
425 // still need to be registered.
426 mLayerHistory->registerLayer(layer, minFps, maxFps,
427 scheduler::LayerHistory::LayerVoteType::Max);
428 } else if (!mUseContentDetectionV2) {
429 // In V1 of content detection, all layers are registered as Heuristic (unless it's
430 // wallpaper).
431 const auto highFps =
432 layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER ? minFps : maxFps;
433
434 mLayerHistory->registerLayer(layer, minFps, highFps,
435 scheduler::LayerHistory::LayerVoteType::Heuristic);
436 } else {
437 if (layer->getWindowType() == InputWindowInfo::TYPE_WALLPAPER) {
438 // Running Wallpaper at Min is considered as part of content detection.
439 mLayerHistory->registerLayer(layer, minFps, maxFps,
440 scheduler::LayerHistory::LayerVoteType::Min);
441 } else {
442 mLayerHistory->registerLayer(layer, minFps, maxFps,
443 scheduler::LayerHistory::LayerVoteType::Heuristic);
444 }
445 }
446 }
447
recordLayerHistory(Layer * layer,nsecs_t presentTime,LayerHistory::LayerUpdateType updateType)448 void Scheduler::recordLayerHistory(Layer* layer, nsecs_t presentTime,
449 LayerHistory::LayerUpdateType updateType) {
450 if (mLayerHistory) {
451 mLayerHistory->record(layer, presentTime, systemTime(), updateType);
452 }
453 }
454
setConfigChangePending(bool pending)455 void Scheduler::setConfigChangePending(bool pending) {
456 if (mLayerHistory) {
457 mLayerHistory->setConfigChangePending(pending);
458 }
459 }
460
chooseRefreshRateForContent()461 void Scheduler::chooseRefreshRateForContent() {
462 if (!mLayerHistory) return;
463
464 ATRACE_CALL();
465
466 scheduler::LayerHistory::Summary summary = mLayerHistory->summarize(systemTime());
467 HwcConfigIndexType newConfigId;
468 {
469 std::lock_guard<std::mutex> lock(mFeatureStateLock);
470 if (mFeatures.contentRequirements == summary) {
471 return;
472 }
473 mFeatures.contentRequirements = summary;
474 mFeatures.contentDetectionV1 =
475 !summary.empty() ? ContentDetectionState::On : ContentDetectionState::Off;
476
477 scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
478 newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
479 if (mFeatures.configId == newConfigId) {
480 // We don't need to change the config, but we might need to send an event
481 // about a config change, since it was suppressed due to a previous idleConsidered
482 if (!consideredSignals.idle) {
483 dispatchCachedReportedConfig();
484 }
485 return;
486 }
487 mFeatures.configId = newConfigId;
488 auto& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
489 mSchedulerCallback.changeRefreshRate(newRefreshRate,
490 consideredSignals.idle ? ConfigEvent::None
491 : ConfigEvent::Changed);
492 }
493 }
494
resetIdleTimer()495 void Scheduler::resetIdleTimer() {
496 if (mIdleTimer) {
497 mIdleTimer->reset();
498 }
499 }
500
notifyTouchEvent()501 void Scheduler::notifyTouchEvent() {
502 if (!mTouchTimer) return;
503
504 // Touch event will boost the refresh rate to performance.
505 // Clear Layer History to get fresh FPS detection.
506 // NOTE: Instead of checking all the layers, we should be checking the layer
507 // that is currently on top. b/142507166 will give us this capability.
508 std::lock_guard<std::mutex> lock(mFeatureStateLock);
509 if (mLayerHistory) {
510 // Layer History will be cleared based on RefreshRateConfigs::getBestRefreshRate
511
512 mTouchTimer->reset();
513
514 if (mSupportKernelTimer && mIdleTimer) {
515 mIdleTimer->reset();
516 }
517 }
518 }
519
setDisplayPowerState(bool normal)520 void Scheduler::setDisplayPowerState(bool normal) {
521 {
522 std::lock_guard<std::mutex> lock(mFeatureStateLock);
523 mFeatures.isDisplayPowerStateNormal = normal;
524 }
525
526 if (mDisplayPowerTimer) {
527 mDisplayPowerTimer->reset();
528 }
529
530 // Display Power event will boost the refresh rate to performance.
