1 //===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // RTL for hsa machine
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include <algorithm>
14 #include <assert.h>
15 #include <cstdio>
16 #include <cstdlib>
17 #include <cstring>
18 #include <dlfcn.h>
19 #include <elf.h>
20 #include <ffi.h>
21 #include <fstream>
22 #include <iostream>
23 #include <libelf.h>
24 #include <list>
25 #include <memory>
26 #include <mutex>
27 #include <shared_mutex>
28 #include <thread>
29 #include <unordered_map>
30 #include <vector>
31
32 // Header from ATMI interface
33 #include "atmi_interop_hsa.h"
34 #include "atmi_runtime.h"
35
36 #include "internal.h"
37
38 #include "Debug.h"
39 #include "omptargetplugin.h"
40
41 #include "llvm/Frontend/OpenMP/OMPGridValues.h"
42
43 #ifndef TARGET_NAME
44 #define TARGET_NAME AMDHSA
45 #endif
46 #define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"
47
48 // hostrpc interface, FIXME: consider moving to its own include these are
49 // statically linked into amdgpu/plugin if present from hostrpc_services.a,
50 // linked as --whole-archive to override the weak symbols that are used to
51 // implement a fallback for toolchains that do not yet have a hostrpc library.
52 extern "C" {
53 unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q,
54 uint32_t device_id);
55 hsa_status_t hostrpc_init();
56 hsa_status_t hostrpc_terminate();
57
hostrpc_init()58 __attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; }
hostrpc_terminate()59 __attribute__((weak)) hsa_status_t hostrpc_terminate() {
60 return HSA_STATUS_SUCCESS;
61 }
62 __attribute__((weak)) unsigned long
hostrpc_assign_buffer(hsa_agent_t,hsa_queue_t *,uint32_t device_id)63 hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) {
64 DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library "
65 "missing\n",
66 device_id);
67 return 0;
68 }
69 }
70
71 int print_kernel_trace;
72
73 // Size of the target call stack struture
74 uint32_t TgtStackItemSize = 0;
75
76 #undef check // Drop definition from internal.h
77 #ifdef OMPTARGET_DEBUG
78 #define check(msg, status) \
79 if (status != ATMI_STATUS_SUCCESS) { \
80 /* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \
81 DP(#msg " failed\n"); \
82 /*assert(0);*/ \
83 } else { \
84 /* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \
85 */ \
86 DP(#msg " succeeded\n"); \
87 }
88 #else
89 #define check(msg, status) \
90 {}
91 #endif
92
93 #include "../../common/elf_common.c"
94
elf_machine_id_is_amdgcn(__tgt_device_image * image)95 static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
96 const uint16_t amdgcnMachineID = 224;
97 int32_t r = elf_check_machine(image, amdgcnMachineID);
98 if (!r) {
99 DP("Supported machine ID not found\n");
100 }
101 return r;
102 }
103
104 /// Keep entries table per device
105 struct FuncOrGblEntryTy {
106 __tgt_target_table Table;
107 std::vector<__tgt_offload_entry> Entries;
108 };
109
110 enum ExecutionModeType {
111 SPMD, // constructors, destructors,
112 // combined constructs (`teams distribute parallel for [simd]`)
113 GENERIC, // everything else
114 NONE
115 };
116
117 struct KernelArgPool {
118 private:
119 static pthread_mutex_t mutex;
120
121 public:
122 uint32_t kernarg_segment_size;
123 void *kernarg_region = nullptr;
124 std::queue<int> free_kernarg_segments;
125
kernarg_size_including_implicitKernelArgPool126 uint32_t kernarg_size_including_implicit() {
127 return kernarg_segment_size + sizeof(atmi_implicit_args_t);
128 }
129
~KernelArgPoolKernelArgPool130 ~KernelArgPool() {
131 if (kernarg_region) {
132 auto r = hsa_amd_memory_pool_free(kernarg_region);
133 assert(r == HSA_STATUS_SUCCESS);
134 ErrorCheck(Memory pool free, r);
135 }
136 }
137
138 // Can't really copy or move a mutex
139 KernelArgPool() = default;
140 KernelArgPool(const KernelArgPool &) = delete;
141 KernelArgPool(KernelArgPool &&) = delete;
142
KernelArgPoolKernelArgPool143 KernelArgPool(uint32_t kernarg_segment_size)
144 : kernarg_segment_size(kernarg_segment_size) {
145
146 // atmi uses one pool per kernel for all gpus, with a fixed upper size
147 // preserving that exact scheme here, including the queue<int>
148 {
149 hsa_status_t err = hsa_amd_memory_pool_allocate(
150 atl_gpu_kernarg_pools[0],
151 kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
152 &kernarg_region);
153 ErrorCheck(Allocating memory for the executable-kernel, err);
154 core::allow_access_to_all_gpu_agents(kernarg_region);
155
156 for (int i = 0; i < MAX_NUM_KERNELS; i++) {
157 free_kernarg_segments.push(i);
158 }
159 }
160 }
161
allocateKernelArgPool162 void *allocate(uint64_t arg_num) {
