1 //===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass generates an entirely new schedule tree from the data dependences
10 // and iteration domains. The new schedule tree is computed in two steps:
11 //
12 // 1) The isl scheduling optimizer is run
13 //
14 // The isl scheduling optimizer creates a new schedule tree that maximizes
15 // parallelism and tileability and minimizes data-dependence distances. The
16 // algorithm used is a modified version of the ``Pluto'' algorithm:
17 //
18 //   U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
19 //   A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
20 //   In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
21 //   Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
22 //
23 // 2) A set of post-scheduling transformations is applied on the schedule tree.
24 //
25 // These optimizations include:
26 //
27 //  - Tiling of the innermost tilable bands
28 //  - Prevectorization - The choice of a possible outer loop that is strip-mined
29 //                       to the innermost level to enable inner-loop
30 //                       vectorization.
31 //  - Some optimizations for spatial locality are also planned.
32 //
33 // For a detailed description of the schedule tree itself please see section 6
34 // of:
35 //
36 // Polyhedral AST generation is more than scanning polyhedra
37 // Tobias Grosser, Sven Verdoolaege, Albert Cohen
38 // ACM Transactions on Programming Languages and Systems (TOPLAS),
39 // 37(4), July 2015
40 // http://www.grosser.es/#pub-polyhedral-AST-generation
41 //
42 // This publication also contains a detailed discussion of the different options
43 // for polyhedral loop unrolling, full/partial tile separation and other uses
44 // of the schedule tree.
45 //
46 //===----------------------------------------------------------------------===//
47 
48 #include "polly/ScheduleOptimizer.h"
49 #include "polly/CodeGen/CodeGeneration.h"
50 #include "polly/DependenceInfo.h"
51 #include "polly/LinkAllPasses.h"
52 #include "polly/Options.h"
53 #include "polly/ScheduleTreeTransform.h"
54 #include "polly/ScopInfo.h"
55 #include "polly/ScopPass.h"
56 #include "polly/Simplify.h"
57 #include "polly/Support/ISLOStream.h"
58 #include "llvm/ADT/Statistic.h"
59 #include "llvm/Analysis/TargetTransformInfo.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "isl/ctx.h"
66 #include "isl/options.h"
67 #include "isl/printer.h"
68 #include "isl/schedule.h"
69 #include "isl/schedule_node.h"
70 #include "isl/union_map.h"
71 #include "isl/union_set.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cmath>
75 #include <cstdint>
76 #include <cstdlib>
77 #include <string>
78 #include <vector>
79 
80 using namespace llvm;
81 using namespace polly;
82 
83 #define DEBUG_TYPE "polly-opt-isl"
84 
85 static cl::opt<std::string>
86     OptimizeDeps("polly-opt-optimize-only",
87                  cl::desc("Only a certain kind of dependences (all/raw)"),
88                  cl::Hidden, cl::init("all"), cl::ZeroOrMore,
89                  cl::cat(PollyCategory));
90 
91 static cl::opt<std::string>
92     SimplifyDeps("polly-opt-simplify-deps",
93                  cl::desc("Dependences should be simplified (yes/no)"),
94                  cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
95                  cl::cat(PollyCategory));
96 
97 static cl::opt<int> MaxConstantTerm(
98     "polly-opt-max-constant-term",
99     cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
100     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
101 
102 static cl::opt<int> MaxCoefficient(
103     "polly-opt-max-coefficient",
104     cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
105     cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
106 
107 static cl::opt<std::string> FusionStrategy(
108     "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
109     cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
110 
111 static cl::opt<std::string>
112     MaximizeBandDepth("polly-opt-maximize-bands",
113                       cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
114                       cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
115 
116 static cl::opt<std::string> OuterCoincidence(
117     "polly-opt-outer-coincidence",
118     cl::desc("Try to construct schedules where the outer member of each band "
119              "satisfies the coincidence constraints (yes/no)"),
120     cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
121 
122 static cl::opt<int> PrevectorWidth(
123     "polly-prevect-width",
124     cl::desc(
125         "The number of loop iterations to strip-mine for pre-vectorization"),
126     cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
127 
128 static cl::opt<bool> FirstLevelTiling("polly-tiling",
129                                       cl::desc("Enable loop tiling"),
130                                       cl::init(true), cl::ZeroOrMore,
131                                       cl::cat(PollyCategory));
132 
133 static cl::opt<int> LatencyVectorFma(
134     "polly-target-latency-vector-fma",
135     cl::desc("The minimal number of cycles between issuing two "
136              "dependent consecutive vector fused multiply-add "
137              "instructions."),
138     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
139 
140 static cl::opt<int> ThroughputVectorFma(
141     "polly-target-throughput-vector-fma",
142     cl::desc("A throughput of the processor floating-point arithmetic units "
143              "expressed in the number of vector fused multiply-add "
144              "instructions per clock cycle."),
145     cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
146 
147 // This option, along with --polly-target-2nd-cache-level-associativity,
148 // --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
149 // represent the parameters of the target cache, which do not have typical
150 // values that can be used by default. However, to apply the pattern matching
151 // optimizations, we use the values of the parameters of Intel Core i7-3820
152 // SandyBridge in case the parameters are not specified or not provided by the
153 // TargetTransformInfo.
154 static cl::opt<int> FirstCacheLevelAssociativity(
155     "polly-target-1st-cache-level-associativity",
156     cl::desc("The associativity of the first cache level."), cl::Hidden,
157     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
158 
159 static cl::opt<int> FirstCacheLevelDefaultAssociativity(
160     "polly-target-1st-cache-level-default-associativity",
161     cl::desc("The default associativity of the first cache level"
162              " (if not enough were provided by the TargetTransformInfo)."),
163     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
164 
165 static cl::opt<int> SecondCacheLevelAssociativity(
166     "polly-target-2nd-cache-level-associativity",
167     cl::desc("The associativity of the second cache level."), cl::Hidden,
168     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
169 
170 static cl::opt<int> SecondCacheLevelDefaultAssociativity(
171     "polly-target-2nd-cache-level-default-associativity",
172     cl::desc("The default associativity of the second cache level"
173              " (if not enough were provided by the TargetTransformInfo)."),
174     cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
175 
176 static cl::opt<int> FirstCacheLevelSize(
177     "polly-target-1st-cache-level-size",
178     cl::desc("The size of the first cache level specified in bytes."),
179     cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
180 
181 static cl::opt<int> FirstCacheLevelDefaultSize(
182     "polly-target-1st-cache-level-default-size",
183     cl::desc("The default size of the first cache level specified in bytes"
184              " (if not enough were provided by the TargetTransformInfo)."),
185     cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
186 
187 static cl::opt<int> SecondCacheLevelSize(
188     "polly-target-2nd-cache-level-size",
189     cl::desc("The size of the second level specified in bytes."), cl::Hidden,
190     cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
191 
192 static cl::opt<int> SecondCacheLevelDefaultSize(
193     "polly-target-2nd-cache-level-default-size",
194     cl::desc("The default size of the second cache level specified in bytes"
195              " (if not enough were provided by the TargetTransformInfo)."),
196     cl::Hidden, cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
197 
198 static cl::opt<int> VectorRegisterBitwidth(
199     "polly-target-vector-register-bitwidth",
200     cl::desc("The size in bits of a vector register (if not set, this "
201              "information is taken from LLVM's target information."),
202     cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
203 
204 static cl::opt<int> FirstLevelDefaultTileSize(
205     "polly-default-tile-size",
206     cl::desc("The default tile size (if not enough were provided by"
207              " --polly-tile-sizes)"),
208     cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
209 
210 static cl::list<int>
211     FirstLevelTileSizes("polly-tile-sizes",
212                         cl::desc("A tile size for each loop dimension, filled "
213                                  "with --polly-default-tile-size"),
214                         cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
215                         cl::cat(PollyCategory));
216 
217 static cl::opt<bool>
218     SecondLevelTiling("polly-2nd-level-tiling",
219                       cl::desc("Enable a 2nd level loop of loop tiling"),
220                       cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
221 
222 static cl::opt<int> SecondLevelDefaultTileSize(
223     "polly-2nd-level-default-tile-size",
224     cl::desc("The default 2nd-level tile size (if not enough were provided by"
225              " --polly-2nd-level-tile-sizes)"),
226     cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
227 
228 static cl::list<int>
229     SecondLevelTileSizes("polly-2nd-level-tile-sizes",
230                          cl::desc("A tile size for each loop dimension, filled "
231                                   "with --polly-default-tile-size"),
232                          cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
233                          cl::cat(PollyCategory));
234 
235 static cl::opt<bool> RegisterTiling("polly-register-tiling",
236                                     cl::desc("Enable register tiling"),
237                                     cl::init(false), cl::ZeroOrMore,
238                                     cl::cat(PollyCategory));
239 
240 static cl::opt<int> RegisterDefaultTileSize(
241     "polly-register-tiling-default-tile-size",
242     cl::desc("The default register tile size (if not enough were provided by"
243              " --polly-register-tile-sizes)"),
244     cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
245 
246 static cl::opt<int> PollyPatternMatchingNcQuotient(
247     "polly-pattern-matching-nc-quotient",
248     cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
249              "macro-kernel, by Nr, the parameter of the micro-kernel"),
250     cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
251 
252 static cl::list<int>
253     RegisterTileSizes("polly-register-tile-sizes",
254                       cl::desc("A tile size for each loop dimension, filled "
255                                "with --polly-register-tile-size"),
256                       cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
257                       cl::cat(PollyCategory));
258 
259 static cl::opt<bool>
260     PMBasedOpts("polly-pattern-matching-based-opts",
261                 cl::desc("Perform optimizations based on pattern matching"),
262                 cl::init(true), cl::ZeroOrMore, cl::cat(PollyCategory));
263 
264 static cl::opt<bool> OptimizedScops(
265     "polly-optimized-scops",
266     cl::desc("Polly - Dump polyhedral description of Scops optimized with "
267              "the isl scheduling optimizer and the set of post-scheduling "
268              "transformations is applied on the schedule tree"),
269     cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
270 
271 STATISTIC(ScopsProcessed, "Number of scops processed");
272 STATISTIC(ScopsRescheduled, "Number of scops rescheduled");
273 STATISTIC(ScopsOptimized, "Number of scops optimized");
274 
275 STATISTIC(NumAffineLoopsOptimized, "Number of affine loops optimized");
276 STATISTIC(NumBoxedLoopsOptimized, "Number of boxed loops optimized");
277 
278 #define THREE_STATISTICS(VARNAME, DESC)                                        \
279   static Statistic VARNAME[3] = {                                              \
280       {DEBUG_TYPE, #VARNAME "0", DESC " (original)"},                          \
281       {DEBUG_TYPE, #VARNAME "1", DESC " (after scheduler)"},                   \
282       {DEBUG_TYPE, #VARNAME "2", DESC " (after optimizer)"}}
283 
284 THREE_STATISTICS(NumBands, "Number of bands");
285 THREE_STATISTICS(NumBandMembers, "Number of band members");
286 THREE_STATISTICS(NumCoincident, "Number of coincident band members");
287 THREE_STATISTICS(NumPermutable, "Number of permutable bands");
288 THREE_STATISTICS(NumFilters, "Number of filter nodes");
289 THREE_STATISTICS(NumExtension, "Number of extension nodes");
290 
291 STATISTIC(FirstLevelTileOpts, "Number of first level tiling applied");
292 STATISTIC(SecondLevelTileOpts, "Number of second level tiling applied");
293 STATISTIC(RegisterTileOpts, "Number of register tiling applied");
294 STATISTIC(PrevectOpts, "Number of strip-mining for prevectorization applied");
295 STATISTIC(MatMulOpts,
296           "Number of matrix multiplication patterns detected and optimized");
297 
298 /// Create an isl::union_set, which describes the isolate option based on
299 /// IsolateDomain.