531 // Clear Layer History to get fresh FPS detection
532 if (mLayerHistory) {
533 mLayerHistory->clear();
534 }
535 }
536
kernelIdleTimerCallback(TimerState state)537 void Scheduler::kernelIdleTimerCallback(TimerState state) {
538 ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
539
540 // TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
541 // magic number
542 const auto& refreshRate = mRefreshRateConfigs.getCurrentRefreshRate();
543 constexpr float FPS_THRESHOLD_FOR_KERNEL_TIMER = 65.0f;
544 if (state == TimerState::Reset && refreshRate.getFps() > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
545 // If we're not in performance mode then the kernel timer shouldn't do
546 // anything, as the refresh rate during DPU power collapse will be the
547 // same.
548 resyncToHardwareVsync(true /* makeAvailable */, refreshRate.getVsyncPeriod());
549 } else if (state == TimerState::Expired &&
550 refreshRate.getFps() <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
551 // Disable HW VSYNC if the timer expired, as we don't need it enabled if
552 // we're not pushing frames, and if we're in PERFORMANCE mode then we'll
553 // need to update the DispSync model anyway.
554 disableHardwareVsync(false /* makeUnavailable */);
555 }
556
557 mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
558 }
559
idleTimerCallback(TimerState state)560 void Scheduler::idleTimerCallback(TimerState state) {
561 handleTimerStateChanged(&mFeatures.idleTimer, state);
562 ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
563 }
564
touchTimerCallback(TimerState state)565 void Scheduler::touchTimerCallback(TimerState state) {
566 const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
567 if (handleTimerStateChanged(&mFeatures.touch, touch)) {
568 mLayerHistory->clear();
569 }
570 ATRACE_INT("TouchState", static_cast<int>(touch));
571 }
572
displayPowerTimerCallback(TimerState state)573 void Scheduler::displayPowerTimerCallback(TimerState state) {
574 handleTimerStateChanged(&mFeatures.displayPowerTimer, state);
575 ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
576 }
577
dump(std::string & result) const578 void Scheduler::dump(std::string& result) const {
579 using base::StringAppendF;
580 const char* const states[] = {"off", "on"};
581
582 StringAppendF(&result, "+ Idle timer: %s\n",
583 mIdleTimer ? mIdleTimer->dump().c_str() : states[0]);
584 StringAppendF(&result, "+ Touch timer: %s\n",
585 mTouchTimer ? mTouchTimer->dump().c_str() : states[0]);
586 StringAppendF(&result, "+ Use content detection: %s\n\n",
587 sysprop::use_content_detection_for_refresh_rate(false) ? "on" : "off");
588 }
589
590 template <class T>
handleTimerStateChanged(T * currentState,T newState)591 bool Scheduler::handleTimerStateChanged(T* currentState, T newState) {
592 HwcConfigIndexType newConfigId;
593 scheduler::RefreshRateConfigs::GlobalSignals consideredSignals;
594 {
595 std::lock_guard<std::mutex> lock(mFeatureStateLock);
596 if (*currentState == newState) {
597 return false;
598 }
599 *currentState = newState;
600 newConfigId = calculateRefreshRateConfigIndexType(&consideredSignals);
601 if (mFeatures.configId == newConfigId) {
602 // We don't need to change the config, but we might need to send an event
603 // about a config change, since it was suppressed due to a previous idleConsidered
604 if (!consideredSignals.idle) {
605 dispatchCachedReportedConfig();
606 }
607 return consideredSignals.touch;
608 }
609 mFeatures.configId = newConfigId;
610 }
611 const RefreshRate& newRefreshRate = mRefreshRateConfigs.getRefreshRateFromConfigId(newConfigId);
612 mSchedulerCallback.changeRefreshRate(newRefreshRate,
613 consideredSignals.idle ? ConfigEvent::None
614 : ConfigEvent::Changed);
615 return consideredSignals.touch;
616 }
617
calculateRefreshRateConfigIndexType(scheduler::RefreshRateConfigs::GlobalSignals * consideredSignals)618 HwcConfigIndexType Scheduler::calculateRefreshRateConfigIndexType(
619 scheduler::RefreshRateConfigs::GlobalSignals* consideredSignals) {
620 ATRACE_CALL();
621 if (consideredSignals) *consideredSignals = {};
622
623 // If Display Power is not in normal operation we want to be in performance mode. When coming
624 // back to normal mode, a grace period is given with DisplayPowerTimer.
