1 // Copyright 2019 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "src/warp_prediction.h"
16 
17 #include <cmath>
18 #include <cstdint>
19 #include <cstdlib>
20 
21 #include "src/tile.h"
22 #include "src/utils/block_parameters_holder.h"
23 #include "src/utils/common.h"
24 #include "src/utils/constants.h"
25 #include "src/utils/logging.h"
26 
27 namespace libgav1 {
28 namespace {
29 
30 constexpr int kWarpModelTranslationClamp = 1 << 23;
31 constexpr int kWarpModelAffineClamp = 1 << 13;
32 constexpr int kLargestMotionVectorDiff = 256;
33 
34 constexpr uint16_t kDivisorLookup[257] = {
35     16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
36     15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
37     15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
38     14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
39     13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
40     13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
41     13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
42     12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
43     12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
44     11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
45     11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
46     11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
47     10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
48     10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
49     10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
50     9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732,
51     9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489,
52     9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259,
53     9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039,
54     9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830,
55     8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630,
56     8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439,
57     8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257,
58     8240,  8224,  8208,  8192};
59 
60 // Number of fractional bits of lookup in divisor lookup table.
61 constexpr int kDivisorLookupBits = 8;
62 // Number of fractional bits of entries in divisor lookup table.
63 constexpr int kDivisorLookupPrecisionBits = 14;
64 
65 // 7.11.3.7.
66 template <typename T>
GenerateApproximateDivisor(T value,int16_t * division_factor,int16_t * division_shift)67 void GenerateApproximateDivisor(T value, int16_t* division_factor,
68                                 int16_t* division_shift) {
69   const int n = FloorLog2(std::abs(value));
70   const T e = std::abs(value) - (static_cast<T>(1) << n);
71   const int entry = (n > kDivisorLookupBits)
72                         ? RightShiftWithRounding(e, n - kDivisorLookupBits)
73                         : static_cast<int>(e << (kDivisorLookupBits - n));
74   *division_shift = n + kDivisorLookupPrecisionBits;
75   *division_factor =
76       (value < 0) ? -kDivisorLookup[entry] : kDivisorLookup[entry];
77 }
78 
79 // 7.11.3.8.
LeastSquareProduct(int a,int b)80 int LeastSquareProduct(int a, int b) { return ((a * b) >> 2) + a + b; }
81 
82 // 7.11.3.8.
DiagonalClamp(int32_t value)83 int DiagonalClamp(int32_t value) {
84   return Clip3(value,
85                (1 << kWarpedModelPrecisionBits) - kWarpModelAffineClamp + 1,
86                (1 << kWarpedModelPrecisionBits) + kWarpModelAffineClamp - 1);
87 }
88 
89 // 7.11.3.8.
NonDiagonalClamp(int32_t value)90 int NonDiagonalClamp(int32_t value) {
91   return Clip3(value, -kWarpModelAffineClamp + 1, kWarpModelAffineClamp - 1);
92 }
93 
GetShearParameter(int value)94 int16_t GetShearParameter(int value) {
95   return static_cast<int16_t>(
96       LeftShift(RightShiftWithRoundingSigned(Clip3(value, INT16_MIN, INT16_MAX),
97                                              kWarpParamRoundingBits),
98                 kWarpParamRoundingBits));
99 }
100 
101 }  // namespace
102 
SetupShear(GlobalMotion * const warp_params)103 bool SetupShear(GlobalMotion* const warp_params) {
104   int16_t division_shift;
105   int16_t division_factor;
106   const auto* const params = warp_params->params;
107   GenerateApproximateDivisor<int32_t>(params[2], &division_factor,
108                                       &division_shift);
109   const int alpha = params[2] - (1 << kWarpedModelPrecisionBits);
110   const int beta = params[3];
111   const int64_t v = LeftShift(params[4], kWarpedModelPrecisionBits);
112   const int gamma =
113       RightShiftWithRoundingSigned(v * division_factor, division_shift);
114   const int64_t w = static_cast<int64_t>(params[3]) * params[4];
115   const int delta =
116       params[5] -
117       RightShiftWithRoundingSigned(w * division_factor, division_shift) -
118       (1 << kWarpedModelPrecisionBits);
119 
120   warp_params->alpha = GetShearParameter(alpha);
121   warp_params->beta = GetShearParameter(beta);
122   warp_params->gamma = GetShearParameter(gamma);
123   warp_params->delta = GetShearParameter(delta);
124   if ((4 * std::abs(warp_params->alpha) + 7 * std::abs(warp_params->beta) >=
125        (1 << kWarpedModelPrecisionBits)) ||
126       (4 * std::abs(warp_params->gamma) + 4 * std::abs(warp_params->delta) >=
127        (1 << kWarpedModelPrecisionBits))) {
128     return false;  // NOLINT (easier condition to understand).
129   }
130 
131   return true;
132 }
133 
WarpEstimation(const int num_samples,const int block_width4x4,const int block_height4x4,const int row4x4,const int column4x4,const MotionVector & mv,const int candidates[kMaxLeastSquaresSamples][4],GlobalMotion * const warp_params)134 bool WarpEstimation(const int num_samples, const int block_width4x4,
135                     const int block_height4x4, const int row4x4,
136                     const int column4x4, const MotionVector& mv,
137                     const int candidates[kMaxLeastSquaresSamples][4],
138                     GlobalMotion* const warp_params) {
139   // |a| fits into int32_t. To avoid cast to int64_t in the following
140   // computation, we declare |a| as int64_t.