300 ///
301 /// @param IsolateDomain An isl::set whose @p OutDimsNum last dimensions should
302 ///                      belong to the current band node.
303 /// @param OutDimsNum    A number of dimensions that should belong to
304 ///                      the current band node.
getIsolateOptions(isl::set IsolateDomain,unsigned OutDimsNum)305 static isl::union_set getIsolateOptions(isl::set IsolateDomain,
306                                         unsigned OutDimsNum) {
307   unsigned Dims = IsolateDomain.dim(isl::dim::set);
308   assert(OutDimsNum <= Dims &&
309          "The isl::set IsolateDomain is used to describe the range of schedule "
310          "dimensions values, which should be isolated. Consequently, the "
311          "number of its dimensions should be greater than or equal to the "
312          "number of the schedule dimensions.");
313   isl::map IsolateRelation = isl::map::from_domain(IsolateDomain);
314   IsolateRelation = IsolateRelation.move_dims(isl::dim::out, 0, isl::dim::in,
315                                               Dims - OutDimsNum, OutDimsNum);
316   isl::set IsolateOption = IsolateRelation.wrap();
317   isl::id Id = isl::id::alloc(IsolateOption.get_ctx(), "isolate", nullptr);
318   IsolateOption = IsolateOption.set_tuple_id(Id);
319   return isl::union_set(IsolateOption);
320 }
321 
322 namespace {
323 /// Create an isl::union_set, which describes the specified option for the
324 /// dimension of the current node.
325 ///
326 /// @param Ctx    An isl::ctx, which is used to create the isl::union_set.
327 /// @param Option The name of the option.
getDimOptions(isl::ctx Ctx,const char * Option)328 isl::union_set getDimOptions(isl::ctx Ctx, const char *Option) {
329   isl::space Space(Ctx, 0, 1);
330   auto DimOption = isl::set::universe(Space);
331   auto Id = isl::id::alloc(Ctx, Option, nullptr);
332   DimOption = DimOption.set_tuple_id(Id);
333   return isl::union_set(DimOption);
334 }
335 } // namespace
336 
337 /// Create an isl::union_set, which describes the option of the form
338 /// [isolate[] -> unroll[x]].
339 ///
340 /// @param Ctx An isl::ctx, which is used to create the isl::union_set.
getUnrollIsolatedSetOptions(isl::ctx Ctx)341 static isl::union_set getUnrollIsolatedSetOptions(isl::ctx Ctx) {
342   isl::space Space = isl::space(Ctx, 0, 0, 1);
343   isl::map UnrollIsolatedSetOption = isl::map::universe(Space);
344   isl::id DimInId = isl::id::alloc(Ctx, "isolate", nullptr);
345   isl::id DimOutId = isl::id::alloc(Ctx, "unroll", nullptr);
346   UnrollIsolatedSetOption =
347       UnrollIsolatedSetOption.set_tuple_id(isl::dim::in, DimInId);
348   UnrollIsolatedSetOption =
349       UnrollIsolatedSetOption.set_tuple_id(isl::dim::out, DimOutId);
350   return UnrollIsolatedSetOption.wrap();
351 }
352 
353 /// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
354 ///
355 /// @param Set         A set, which should be modified.
356 /// @param VectorWidth A parameter, which determines the constraint.
addExtentConstraints(isl::set Set,int VectorWidth)357 static isl::set addExtentConstraints(isl::set Set, int VectorWidth) {
358   unsigned Dims = Set.dim(isl::dim::set);
359   isl::space Space = Set.get_space();
360   isl::local_space LocalSpace = isl::local_space(Space);
361   isl::constraint ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
362   ExtConstr = ExtConstr.set_constant_si(0);
363   ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, 1);
364   Set = Set.add_constraint(ExtConstr);
365   ExtConstr = isl::constraint::alloc_inequality(LocalSpace);
366   ExtConstr = ExtConstr.set_constant_si(VectorWidth - 1);
367   ExtConstr = ExtConstr.set_coefficient_si(isl::dim::set, Dims - 1, -1);
368   return Set.add_constraint(ExtConstr);
369 }
370 
getPartialTilePrefixes(isl::set ScheduleRange,int VectorWidth)371 isl::set getPartialTilePrefixes(isl::set ScheduleRange, int VectorWidth) {
372   unsigned Dims = ScheduleRange.dim(isl::dim::set);
373   isl::set LoopPrefixes =
374       ScheduleRange.drop_constraints_involving_dims(isl::dim::set, Dims - 1, 1);
375   auto ExtentPrefixes = addExtentConstraints(LoopPrefixes, VectorWidth);
376   isl::set BadPrefixes = ExtentPrefixes.subtract(ScheduleRange);
377   BadPrefixes = BadPrefixes.project_out(isl::dim::set, Dims - 1, 1);
378   LoopPrefixes = LoopPrefixes.project_out(isl::dim::set, Dims - 1, 1);
379   return LoopPrefixes.subtract(BadPrefixes);
380 }
381 
382 isl::schedule_node
isolateFullPartialTiles(isl::schedule_node Node,int VectorWidth)383 ScheduleTreeOptimizer::isolateFullPartialTiles(isl::schedule_node Node,
384                                                int VectorWidth) {
385   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
386   Node = Node.child(0).child(0);
387   isl::union_map SchedRelUMap = Node.get_prefix_schedule_relation();
388   isl::union_set ScheduleRangeUSet = SchedRelUMap.range();
389   isl::set ScheduleRange{ScheduleRangeUSet};
390   isl::set IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
391   auto AtomicOption = getDimOptions(IsolateDomain.get_ctx(), "atomic");
392   isl::union_set IsolateOption = getIsolateOptions(IsolateDomain, 1);
393   Node = Node.parent().parent();
394   isl::union_set Options = IsolateOption.unite(AtomicOption);
395   Node = Node.band_set_ast_build_options(Options);
396   return Node;
397 }
398 
prevectSchedBand(isl::schedule_node Node,unsigned DimToVectorize,int VectorWidth)399 isl::schedule_node ScheduleTreeOptimizer::prevectSchedBand(
400     isl::schedule_node Node, unsigned DimToVectorize, int VectorWidth) {
401   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
402 
403   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
404   auto ScheduleDimensions = Space.dim(isl::dim::set);
405   assert(DimToVectorize < ScheduleDimensions);
406 
407   if (DimToVectorize > 0) {
408     Node = isl::manage(
409         isl_schedule_node_band_split(Node.release(), DimToVectorize));
410     Node = Node.child(0);
411   }
412   if (DimToVectorize < ScheduleDimensions - 1)
413     Node = isl::manage(isl_schedule_node_band_split(Node.release(), 1));
414   Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
415   auto Sizes = isl::multi_val::zero(Space);
416   Sizes = Sizes.set_val(0, isl::val(Node.get_ctx(), VectorWidth));
417   Node =
418       isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
419   Node = isolateFullPartialTiles(Node, VectorWidth);
420   Node = Node.child(0);
421   // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
422   // we will have troubles to match it in the backend.