625 if (mDisplayPowerTimer &&
626 (!mFeatures.isDisplayPowerStateNormal ||
627 mFeatures.displayPowerTimer == TimerState::Reset)) {
628 return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
629 }
630
631 const bool touchActive = mTouchTimer && mFeatures.touch == TouchState::Active;
632 const bool idle = mIdleTimer && mFeatures.idleTimer == TimerState::Expired;
633
634 if (!mUseContentDetectionV2) {
635 // As long as touch is active we want to be in performance mode.
636 if (touchActive) {
637 return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
638 }
639
640 // If timer has expired as it means there is no new content on the screen.
641 if (idle) {
642 if (consideredSignals) consideredSignals->idle = true;
643 return mRefreshRateConfigs.getMinRefreshRateByPolicy().getConfigId();
644 }
645
646 // If content detection is off we choose performance as we don't know the content fps.
647 if (mFeatures.contentDetectionV1 == ContentDetectionState::Off) {
648 // NOTE: V1 always calls this, but this is not a default behavior for V2.
649 return mRefreshRateConfigs.getMaxRefreshRateByPolicy().getConfigId();
650 }
651
652 // Content detection is on, find the appropriate refresh rate with minimal error
653 return mRefreshRateConfigs.getRefreshRateForContent(mFeatures.contentRequirements)
654 .getConfigId();
655 }
656
657 return mRefreshRateConfigs
658 .getBestRefreshRate(mFeatures.contentRequirements, {.touch = touchActive, .idle = idle},
659 consideredSignals)
660 .getConfigId();
661 }
662
getPreferredConfigId()663 std::optional<HwcConfigIndexType> Scheduler::getPreferredConfigId() {
664 std::lock_guard<std::mutex> lock(mFeatureStateLock);
665 // Make sure that the default config ID is first updated, before returned.
666 if (mFeatures.configId.has_value()) {
667 mFeatures.configId = calculateRefreshRateConfigIndexType();
668 }
669 return mFeatures.configId;
670 }
671
onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline & timeline)672 void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
673 if (timeline.refreshRequired) {
674 mSchedulerCallback.repaintEverythingForHWC();
675 }
676
677 std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
678 mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
679
680 const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
681 if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
682 mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
683 }
684 }
685
onDisplayRefreshed(nsecs_t timestamp)686 void Scheduler::onDisplayRefreshed(nsecs_t timestamp) {
687 bool callRepaint = false;
688 {
689 std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
690 if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
691 if (mLastVsyncPeriodChangeTimeline->refreshTimeNanos < timestamp) {
692 mLastVsyncPeriodChangeTimeline->refreshRequired = false;
693 } else {
694 // We need to send another refresh as refreshTimeNanos is still in the future
695 callRepaint = true;
696 }
697 }
698 }
699
700 if (callRepaint) {
701 mSchedulerCallback.repaintEverythingForHWC();
702 }
703 }
704
onPrimaryDisplayAreaChanged(uint32_t displayArea)705 void Scheduler::onPrimaryDisplayAreaChanged(uint32_t displayArea) {
706 if (mLayerHistory) {
707 mLayerHistory->setDisplayArea(displayArea);
708 }
709 }
710
711 } // namespace android
712