141   int64_t a[2][2] = {};
142   int bx[2] = {};
143   int by[2] = {};
144 
145   // Note: for simplicity, the spec always uses absolute coordinates
146   // in the warp estimation process. subpixel_mid_x, subpixel_mid_y,
147   // and candidates are relative to the top left of the frame.
148   // In contrast, libaom uses a mixture of coordinate systems.
149   // In av1/common/warped_motion.c:find_affine_int(). The coordinate is relative
150   // to the top left of the block.
151   // mid_y/mid_x: the row/column coordinate of the center of the block.
152   const int mid_y = MultiplyBy4(row4x4) + MultiplyBy2(block_height4x4) - 1;
153   const int mid_x = MultiplyBy4(column4x4) + MultiplyBy2(block_width4x4) - 1;
154   const int subpixel_mid_y = MultiplyBy8(mid_y);
155   const int subpixel_mid_x = MultiplyBy8(mid_x);
156   const int reference_subpixel_mid_y =
157       subpixel_mid_y + mv.mv[MotionVector::kRow];
158   const int reference_subpixel_mid_x =
159       subpixel_mid_x + mv.mv[MotionVector::kColumn];
160 
161   for (int i = 0; i < num_samples; ++i) {
162     // candidates[][0] and candidates[][1] are the row/column coordinates of the
163     // sample point in this block, to the top left of the frame.
164     // candidates[][2] and candidates[][3] are the row/column coordinates of the
165     // sample point in this reference block, to the top left of the frame.
166     // sy/sx: the row/column coordinates of the sample point, with center of
167     // the block as origin.
168     const int sy = candidates[i][0] - subpixel_mid_y;
169     const int sx = candidates[i][1] - subpixel_mid_x;
170     // dy/dx: the row/column coordinates of the sample point in the reference
171     // block, with center of the reference block as origin.
172     const int dy = candidates[i][2] - reference_subpixel_mid_y;
173     const int dx = candidates[i][3] - reference_subpixel_mid_x;
174     if (std::abs(sx - dx) < kLargestMotionVectorDiff &&
175         std::abs(sy - dy) < kLargestMotionVectorDiff) {
176       a[0][0] += LeastSquareProduct(sx, sx) + 8;
177       a[0][1] += LeastSquareProduct(sx, sy) + 4;
178       a[1][1] += LeastSquareProduct(sy, sy) + 8;
179       bx[0] += LeastSquareProduct(sx, dx) + 8;
180       bx[1] += LeastSquareProduct(sy, dx) + 4;
181       by[0] += LeastSquareProduct(sx, dy) + 4;
182       by[1] += LeastSquareProduct(sy, dy) + 8;
183     }
184   }
185 
186   // a[0][1] == a[1][0], because the matrix is symmetric. We don't have to
187   // compute a[1][0].
188   const int64_t determinant = a[0][0] * a[1][1] - a[0][1] * a[0][1];
189   if (determinant == 0) return false;
190 
191   int16_t division_shift;
192   int16_t division_factor;
193   GenerateApproximateDivisor<int64_t>(determinant, &division_factor,
194                                       &division_shift);
195 
196   division_shift -= kWarpedModelPrecisionBits;
197 
198   const int64_t params_2 = a[1][1] * bx[0] - a[0][1] * bx[1];
199   const int64_t params_3 = -a[0][1] * bx[0] + a[0][0] * bx[1];
200   const int64_t params_4 = a[1][1] * by[0] - a[0][1] * by[1];
201   const int64_t params_5 = -a[0][1] * by[0] + a[0][0] * by[1];
202   auto* const params = warp_params->params;
203 
204   if (division_shift <= 0) {
205     division_factor <<= -division_shift;
206     params[2] = static_cast<int32_t>(params_2) * division_factor;
207     params[3] = static_cast<int32_t>(params_3) * division_factor;
208     params[4] = static_cast<int32_t>(params_4) * division_factor;
209     params[5] = static_cast<int32_t>(params_5) * division_factor;
210   } else {
211     params[2] = RightShiftWithRoundingSigned(params_2 * division_factor,
212                                              division_shift);
213     params[3] = RightShiftWithRoundingSigned(params_3 * division_factor,
214                                              division_shift);
215     params[4] = RightShiftWithRoundingSigned(params_4 * division_factor,
216                                              division_shift);
217     params[5] = RightShiftWithRoundingSigned(params_5 * division_factor,
218                                              division_shift);
219   }
220 
221   params[2] = DiagonalClamp(params[2]);
222   params[3] = NonDiagonalClamp(params[3]);
223   params[4] = NonDiagonalClamp(params[4]);
224   params[5] = DiagonalClamp(params[5]);
225 
226   const int vx =
227       mv.mv[MotionVector::kColumn] * (1 << (kWarpedModelPrecisionBits - 3)) -
228       (mid_x * (params[2] - (1 << kWarpedModelPrecisionBits)) +
229        mid_y * params[3]);
230   const int vy =
231       mv.mv[MotionVector::kRow] * (1 << (kWarpedModelPrecisionBits - 3)) -
232       (mid_x * params[4] +
233        mid_y * (params[5] - (1 << kWarpedModelPrecisionBits)));
234   params[0] =
235       Clip3(vx, -kWarpModelTranslationClamp, kWarpModelTranslationClamp - 1);
236   params[1] =
237       Clip3(vy, -kWarpModelTranslationClamp, kWarpModelTranslationClamp - 1);
238 
239   params[6] = 0;
240   params[7] = 0;
241   return true;
242 }
243 
244 }  // namespace libgav1
245