423   Node = Node.band_set_ast_build_options(
424       isl::union_set(Node.get_ctx(), "{ unroll[x]: 1 = 0 }"));
425   Node = isl::manage(isl_schedule_node_band_sink(Node.release()));
426   Node = Node.child(0);
427   if (isl_schedule_node_get_type(Node.get()) == isl_schedule_node_leaf)
428     Node = Node.parent();
429   auto LoopMarker = isl::id::alloc(Node.get_ctx(), "SIMD", nullptr);
430   PrevectOpts++;
431   return Node.insert_mark(LoopMarker);
432 }
433 
tileNode(isl::schedule_node Node,const char * Identifier,ArrayRef<int> TileSizes,int DefaultTileSize)434 isl::schedule_node ScheduleTreeOptimizer::tileNode(isl::schedule_node Node,
435                                                    const char *Identifier,
436                                                    ArrayRef<int> TileSizes,
437                                                    int DefaultTileSize) {
438   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
439   auto Dims = Space.dim(isl::dim::set);
440   auto Sizes = isl::multi_val::zero(Space);
441   std::string IdentifierString(Identifier);
442   for (unsigned i = 0; i < Dims; i++) {
443     auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
444     Sizes = Sizes.set_val(i, isl::val(Node.get_ctx(), tileSize));
445   }
446   auto TileLoopMarkerStr = IdentifierString + " - Tiles";
447   auto TileLoopMarker =
448       isl::id::alloc(Node.get_ctx(), TileLoopMarkerStr, nullptr);
449   Node = Node.insert_mark(TileLoopMarker);
450   Node = Node.child(0);
451   Node =
452       isl::manage(isl_schedule_node_band_tile(Node.release(), Sizes.release()));
453   Node = Node.child(0);
454   auto PointLoopMarkerStr = IdentifierString + " - Points";
455   auto PointLoopMarker =
456       isl::id::alloc(Node.get_ctx(), PointLoopMarkerStr, nullptr);
457   Node = Node.insert_mark(PointLoopMarker);
458   return Node.child(0);
459 }
460 
applyRegisterTiling(isl::schedule_node Node,ArrayRef<int> TileSizes,int DefaultTileSize)461 isl::schedule_node ScheduleTreeOptimizer::applyRegisterTiling(
462     isl::schedule_node Node, ArrayRef<int> TileSizes, int DefaultTileSize) {
463   Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
464   auto Ctx = Node.get_ctx();
465   return Node.band_set_ast_build_options(isl::union_set(Ctx, "{unroll[x]}"));
466 }
467 
isSimpleInnermostBand(const isl::schedule_node & Node)468 static bool isSimpleInnermostBand(const isl::schedule_node &Node) {
469   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
470   assert(isl_schedule_node_n_children(Node.get()) == 1);
471 
472   auto ChildType = isl_schedule_node_get_type(Node.child(0).get());
473 
474   if (ChildType == isl_schedule_node_leaf)
475     return true;
476 
477   if (ChildType != isl_schedule_node_sequence)
478     return false;
479 
480   auto Sequence = Node.child(0);
481 
482   for (int c = 0, nc = isl_schedule_node_n_children(Sequence.get()); c < nc;
483        ++c) {
484     auto Child = Sequence.child(c);
485     if (isl_schedule_node_get_type(Child.get()) != isl_schedule_node_filter)
486       return false;
487     if (isl_schedule_node_get_type(Child.child(0).get()) !=
488         isl_schedule_node_leaf)
489       return false;
490   }
491   return true;
492 }
493 
isTileableBandNode(isl::schedule_node Node)494 bool ScheduleTreeOptimizer::isTileableBandNode(isl::schedule_node Node) {
495   if (isl_schedule_node_get_type(Node.get()) != isl_schedule_node_band)
496     return false;
497 
498   if (isl_schedule_node_n_children(Node.get()) != 1)
499     return false;
500 
501   if (!isl_schedule_node_band_get_permutable(Node.get()))
502     return false;
503 
504   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
505   auto Dims = Space.dim(isl::dim::set);
506 
507   if (Dims <= 1)
508     return false;
509 
510   return isSimpleInnermostBand(Node);
511 }
512 
513 __isl_give isl::schedule_node
standardBandOpts(isl::schedule_node Node,void * User)514 ScheduleTreeOptimizer::standardBandOpts(isl::schedule_node Node, void *User) {
515   if (FirstLevelTiling) {
516     Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
517                     FirstLevelDefaultTileSize);
518     FirstLevelTileOpts++;
519   }
520 
521   if (SecondLevelTiling) {
522     Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
523                     SecondLevelDefaultTileSize);
524     SecondLevelTileOpts++;
525   }
526 
527   if (RegisterTiling) {
528     Node =
529         applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
530     RegisterTileOpts++;
531   }
532 
533   if (PollyVectorizerChoice == VECTORIZER_NONE)
534     return Node;
535 
536   auto Space = isl::manage(isl_schedule_node_band_get_space(Node.get()));
537   auto Dims = Space.dim(isl::dim::set);
538 
539   for (int i = Dims - 1; i >= 0; i--)
540     if (Node.band_member_get_coincident(i)) {
541       Node = prevectSchedBand(Node, i, PrevectorWidth);
542       break;
543     }
544 
545   return Node;
546 }
547 
548 /// Permute the two dimensions of the isl map.
549 ///
550 /// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
551 /// have type @p DimType.
552 ///
553 /// @param Map     The isl map to be modified.
554 /// @param DimType The type of the dimensions.
555 /// @param DstPos  The first dimension.
556 /// @param SrcPos  The second dimension.
557 /// @return        The modified map.
permuteDimensions(isl::map Map,isl::dim DimType,unsigned DstPos,unsigned SrcPos)558 isl::map permuteDimensions(isl::map Map, isl::dim DimType, unsigned DstPos,
559                            unsigned SrcPos) {
560   assert(DstPos < Map.dim(DimType) && SrcPos < Map.dim(DimType));
561   if (DstPos == SrcPos)
562     return Map;
563   isl::id DimId;
564   if (Map.has_tuple_id(DimType))
565     DimId = Map.get_tuple_id(DimType);
566   auto FreeDim = DimType == isl::dim::in ? isl::dim::out : isl::dim::in;
567   isl::id FreeDimId;
568   if (Map.has_tuple_id(FreeDim))
569     FreeDimId = Map.get_tuple_id(FreeDim);
570   auto MaxDim = std::max(DstPos, SrcPos);
571   auto MinDim = std::min(DstPos, SrcPos);
572   Map = Map.move_dims(FreeDim, 0, DimType, MaxDim, 1);
573   Map = Map.move_dims(FreeDim, 0, DimType, MinDim, 1);
574   Map = Map.move_dims(DimType, MinDim, FreeDim, 1, 1);
575   Map = Map.move_dims(DimType, MaxDim, FreeDim, 0, 1);
576   if (DimId)
577     Map = Map.set_tuple_id(DimType, DimId);
578   if (FreeDimId)
579     Map = Map.set_tuple_id(FreeDim, FreeDimId);
580   return Map;
581 }
582 
583 /// Check the form of the access relation.
584 ///
585 /// Check that the access relation @p AccMap has the form M[i][j], where i
586 /// is a @p FirstPos and j is a @p SecondPos.
587 ///
588 /// @param AccMap    The access relation to be checked.
589 /// @param FirstPos  The index of the input dimension that is mapped to
590 ///                  the first output dimension.
591 /// @param SecondPos The index of the input dimension that is mapped to the
592 ///                  second output dimension.
593 /// @return          True in case @p AccMap has the expected form and false,
594 ///                  otherwise.
isMatMulOperandAcc(isl::set Domain,isl::map AccMap,int & FirstPos,int & SecondPos)595 static bool isMatMulOperandAcc(isl::set Domain, isl::map AccMap, int &FirstPos,
596                                int &SecondPos) {
597   isl::space Space = AccMap.get_space();
598   isl::map Universe = isl::map::universe(Space);
599 
600   if (Space.dim(isl::dim::out) != 2)
601     return false;
602 
603   // MatMul has the form:
604   // for (i = 0; i < N; i++)
605   //   for (j = 0; j < M; j++)
606   //     for (k = 0; k < P; k++)
607   //       C[i, j] += A[i, k] * B[k, j]
608   //
609   // Permutation of three outer loops: 3! = 6 possibilities.
610   int FirstDims[] = {0, 0, 1, 1, 2, 2};
611   int SecondDims[] = {1, 2, 2, 0, 0, 1};
612   for (int i = 0; i < 6; i += 1) {
613     auto PossibleMatMul =
614         Universe.equate(isl::dim::in, FirstDims[i], isl::dim::out, 0)
615             .equate(isl::dim::in, SecondDims[i], isl::dim::out, 1);
616 
617     AccMap = AccMap.intersect_domain(Domain);
618     PossibleMatMul = PossibleMatMul.intersect_domain(Domain);
619 
620     // If AccMap spans entire domain (Non-partial write),
621     // compute FirstPos and SecondPos.
622     // If AccMap != PossibleMatMul here (the two maps have been gisted at
623     // this point), it means that the writes are not complete, or in other
624     // words, it is a Partial write and Partial writes must be rejected.
625     if (AccMap.is_equal(PossibleMatMul)) {
626       if (FirstPos != -1 && FirstPos != FirstDims[i])
627         continue;
628       FirstPos = FirstDims[i];
629       if (SecondPos != -1 && SecondPos != SecondDims[i])
630         continue;
631       SecondPos = SecondDims[i];
632       return true;
633     }
634   }
635 
636   return false;
637 }
638 
639 /// Does the memory access represent a non-scalar operand of the matrix
640 /// multiplication.
641 ///
642 /// Check that the memory access @p MemAccess is the read access to a non-scalar
643 /// operand of the matrix multiplication or its result.
644 ///
645 /// @param MemAccess The memory access to be checked.
646 /// @param MMI       Parameters of the matrix multiplication operands.
647 /// @return          True in case the memory access represents the read access
648 ///                  to a non-scalar operand of the matrix multiplication and
649 ///                  false, otherwise.
isMatMulNonScalarReadAccess(MemoryAccess * MemAccess,MatMulInfoTy & MMI)650 static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
651                                         MatMulInfoTy &MMI) {
652   if (!MemAccess->isLatestArrayKind() || !MemAccess->isRead())
653     return false;
654   auto AccMap = MemAccess->getLatestAccessRelation();
655   isl::set StmtDomain = MemAccess->getStatement()->getDomain();
656   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.j) && !MMI.ReadFromC) {
657     MMI.ReadFromC = MemAccess;
658     return true;
659   }
660   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.i, MMI.k) && !MMI.A) {
661     MMI.A = MemAccess;
662     return true;
663   }
664   if (isMatMulOperandAcc(StmtDomain, AccMap, MMI.k, MMI.j) && !MMI.B) {
665     MMI.B = MemAccess;
666     return true;
667   }
668   return false;
669 }
670 
671 /// Check accesses to operands of the matrix multiplication.
672 ///
673 /// Check that accesses of the SCoP statement, which corresponds to
674 /// the partial schedule @p PartialSchedule, are scalar in terms of loops
675 /// containing the matrix multiplication, in case they do not represent
676 /// accesses to the non-scalar operands of the matrix multiplication or
677 /// its result.
678 ///
679 /// @param  PartialSchedule The partial schedule of the SCoP statement.
680 /// @param  MMI             Parameters of the matrix multiplication operands.
681 /// @return                 True in case the corresponding SCoP statement
682 ///                         represents matrix multiplication and false,
683 ///                         otherwise.
containsOnlyMatrMultAcc(isl::map PartialSchedule,MatMulInfoTy & MMI)684 static bool containsOnlyMatrMultAcc(isl::map PartialSchedule,
685                                     MatMulInfoTy &MMI) {
686   auto InputDimId = PartialSchedule.get_tuple_id(isl::dim::in);
687   auto *Stmt = static_cast<ScopStmt *>(InputDimId.get_user());
688   unsigned OutDimNum = PartialSchedule.dim(isl::dim::out);
689   assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
690                           "and, consequently, the corresponding scheduling "
691                           "functions have at least three dimensions.");
692   auto MapI =
693       permuteDimensions(PartialSchedule, isl::dim::out, MMI.i, OutDimNum - 1);
694   auto MapJ =
695       permuteDimensions(PartialSchedule, isl::dim::out, MMI.j, OutDimNum - 1);
696   auto MapK =
697       permuteDimensions(PartialSchedule, isl::dim::out, MMI.k, OutDimNum - 1);
698 
699   auto Accesses = getAccessesInOrder(*Stmt);
700   for (auto *MemA = Accesses.begin(); MemA != Accesses.end() - 1; MemA++) {
701     auto *MemAccessPtr = *MemA;
702     if (MemAccessPtr->isLatestArrayKind() && MemAccessPtr != MMI.WriteToC &&
703         !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
704         !(MemAccessPtr->isStrideZero(MapI)) &&
705         MemAccessPtr->isStrideZero(MapJ) && MemAccessPtr->isStrideZero(MapK))
706       return false;
707   }
708   return true;
709 }
710 
711 /// Check for dependencies corresponding to the matrix multiplication.
712 ///
713 /// Check that there is only true dependence of the form
714 /// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
715 /// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
716 /// to the dependency produced by the matrix multiplication.
717 ///
718 /// @param  Schedule The schedule of the SCoP statement.
719 /// @param  D The SCoP dependencies.
720 /// @param  Pos The parameter to describe an acceptable true dependence.
721 ///             In case it has a negative value, try to determine its
722 ///             acceptable value.
723 /// @return True in case dependencies correspond to the matrix multiplication
724 ///         and false, otherwise.
containsOnlyMatMulDep(isl::map Schedule,const Dependences * D,int & Pos)725 static bool containsOnlyMatMulDep(isl::map Schedule, const Dependences *D,
726                                   int &Pos) {
727   isl::union_map Dep = D->getDependences(Dependences::TYPE_RAW);
728   isl::union_map Red = D->getDependences(Dependences::TYPE_RED);
729   if (Red)
730     Dep = Dep.unite(Red);
731   auto DomainSpace = Schedule.get_space().domain();
732   auto Space = DomainSpace.map_from_domain_and_range(DomainSpace);
733   auto Deltas = Dep.extract_map(Space).deltas();
734   int DeltasDimNum = Deltas.dim(isl::dim::set);
735   for (int i = 0; i < DeltasDimNum; i++) {
736     auto Val = Deltas.plain_get_val_if_fixed(isl::dim::set, i);
737     Pos = Pos < 0 && Val.is_one() ? i : Pos;
738     if (Val.is_nan() || !(Val.is_zero() || (i == Pos && Val.is_one())))
739       return false;
740   }
741   if (DeltasDimNum == 0 || Pos < 0)
742     return false;
743   return true;
744 }
745 
746 /// Check if the SCoP statement could probably be optimized with analytical
747 /// modeling.
748 ///
749 /// containsMatrMult tries to determine whether the following conditions
750 /// are true:
751 /// 1. The last memory access modeling an array, MA1, represents writing to
752 ///    memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
753 ///    S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
754 ///    under consideration.
755 /// 2. There is only one loop-carried true dependency, and it has the
756 ///    form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
757 ///    loop-carried or anti dependencies.
758 /// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
759 ///    reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
760 ///    S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
761 ///    and all memory accesses of the SCoP that are different from MA1, MA2,
762 ///    MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
763 ///    of loops i1, i2 and i3.
764 ///
765 /// @param PartialSchedule The PartialSchedule that contains a SCoP statement
766 ///        to check.
767 /// @D     The SCoP dependencies.
768 /// @MMI   Parameters of the matrix multiplication operands.
containsMatrMult(isl::map PartialSchedule,const Dependences * D,MatMulInfoTy & MMI)769 static bool containsMatrMult(isl::map PartialSchedule, const Dependences *D,
770                              MatMulInfoTy &MMI) {
771   auto InputDimsId = PartialSchedule.get_tuple_id(isl::dim::in);
772   auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
773   if (Stmt->size() <= 1)
774     return false;
775 
776   auto Accesses = getAccessesInOrder(*Stmt);
777   for (auto *MemA = Accesses.end() - 1; MemA != Accesses.begin(); MemA--) {
778     auto *MemAccessPtr = *MemA;
779     if (!MemAccessPtr->isLatestArrayKind())
780       continue;
781     if (!MemAccessPtr->isWrite())
782       return false;
783     auto AccMap = MemAccessPtr->getLatestAccessRelation();
784     if (!isMatMulOperandAcc(Stmt->getDomain(), AccMap, MMI.i, MMI.j))
785       return false;
786     MMI.WriteToC = MemAccessPtr;
787     break;
788   }
789 
790   if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
791     return false;
792 
793   if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
794     return false;
795 
796   if (!MMI.A || !MMI.B || !MMI.ReadFromC)
797     return false;
798   return true;
799 }
800 
801 /// Permute two dimensions of the band node.
802 ///
803 /// Permute FirstDim and SecondDim dimensions of the Node.
804 ///
805 /// @param Node The band node to be modified.
806 /// @param FirstDim The first dimension to be permuted.
807 /// @param SecondDim The second dimension to be permuted.
permuteBandNodeDimensions(isl::schedule_node Node,unsigned FirstDim,unsigned SecondDim)808 static isl::schedule_node permuteBandNodeDimensions(isl::schedule_node Node,
809                                                     unsigned FirstDim,
810                                                     unsigned SecondDim) {
811   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band &&
812          (unsigned)isl_schedule_node_band_n_member(Node.get()) >
813              std::max(FirstDim, SecondDim));
814   auto PartialSchedule =
815       isl::manage(isl_schedule_node_band_get_partial_schedule(Node.get()));
816   auto PartialScheduleFirstDim = PartialSchedule.get_union_pw_aff(FirstDim);
817   auto PartialScheduleSecondDim = PartialSchedule.get_union_pw_aff(SecondDim);
818   PartialSchedule =
819       PartialSchedule.set_union_pw_aff(SecondDim, PartialScheduleFirstDim);
820   PartialSchedule =
821       PartialSchedule.set_union_pw_aff(FirstDim, PartialScheduleSecondDim);
822   Node = isl::manage(isl_schedule_node_delete(Node.release()));
823   return Node.insert_partial_schedule(PartialSchedule);
824 }
825 
createMicroKernel(isl::schedule_node Node,MicroKernelParamsTy MicroKernelParams)826 isl::schedule_node ScheduleTreeOptimizer::createMicroKernel(
827     isl::schedule_node Node, MicroKernelParamsTy MicroKernelParams) {
828   Node = applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr},
829                              1);
830   Node = Node.parent().parent();
831   return permuteBandNodeDimensions(Node, 0, 1).child(0).child(0);
832 }
833 
createMacroKernel(isl::schedule_node Node,MacroKernelParamsTy MacroKernelParams)834 isl::schedule_node ScheduleTreeOptimizer::createMacroKernel(
835     isl::schedule_node Node, MacroKernelParamsTy MacroKernelParams) {
836   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
837   if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
838       MacroKernelParams.Kc == 1)
839     return Node;
840   int DimOutNum = isl_schedule_node_band_n_member(Node.get());
841   std::vector<int> TileSizes(DimOutNum, 1);
842   TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
843   TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
844   TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
845   Node = tileNode(Node, "1st level tiling", TileSizes, 1);
846   Node = Node.parent().parent();
847   Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
848   Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
849 
850   // Mark the outermost loop as parallelizable.
851   Node = Node.band_member_set_coincident(0, true);
852 
853   return Node.child(0).child(0);
854 }
855 
856 /// Get the size of the widest type of the matrix multiplication operands
857 /// in bytes, including alignment padding.
858 ///
859 /// @param MMI Parameters of the matrix multiplication operands.
860 /// @return The size of the widest type of the matrix multiplication operands
861 ///         in bytes, including alignment padding.
getMatMulAlignTypeSize(MatMulInfoTy MMI)862 static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
863   auto *S = MMI.A->getStatement()->getParent();
864   auto &DL = S->getFunction().getParent()->getDataLayout();
865   auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
866   auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
867   auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
868   return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
869 }
870 
871 /// Get the size of the widest type of the matrix multiplication operands
872 /// in bits.
873 ///
874 /// @param MMI Parameters of the matrix multiplication operands.
875 /// @return The size of the widest type of the matrix multiplication operands
876 ///         in bits.
getMatMulTypeSize(MatMulInfoTy MMI)877 static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
878   auto *S = MMI.A->getStatement()->getParent();
879   auto &DL = S->getFunction().getParent()->getDataLayout();
880   auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
881   auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
882   auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
883   return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
884 }
885 
886 /// Get parameters of the BLIS micro kernel.
887 ///
888 /// We choose the Mr and Nr parameters of the micro kernel to be large enough
889 /// such that no stalls caused by the combination of latencies and dependencies
890 /// are introduced during the updates of the resulting matrix of the matrix
891 /// multiplication. However, they should also be as small as possible to
892 /// release more registers for entries of multiplied matrices.
893 ///
894 /// @param TTI Target Transform Info.
895 /// @param MMI Parameters of the matrix multiplication operands.
896 /// @return The structure of type MicroKernelParamsTy.
897 /// @see MicroKernelParamsTy
898 static struct MicroKernelParamsTy
getMicroKernelParams(const TargetTransformInfo * TTI,MatMulInfoTy MMI)899 getMicroKernelParams(const TargetTransformInfo *TTI, MatMulInfoTy MMI) {
900   assert(TTI && "The target transform info should be provided.");
901 
902   // Nvec - Number of double-precision floating-point numbers that can be hold
903   // by a vector register. Use 2 by default.
904   long RegisterBitwidth = VectorRegisterBitwidth;
905 
906   if (RegisterBitwidth == -1)
907     RegisterBitwidth = TTI->getRegisterBitWidth(true);
908   auto ElementSize = getMatMulTypeSize(MMI);
909   assert(ElementSize > 0 && "The element size of the matrix multiplication "
910                             "operands should be greater than zero.");
911   auto Nvec = RegisterBitwidth / ElementSize;
912   if (Nvec == 0)
913     Nvec = 2;
914   int Nr = ceil(sqrt((double)(Nvec * LatencyVectorFma * ThroughputVectorFma)) /
915                 Nvec) *
916            Nvec;
917   int Mr = ceil((double)(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr));
918   return {Mr, Nr};
919 }
920 
921 namespace {
922 /// Determine parameters of the target cache.
923 ///
924 /// @param TTI Target Transform Info.
getTargetCacheParameters(const llvm::TargetTransformInfo * TTI)925 void getTargetCacheParameters(const llvm::TargetTransformInfo *TTI) {
926   auto L1DCache = llvm::TargetTransformInfo::CacheLevel::L1D;
927   auto L2DCache = llvm::TargetTransformInfo::CacheLevel::L2D;
928   if (FirstCacheLevelSize == -1) {
929     if (TTI->getCacheSize(L1DCache).hasValue())
930       FirstCacheLevelSize = TTI->getCacheSize(L1DCache).getValue();
931     else
932       FirstCacheLevelSize = static_cast<int>(FirstCacheLevelDefaultSize);
933   }
934   if (SecondCacheLevelSize == -1) {
935     if (TTI->getCacheSize(L2DCache).hasValue())
936       SecondCacheLevelSize = TTI->getCacheSize(L2DCache).getValue();
937     else
938       SecondCacheLevelSize = static_cast<int>(SecondCacheLevelDefaultSize);
939   }
940   if (FirstCacheLevelAssociativity == -1) {
941     if (TTI->getCacheAssociativity(L1DCache).hasValue())
942       FirstCacheLevelAssociativity =
943           TTI->getCacheAssociativity(L1DCache).getValue();
944     else
945       FirstCacheLevelAssociativity =
946           static_cast<int>(FirstCacheLevelDefaultAssociativity);
947   }
948   if (SecondCacheLevelAssociativity == -1) {
949     if (TTI->getCacheAssociativity(L2DCache).hasValue())
950       SecondCacheLevelAssociativity =
951           TTI->getCacheAssociativity(L2DCache).getValue();
952     else
953       SecondCacheLevelAssociativity =
954           static_cast<int>(SecondCacheLevelDefaultAssociativity);
955   }
956 }
957 } // namespace
958 
959 /// Get parameters of the BLIS macro kernel.
960 ///
961 /// During the computation of matrix multiplication, blocks of partitioned
962 /// matrices are mapped to different layers of the memory hierarchy.
963 /// To optimize data reuse, blocks should be ideally kept in cache between
964 /// iterations. Since parameters of the macro kernel determine sizes of these
965 /// blocks, there are upper and lower bounds on these parameters.
966 ///
967 /// @param TTI Target Transform Info.
968 /// @param MicroKernelParams Parameters of the micro-kernel
969 ///                          to be taken into account.
970 /// @param MMI Parameters of the matrix multiplication operands.
971 /// @return The structure of type MacroKernelParamsTy.
972 /// @see MacroKernelParamsTy
973 /// @see MicroKernelParamsTy
974 static struct MacroKernelParamsTy
getMacroKernelParams(const llvm::TargetTransformInfo * TTI,const MicroKernelParamsTy & MicroKernelParams,MatMulInfoTy MMI)975 getMacroKernelParams(const llvm::TargetTransformInfo *TTI,
976                      const MicroKernelParamsTy &MicroKernelParams,
977                      MatMulInfoTy MMI) {
978   getTargetCacheParameters(TTI);
979   // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
980   // it requires information about the first two levels of a cache to determine
981   // all the parameters of a macro-kernel. It also checks that an associativity
982   // degree of a cache level is greater than two. Otherwise, another algorithm
983   // for determination of the parameters should be used.
984   if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
985         FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
986         FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
987     return {1, 1, 1};
988   // The quotient should be greater than zero.
989   if (PollyPatternMatchingNcQuotient <= 0)
990     return {1, 1, 1};
991   int Car = floor(
992       (FirstCacheLevelAssociativity - 1) /
993       (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
994 
995   // Car can be computed to be zero since it is floor to int.
996   // On Mac OS, division by 0 does not raise a signal. This causes negative
997   // tile sizes to be computed. Prevent division by Cac==0 by early returning
998   // if this happens.
999   if (Car == 0)
1000     return {1, 1, 1};
1001 
1002   auto ElementSize = getMatMulAlignTypeSize(MMI);
1003   assert(ElementSize > 0 && "The element size of the matrix multiplication "
1004                             "operands should be greater than zero.");
1005   int Kc = (Car * FirstCacheLevelSize) /
1006            (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
1007   double Cac =
1008       static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
1009       SecondCacheLevelSize;
1010   int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
1011   int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
1012 
1013   assert(Mc > 0 && Nc > 0 && Kc > 0 &&
1014          "Matrix block sizes should be  greater than zero");
1015   return {Mc, Nc, Kc};
1016 }
1017 
1018 /// Create an access relation that is specific to
1019 ///        the matrix multiplication pattern.
1020 ///
1021 /// Create an access relation of the following form:
1022 /// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
1023 /// where I is @p FirstDim, J is @p SecondDim.
1024 ///
1025 /// It can be used, for example, to create relations that helps to consequently
1026 /// access elements of operands of a matrix multiplication after creation of
1027 /// the BLIS micro and macro kernels.
1028 ///
1029 /// @see ScheduleTreeOptimizer::createMicroKernel
1030 /// @see ScheduleTreeOptimizer::createMacroKernel
1031 ///
1032 /// Subsequently, the described access relation is applied to the range of
1033 /// @p MapOldIndVar, that is used to map original induction variables to
1034 /// the ones, which are produced by schedule transformations. It helps to
1035 /// define relations using a new space and, at the same time, keep them
1036 /// in the original one.
1037 ///
1038 /// @param MapOldIndVar The relation, which maps original induction variables
1039 ///                     to the ones, which are produced by schedule
1040 ///                     transformations.
1041 /// @param FirstDim, SecondDim The input dimensions that are used to define
1042 ///        the specified access relation.
1043 /// @return The specified access relation.
getMatMulAccRel(isl::map MapOldIndVar,unsigned FirstDim,unsigned SecondDim)1044 isl::map getMatMulAccRel(isl::map MapOldIndVar, unsigned FirstDim,
1045                          unsigned SecondDim) {
1046   auto AccessRelSpace = isl::space(MapOldIndVar.get_ctx(), 0, 9, 3);
1047   auto AccessRel = isl::map::universe(AccessRelSpace);
1048   AccessRel = AccessRel.equate(isl::dim::in, FirstDim, isl::dim::out, 0);
1049   AccessRel = AccessRel.equate(isl::dim::in, 5, isl::dim::out, 1);
1050   AccessRel = AccessRel.equate(isl::dim::in, SecondDim, isl::dim::out, 2);
1051   return MapOldIndVar.apply_range(AccessRel);
1052 }
1053 
createExtensionNode(isl::schedule_node Node,isl::map ExtensionMap)1054 isl::schedule_node createExtensionNode(isl::schedule_node Node,
1055                                        isl::map ExtensionMap) {
1056   auto Extension = isl::union_map(ExtensionMap);
1057   auto NewNode = isl::schedule_node::from_extension(Extension);
1058   return Node.graft_before(NewNode);
1059 }
1060 
1061 /// Apply the packing transformation.
1062 ///
1063 /// The packing transformation can be described as a data-layout
1064 /// transformation that requires to introduce a new array, copy data
1065 /// to the array, and change memory access locations to reference the array.
1066 /// It can be used to ensure that elements of the new array are read in-stride
1067 /// access, aligned to cache lines boundaries, and preloaded into certain cache
1068 /// levels.
1069 ///
1070 /// As an example let us consider the packing of the array A that would help
1071 /// to read its elements with in-stride access. An access to the array A
1072 /// is represented by an access relation that has the form
1073 /// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
1074 /// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
1075 /// k mod Kc, j mod Nr, i mod Mr].
1076 ///
1077 /// To ensure that elements of the array A are read in-stride access, we add
1078 /// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
1079 /// Scop::createScopArrayInfo, change the access relation
1080 /// S[i, j, k] -> A[i, k] to
1081 /// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
1082 /// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
1083 /// the copy statement created by Scop::addScopStmt.
1084 ///
1085 /// @param Node The schedule node to be optimized.
1086 /// @param MapOldIndVar The relation, which maps original induction variables
1087 ///                     to the ones, which are produced by schedule
1088 ///                     transformations.
1089 /// @param MicroParams, MacroParams Parameters of the BLIS kernel
1090 ///                                 to be taken into account.
1091 /// @param MMI Parameters of the matrix multiplication operands.
1092 /// @return The optimized schedule node.
1093 static isl::schedule_node
optimizeDataLayoutMatrMulPattern(isl::schedule_node Node,isl::map MapOldIndVar,MicroKernelParamsTy MicroParams,MacroKernelParamsTy MacroParams,MatMulInfoTy & MMI)1094 optimizeDataLayoutMatrMulPattern(isl::schedule_node Node, isl::map MapOldIndVar,
1095                                  MicroKernelParamsTy MicroParams,
1096                                  MacroKernelParamsTy MacroParams,
1097                                  MatMulInfoTy &MMI) {
1098   auto InputDimsId = MapOldIndVar.get_tuple_id(isl::dim::in);
1099   auto *Stmt = static_cast<ScopStmt *>(InputDimsId.get_user());
1100 
1101   // Create a copy statement that corresponds to the memory access to the
1102   // matrix B, the second operand of the matrix multiplication.
1103   Node = Node.parent().parent().parent().parent().parent().parent();
1104   Node = isl::manage(isl_schedule_node_band_split(Node.release(), 2)).child(0);
1105   auto AccRel = getMatMulAccRel(MapOldIndVar, 3, 7);
1106   unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
1107   unsigned SecondDimSize = MacroParams.Kc;
1108   unsigned ThirdDimSize = MicroParams.Nr;
1109   auto *SAI = Stmt->getParent()->createScopArrayInfo(
1110       MMI.B->getElementType(), "Packed_B",
1111       {FirstDimSize, SecondDimSize, ThirdDimSize});
1112   AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1113   auto OldAcc = MMI.B->getLatestAccessRelation();
1114   MMI.B->setNewAccessRelation(AccRel);
1115   auto ExtMap = MapOldIndVar.project_out(isl::dim::out, 2,
1116                                          MapOldIndVar.dim(isl::dim::out) - 2);
1117   ExtMap = ExtMap.reverse();
1118   ExtMap = ExtMap.fix_si(isl::dim::out, MMI.i, 0);
1119   auto Domain = Stmt->getDomain();
1120 
1121   // Restrict the domains of the copy statements to only execute when also its
1122   // originating statement is executed.
1123   auto DomainId = Domain.get_tuple_id();
1124   auto *NewStmt = Stmt->getParent()->addScopStmt(
1125       OldAcc, MMI.B->getLatestAccessRelation(), Domain);
1126   ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1127   ExtMap = ExtMap.intersect_range(Domain);
1128   ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1129   Node = createExtensionNode(Node, ExtMap);
1130 
1131   // Create a copy statement that corresponds to the memory access
1132   // to the matrix A, the first operand of the matrix multiplication.
1133   Node = Node.child(0);
1134   AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
1135   FirstDimSize = MacroParams.Mc / MicroParams.Mr;
1136   ThirdDimSize = MicroParams.Mr;
1137   SAI = Stmt->getParent()->createScopArrayInfo(
1138       MMI.A->getElementType(), "Packed_A",
1139       {FirstDimSize, SecondDimSize, ThirdDimSize});
1140   AccRel = AccRel.set_tuple_id(isl::dim::out, SAI->getBasePtrId());
1141   OldAcc = MMI.A->getLatestAccessRelation();
1142   MMI.A->setNewAccessRelation(AccRel);
1143   ExtMap = MapOldIndVar.project_out(isl::dim::out, 3,
1144                                     MapOldIndVar.dim(isl::dim::out) - 3);
1145   ExtMap = ExtMap.reverse();
1146   ExtMap = ExtMap.fix_si(isl::dim::out, MMI.j, 0);
1147   NewStmt = Stmt->getParent()->addScopStmt(
1148       OldAcc, MMI.A->getLatestAccessRelation(), Domain);
1149 
1150   // Restrict the domains of the copy statements to only execute when also its
1151   // originating statement is executed.
1152   ExtMap = ExtMap.set_tuple_id(isl::dim::out, DomainId);
1153   ExtMap = ExtMap.intersect_range(Domain);
1154   ExtMap = ExtMap.set_tuple_id(isl::dim::out, NewStmt->getDomainId());
1155   Node = createExtensionNode(Node, ExtMap);
1156   return Node.child(0).child(0).child(0).child(0).child(0);
1157 }
1158 
1159 /// Get a relation mapping induction variables produced by schedule
1160 /// transformations to the original ones.
1161 ///
1162 /// @param Node The schedule node produced as the result of creation
1163 ///        of the BLIS kernels.
1164 /// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
1165 ///                                             to be taken into account.
1166 /// @return  The relation mapping original induction variables to the ones
1167 ///          produced by schedule transformation.
1168 /// @see ScheduleTreeOptimizer::createMicroKernel
1169 /// @see ScheduleTreeOptimizer::createMacroKernel
1170 /// @see getMacroKernelParams
1171 isl::map
getInductionVariablesSubstitution(isl::schedule_node Node,MicroKernelParamsTy MicroKernelParams,MacroKernelParamsTy MacroKernelParams)1172 getInductionVariablesSubstitution(isl::schedule_node Node,
1173                                   MicroKernelParamsTy MicroKernelParams,
1174                                   MacroKernelParamsTy MacroKernelParams) {
1175   auto Child = Node.child(0);
1176   auto UnMapOldIndVar = Child.get_prefix_schedule_union_map();
1177   auto MapOldIndVar = isl::map::from_union_map(UnMapOldIndVar);
1178   if (MapOldIndVar.dim(isl::dim::out) > 9)
1179     return MapOldIndVar.project_out(isl::dim::out, 0,
1180                                     MapOldIndVar.dim(isl::dim::out) - 9);
1181   return MapOldIndVar;
1182 }
1183 
1184 /// Isolate a set of partial tile prefixes and unroll the isolated part.
1185 ///
1186 /// The set should ensure that it contains only partial tile prefixes that have
1187 /// exactly Mr x Nr iterations of the two innermost loops produced by
1188 /// the optimization of the matrix multiplication. Mr and Nr are parameters of
1189 /// the micro-kernel.
1190 ///
1191 /// In case of parametric bounds, this helps to auto-vectorize the unrolled
1192 /// innermost loops, using the SLP vectorizer.
1193 ///
1194 /// @param Node              The schedule node to be modified.
1195 /// @param MicroKernelParams Parameters of the micro-kernel
1196 ///                          to be taken into account.
1197 /// @return The modified isl_schedule_node.
1198 static isl::schedule_node
isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,struct MicroKernelParamsTy MicroKernelParams)1199 isolateAndUnrollMatMulInnerLoops(isl::schedule_node Node,
1200                                  struct MicroKernelParamsTy MicroKernelParams) {
1201   isl::schedule_node Child = Node.get_child(0);
1202   isl::union_map UnMapOldIndVar = Child.get_prefix_schedule_relation();
1203   isl::set Prefix = isl::map::from_union_map(UnMapOldIndVar).range();
1204   unsigned Dims = Prefix.dim(isl::dim::set);
1205   Prefix = Prefix.project_out(isl::dim::set, Dims - 1, 1);
1206   Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
1207   Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
1208 
1209   isl::union_set IsolateOption =
1210       getIsolateOptions(Prefix.add_dims(isl::dim::set, 3), 3);
1211   isl::ctx Ctx = Node.get_ctx();
1212   auto Options = IsolateOption.unite(getDimOptions(Ctx, "unroll"));
1213   Options = Options.unite(getUnrollIsolatedSetOptions(Ctx));
1214   Node = Node.band_set_ast_build_options(Options);
1215   Node = Node.parent().parent().parent();
1216   IsolateOption = getIsolateOptions(Prefix, 3);
1217   Options = IsolateOption.unite(getDimOptions(Ctx, "separate"));
1218   Node = Node.band_set_ast_build_options(Options);
1219   Node = Node.child(0).child(0).child(0);
1220   return Node;
1221 }
1222 
1223 /// Mark @p BasePtr with "Inter iteration alias-free" mark node.
1224 ///
1225 /// @param Node The child of the mark node to be inserted.
1226 /// @param BasePtr The pointer to be marked.
1227 /// @return The modified isl_schedule_node.
markInterIterationAliasFree(isl::schedule_node Node,Value * BasePtr)1228 static isl::schedule_node markInterIterationAliasFree(isl::schedule_node Node,
1229                                                       Value *BasePtr) {
1230   if (!BasePtr)
1231     return Node;
1232 
1233   auto Id =
1234       isl::id::alloc(Node.get_ctx(), "Inter iteration alias-free", BasePtr);
1235   return Node.insert_mark(Id).child(0);
1236 }
1237 
1238 /// Insert "Loop Vectorizer Disabled" mark node.
1239 ///
1240 /// @param Node The child of the mark node to be inserted.
1241 /// @return The modified isl_schedule_node.
markLoopVectorizerDisabled(isl::schedule_node Node)1242 static isl::schedule_node markLoopVectorizerDisabled(isl::schedule_node Node) {
1243   auto Id = isl::id::alloc(Node.get_ctx(), "Loop Vectorizer Disabled", nullptr);
1244   return Node.insert_mark(Id).child(0);
1245 }
1246 
1247 /// Restore the initial ordering of dimensions of the band node
1248 ///
1249 /// In case the band node represents all the dimensions of the iteration
1250 /// domain, recreate the band node to restore the initial ordering of the
1251 /// dimensions.
1252 ///
1253 /// @param Node The band node to be modified.
1254 /// @return The modified schedule node.
1255 static isl::schedule_node
getBandNodeWithOriginDimOrder(isl::schedule_node Node)1256 getBandNodeWithOriginDimOrder(isl::schedule_node Node) {
1257   assert(isl_schedule_node_get_type(Node.get()) == isl_schedule_node_band);
1258   if (isl_schedule_node_get_type(Node.child(0).get()) != isl_schedule_node_leaf)
1259     return Node;
1260   auto Domain = Node.get_universe_domain();
1261   assert(isl_union_set_n_set(Domain.get()) == 1);
1262   if (Node.get_schedule_depth() != 0 ||
1263       (static_cast<isl_size>(isl::set(Domain).dim(isl::dim::set)) !=
1264        isl_schedule_node_band_n_member(Node.get())))
1265     return Node;
1266   Node = isl::manage(isl_schedule_node_delete(Node.copy()));
1267   auto PartialSchedulePwAff = Domain.identity_union_pw_multi_aff();
1268   auto PartialScheduleMultiPwAff =
1269       isl::multi_union_pw_aff(PartialSchedulePwAff);
1270   PartialScheduleMultiPwAff =
1271       PartialScheduleMultiPwAff.reset_tuple_id(isl::dim::set);
1272   return Node.insert_partial_schedule(PartialScheduleMultiPwAff);
1273 }
1274 
1275 isl::schedule_node
optimizeMatMulPattern(isl::schedule_node Node,const TargetTransformInfo * TTI,MatMulInfoTy & MMI)1276 ScheduleTreeOptimizer::optimizeMatMulPattern(isl::schedule_node Node,
1277                                              const TargetTransformInfo *TTI,
1278                                              MatMulInfoTy &MMI) {
1279   assert(TTI && "The target transform info should be provided.");
1280   Node = markInterIterationAliasFree(
1281       Node, MMI.WriteToC->getLatestScopArrayInfo()->getBasePtr());
1282   int DimOutNum = isl_schedule_node_band_n_member(Node.get());
1283   assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
1284                           "and, consequently, the corresponding scheduling "
1285                           "functions have at least three dimensions.");
1286   Node = getBandNodeWithOriginDimOrder(Node);
1287   Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
1288   int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
1289   int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
1290   Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
1291   NewK = NewK == DimOutNum - 2 ? NewJ : NewK;
1292   Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
1293   auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
1294   auto MacroKernelParams = getMacroKernelParams(TTI, MicroKernelParams, MMI);
1295   Node = createMacroKernel(Node, MacroKernelParams);
1296   Node = createMicroKernel(Node, MicroKernelParams);
1297   if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
1298       MacroKernelParams.Kc == 1)
1299     return Node;
1300   auto MapOldIndVar = getInductionVariablesSubstitution(Node, MicroKernelParams,
1301                                                         MacroKernelParams);
1302   if (!MapOldIndVar)
1303     return Node;
1304   Node = markLoopVectorizerDisabled(Node.parent()).child(0);
1305   Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
1306   return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
1307                                           MacroKernelParams, MMI);
1308 }
1309 
isMatrMultPattern(isl::schedule_node Node,const Dependences * D,MatMulInfoTy & MMI)1310 bool ScheduleTreeOptimizer::isMatrMultPattern(isl::schedule_node Node,
1311                                               const Dependences *D,
1312                                               MatMulInfoTy &MMI) {
1313   auto PartialSchedule = isl::manage(
1314       isl_schedule_node_band_get_partial_schedule_union_map(Node.get()));
1315   Node = Node.child(0);
1316   auto LeafType = isl_schedule_node_get_type(Node.get());
1317   Node = Node.parent();
1318   if (LeafType != isl_schedule_node_leaf ||
1319       isl_schedule_node_band_n_member(Node.get()) < 3 ||
1320       Node.get_schedule_depth() != 0 ||
1321       isl_union_map_n_map(PartialSchedule.get()) != 1)
1322     return false;
1323   auto NewPartialSchedule = isl::map::from_union_map(PartialSchedule);
1324   if (containsMatrMult(NewPartialSchedule, D, MMI))
1325     return true;
1326   return false;
1327 }
1328 
1329 __isl_give isl_schedule_node *
optimizeBand(__isl_take isl_schedule_node * Node,void * User)1330 ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
1331                                     void *User) {
1332   if (!isTileableBandNode(isl::manage_copy(Node)))
1333     return Node;
1334 
1335   const OptimizerAdditionalInfoTy *OAI =
1336       static_cast<const OptimizerAdditionalInfoTy *>(User);
1337 
1338   MatMulInfoTy MMI;
1339   if (PMBasedOpts && User &&
1340       isMatrMultPattern(isl::manage_copy(Node), OAI->D, MMI)) {
1341     LLVM_DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
1342     MatMulOpts++;
1343     return optimizeMatMulPattern(isl::manage(Node), OAI->TTI, MMI).release();
1344   }
1345 
1346   return standardBandOpts(isl::manage(Node), User).release();
1347 }
1348 
1349 isl::schedule
optimizeSchedule(isl::schedule Schedule,const OptimizerAdditionalInfoTy * OAI)1350 ScheduleTreeOptimizer::optimizeSchedule(isl::schedule Schedule,
1351                                         const OptimizerAdditionalInfoTy *OAI) {
1352   auto Root = Schedule.get_root();
1353   Root = optimizeScheduleNode(Root, OAI);
1354   return Root.get_schedule();
1355 }
1356 
optimizeScheduleNode(isl::schedule_node Node,const OptimizerAdditionalInfoTy * OAI)1357 isl::schedule_node ScheduleTreeOptimizer::optimizeScheduleNode(
1358     isl::schedule_node Node, const OptimizerAdditionalInfoTy *OAI) {
1359   Node = isl::manage(isl_schedule_node_map_descendant_bottom_up(
1360       Node.release(), optimizeBand,
1361       const_cast<void *>(static_cast<const void *>(OAI))));
1362   return Node;
1363 }
1364 
isProfitableSchedule(Scop & S,isl::schedule NewSchedule)1365 bool ScheduleTreeOptimizer::isProfitableSchedule(Scop &S,
1366                                                  isl::schedule NewSchedule) {
1367   // To understand if the schedule has been optimized we check if the schedule
1368   // has changed at all.
1369   // TODO: We can improve this by tracking if any necessarily beneficial
1370   // transformations have been performed. This can e.g. be tiling, loop
1371   // interchange, or ...) We can track this either at the place where the
1372   // transformation has been performed or, in case of automatic ILP based
1373   // optimizations, by comparing (yet to be defined) performance metrics
1374   // before/after the scheduling optimizer
1375   // (e.g., #stride-one accesses)
1376   auto NewScheduleMap = NewSchedule.get_map();
1377   auto OldSchedule = S.getSchedule();
1378   assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
1379                         "that make Scop::getSchedule() return nullptr.");
1380   bool changed = !OldSchedule.is_equal(NewScheduleMap);
1381   return changed;
1382 }
1383 
1384 namespace {
1385 
1386 class IslScheduleOptimizer : public ScopPass {
1387 public:
1388   static char ID;
1389 
IslScheduleOptimizer()1390   explicit IslScheduleOptimizer() : ScopPass(ID) {}
1391 
~IslScheduleOptimizer()1392   ~IslScheduleOptimizer() override { releaseMemory(); }
1393 
1394   /// Optimize the schedule of the SCoP @p S.
1395   bool runOnScop(Scop &S) override;
1396 
1397   /// Print the new schedule for the SCoP @p S.
1398   void printScop(raw_ostream &OS, Scop &S) const override;
1399 
1400   /// Register all analyses and transformation required.
1401   void getAnalysisUsage(AnalysisUsage &AU) const override;
1402 
1403   /// Release the internal memory.
releaseMemory()1404   void releaseMemory() override {
1405     isl_schedule_free(LastSchedule);
1406     LastSchedule = nullptr;
1407     IslCtx.reset();
1408   }
1409 
1410 private:
1411   std::shared_ptr<isl_ctx> IslCtx;
1412   isl_schedule *LastSchedule = nullptr;
1413 };
1414 } // namespace
1415 
1416 char IslScheduleOptimizer::ID = 0;
1417 
1418 /// Collect statistics for the schedule tree.
1419 ///
1420 /// @param Schedule The schedule tree to analyze. If not a schedule tree it is
1421 /// ignored.
1422 /// @param Version  The version of the schedule tree that is analyzed.
1423 ///                 0 for the original schedule tree before any transformation.
1424 ///                 1 for the schedule tree after isl's rescheduling.
1425 ///                 2 for the schedule tree after optimizations are applied
1426 ///                 (tiling, pattern matching)
walkScheduleTreeForStatistics(isl::schedule Schedule,int Version)1427 static void walkScheduleTreeForStatistics(isl::schedule Schedule, int Version) {
1428   auto Root = Schedule.get_root();
1429   if (!Root)
1430     return;
1431 
1432   isl_schedule_node_foreach_descendant_top_down(
1433       Root.get(),
1434       [](__isl_keep isl_schedule_node *nodeptr, void *user) -> isl_bool {
1435         isl::schedule_node Node = isl::manage_copy(nodeptr);
1436         int Version = *static_cast<int *>(user);
1437 
1438         switch (isl_schedule_node_get_type(Node.get())) {
1439         case isl_schedule_node_band: {
1440           NumBands[Version]++;
1441           if (isl_schedule_node_band_get_permutable(Node.get()) ==
1442               isl_bool_true)
1443             NumPermutable[Version]++;
1444 
1445           int CountMembers = isl_schedule_node_band_n_member(Node.get());
1446           NumBandMembers[Version] += CountMembers;
1447           for (int i = 0; i < CountMembers; i += 1) {
1448             if (Node.band_member_get_coincident(i))
1449               NumCoincident[Version]++;
1450           }
1451           break;
1452         }
1453 
1454         case isl_schedule_node_filter:
1455           NumFilters[Version]++;
1456           break;
1457 
1458         case isl_schedule_node_extension:
1459           NumExtension[Version]++;
1460           break;
1461 
1462         default:
1463           break;
1464         }
1465 
1466         return isl_bool_true;
1467       },
1468       &Version);
1469 }
1470 
runOnScop(Scop & S)1471 bool IslScheduleOptimizer::runOnScop(Scop &S) {
1472   // Skip SCoPs in case they're already optimised by PPCGCodeGeneration
1473   if (S.isToBeSkipped())
1474     return false;
1475 
1476   // Skip empty SCoPs but still allow code generation as it will delete the
1477   // loops present but not needed.
1478   if (S.getSize() == 0) {
1479     S.markAsOptimized();
1480     return false;
1481   }
1482 
1483   const Dependences &D =
1484       getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
1485 
1486   if (D.getSharedIslCtx() != S.getSharedIslCtx()) {
1487     LLVM_DEBUG(dbgs() << "DependenceInfo for another SCoP/isl_ctx\n");
1488     return false;
1489   }
1490 
1491   if (!D.hasValidDependences())
1492     return false;
1493 
1494   isl_schedule_free(LastSchedule);
1495   LastSchedule = nullptr;
1496 
1497   // Build input data.
1498   int ValidityKinds =
1499       Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1500   int ProximityKinds;
1501 
1502   if (OptimizeDeps == "all")
1503     ProximityKinds =
1504         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1505   else if (OptimizeDeps == "raw")
1506     ProximityKinds = Dependences::TYPE_RAW;
1507   else {
1508     errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
1509            << " Falling back to optimizing all dependences.\n";
1510     ProximityKinds =
1511         Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
1512   }
1513 
1514   isl::union_set Domain = S.getDomains();
1515 
1516   if (!Domain)
1517     return false;
1518 
1519   ScopsProcessed++;
1520   walkScheduleTreeForStatistics(S.getScheduleTree(), 0);
1521 
1522   isl::union_map Validity = D.getDependences(ValidityKinds);
1523   isl::union_map Proximity = D.getDependences(ProximityKinds);
1524 
1525   // Simplify the dependences by removing the constraints introduced by the
1526   // domains. This can speed up the scheduling time significantly, as large
1527   // constant coefficients will be removed from the dependences. The
1528   // introduction of some additional dependences reduces the possible
1529   // transformations, but in most cases, such transformation do not seem to be
1530   // interesting anyway. In some cases this option may stop the scheduler to
1531   // find any schedule.
1532   if (SimplifyDeps == "yes") {
1533     Validity = Validity.gist_domain(Domain);
1534     Validity = Validity.gist_range(Domain);
1535     Proximity = Proximity.gist_domain(Domain);
1536     Proximity = Proximity.gist_range(Domain);
1537   } else if (SimplifyDeps != "no") {
1538     errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
1539               "or 'no'. Falling back to default: 'yes'\n";
1540   }
1541 
1542   LLVM_DEBUG(dbgs() << "\n\nCompute schedule from: ");
1543   LLVM_DEBUG(dbgs() << "Domain := " << Domain << ";\n");
1544   LLVM_DEBUG(dbgs() << "Proximity := " << Proximity << ";\n");
1545   LLVM_DEBUG(dbgs() << "Validity := " << Validity << ";\n");
1546 
1547   unsigned IslSerializeSCCs;
1548 
1549   if (FusionStrategy == "max") {
1550     IslSerializeSCCs = 0;
1551   } else if (FusionStrategy == "min") {
1552     IslSerializeSCCs = 1;
1553   } else {
1554     errs() << "warning: Unknown fusion strategy. Falling back to maximal "
1555               "fusion.\n";
1556     IslSerializeSCCs = 0;
1557   }
1558 
1559   int IslMaximizeBands;
1560 
1561   if (MaximizeBandDepth == "yes") {
1562     IslMaximizeBands = 1;
1563   } else if (MaximizeBandDepth == "no") {
1564     IslMaximizeBands = 0;
1565   } else {
1566     errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
1567               " or 'no'. Falling back to default: 'yes'\n";
1568     IslMaximizeBands = 1;
1569   }
1570 
1571   int IslOuterCoincidence;
1572 
1573   if (OuterCoincidence == "yes") {
1574     IslOuterCoincidence = 1;
1575   } else if (OuterCoincidence == "no") {
1576     IslOuterCoincidence = 0;
1577   } else {
1578     errs() << "warning: Option -polly-opt-outer-coincidence should either be "
1579               "'yes' or 'no'. Falling back to default: 'no'\n";
1580     IslOuterCoincidence = 0;
1581   }
1582 
1583   isl_ctx *Ctx = S.getIslCtx().get();
1584 
1585   isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
1586   isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
1587   isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
1588   isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
1589   isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
1590   isl_options_set_tile_scale_tile_loops(Ctx, 0);
1591 
1592   auto OnErrorStatus = isl_options_get_on_error(Ctx);
1593   isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
1594 
1595   auto SC = isl::schedule_constraints::on_domain(Domain);
1596   SC = SC.set_proximity(Proximity);
1597   SC = SC.set_validity(Validity);
1598   SC = SC.set_coincidence(Validity);
1599   auto Schedule = SC.compute_schedule();
1600   isl_options_set_on_error(Ctx, OnErrorStatus);
1601 
1602   walkScheduleTreeForStatistics(Schedule, 1);
1603 
1604   // In cases the scheduler is not able to optimize the code, we just do not
1605   // touch the schedule.
1606   if (!Schedule)
1607     return false;
1608 
1609   ScopsRescheduled++;
1610 
1611   LLVM_DEBUG({
1612     auto *P = isl_printer_to_str(Ctx);
1613     P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1614     P = isl_printer_print_schedule(P, Schedule.get());
1615     auto *str = isl_printer_get_str(P);
1616     dbgs() << "NewScheduleTree: \n" << str << "\n";
1617     free(str);
1618     isl_printer_free(P);
1619   });
1620 
1621   Function &F = S.getFunction();
1622   auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1623   const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
1624   auto NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
1625   NewSchedule = hoistExtensionNodes(NewSchedule);
1626   walkScheduleTreeForStatistics(NewSchedule, 2);
1627 
1628   if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule))
1629     return false;
1630 
1631   auto ScopStats = S.getStatistics();
1632   ScopsOptimized++;
1633   NumAffineLoopsOptimized += ScopStats.NumAffineLoops;
1634   NumBoxedLoopsOptimized += ScopStats.NumBoxedLoops;
1635   LastSchedule = NewSchedule.copy();
1636   IslCtx = S.getSharedIslCtx();
1637 
1638   S.setScheduleTree(NewSchedule);
1639   S.markAsOptimized();
1640 
1641   if (OptimizedScops)
1642     errs() << S;
1643 
1644   return false;
1645 }
1646 
printScop(raw_ostream & OS,Scop &) const1647 void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
1648   isl_printer *p;
1649   char *ScheduleStr;
1650 
1651   OS << "Calculated schedule:\n";
1652 
1653   if (!LastSchedule) {
1654     OS << "n/a\n";
1655     return;
1656   }
1657 
1658   p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
1659   p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_BLOCK);
1660   p = isl_printer_print_schedule(p, LastSchedule);
1661   ScheduleStr = isl_printer_get_str(p);
1662   isl_printer_free(p);
1663 
1664   OS << ScheduleStr << "\n";
1665 
1666   free(ScheduleStr);
1667 }
1668 
getAnalysisUsage(AnalysisUsage & AU) const1669 void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
1670   ScopPass::getAnalysisUsage(AU);
1671   AU.addRequired<DependenceInfo>();
1672   AU.addRequired<TargetTransformInfoWrapperPass>();
1673 
1674   AU.addPreserved<DependenceInfo>();
1675 }
1676 
createIslScheduleOptimizerPass()1677 Pass *polly::createIslScheduleOptimizerPass() {
1678   return new IslScheduleOptimizer();
1679 }
1680 
1681 INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
1682                       "Polly - Optimize schedule of SCoP", false, false);
1683 INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
1684 INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
1685 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
1686 INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
1687                     "Polly - Optimize schedule of SCoP", false, false)
1688