163 assert((arg_num * sizeof(void *)) == kernarg_segment_size);
164 lock l(&mutex);
165 void *res = nullptr;
166 if (!free_kernarg_segments.empty()) {
167
168 int free_idx = free_kernarg_segments.front();
169 res = static_cast<void *>(static_cast<char *>(kernarg_region) +
170 (free_idx * kernarg_size_including_implicit()));
171 assert(free_idx == pointer_to_index(res));
172 free_kernarg_segments.pop();
173 }
174 return res;
175 }
176
deallocateKernelArgPool177 void deallocate(void *ptr) {
178 lock l(&mutex);
179 int idx = pointer_to_index(ptr);
180 free_kernarg_segments.push(idx);
181 }
182
183 private:
pointer_to_indexKernelArgPool184 int pointer_to_index(void *ptr) {
185 ptrdiff_t bytes =
186 static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
187 assert(bytes >= 0);
188 assert(bytes % kernarg_size_including_implicit() == 0);
189 return bytes / kernarg_size_including_implicit();
190 }
191 struct lock {
lockKernelArgPool::lock192 lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
~lockKernelArgPool::lock193 ~lock() { pthread_mutex_unlock(m); }
194 pthread_mutex_t *m;
195 };
196 };
197 pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
198
199 std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
200 KernelArgPoolMap;
201
202 /// Use a single entity to encode a kernel and a set of flags
203 struct KernelTy {
204 // execution mode of kernel
205 // 0 - SPMD mode (without master warp)
206 // 1 - Generic mode (with master warp)
207 int8_t ExecutionMode;
208 int16_t ConstWGSize;
209 int32_t device_id;
210 void *CallStackAddr = nullptr;
211 const char *Name;
212
KernelTyKernelTy213 KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int32_t _device_id,
214 void *_CallStackAddr, const char *_Name,
215 uint32_t _kernarg_segment_size)
216 : ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
217 device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) {
218 DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
219
220 std::string N(_Name);
221 if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
222 KernelArgPoolMap.insert(
223 std::make_pair(N, std::unique_ptr<KernelArgPool>(
224 new KernelArgPool(_kernarg_segment_size))));
225 }
226 }
227 };
228
229 /// List that contains all the kernels.
230 /// FIXME: we may need this to be per device and per library.
231 std::list<KernelTy> KernelsList;
232
233 // ATMI API to get gpu and gpu memory place
get_gpu_place(int device_id)234 static atmi_place_t get_gpu_place(int device_id) {
235 return ATMI_PLACE_GPU(0, device_id);
236 }
get_gpu_mem_place(int device_id)237 static atmi_mem_place_t get_gpu_mem_place(int device_id) {
238 return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0);
239 }
240
find_gpu_agents()241 static std::vector<hsa_agent_t> find_gpu_agents() {
242 std::vector<hsa_agent_t> res;
243
244 hsa_status_t err = hsa_iterate_agents(
245 [](hsa_agent_t agent, void *data) -> hsa_status_t {
246 std::vector<hsa_agent_t> *res =
247 static_cast<std::vector<hsa_agent_t> *>(data);
248
249 hsa_device_type_t device_type;
250 // get_info fails iff HSA runtime not yet initialized
251 hsa_status_t err =
252 hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
253 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
254 printf("rtl.cpp: err %d\n", err);
255 assert(err == HSA_STATUS_SUCCESS);
256
257 if (device_type == HSA_DEVICE_TYPE_GPU) {
258 res->push_back(agent);
259 }
260 return HSA_STATUS_SUCCESS;
261 },
262 &res);
263
264 // iterate_agents fails iff HSA runtime not yet initialized
265 if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
266 printf("rtl.cpp: err %d\n", err);
267 assert(err == HSA_STATUS_SUCCESS);
268 return res;
269 }
270
callbackQueue(hsa_status_t status,hsa_queue_t * source,void * data)271 static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
272 void *data) {
273 if (status != HSA_STATUS_SUCCESS) {
274 const char *status_string;
275 if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
276 status_string = "unavailable";
277 }
278 fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__,
279 __LINE__, source, status, status_string);
280 abort();
281 }
282 }
283
284 namespace core {
packet_store_release(uint32_t * packet,uint16_t header,uint16_t rest)285 void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
286 __atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
287 }
288
create_header(hsa_packet_type_t type,int barrier,atmi_task_fence_scope_t acq_fence,atmi_task_fence_scope_t rel_fence)289 uint16_t create_header(hsa_packet_type_t type, int barrier,
290 atmi_task_fence_scope_t acq_fence,
291 atmi_task_fence_scope_t rel_fence) {
292 uint16_t header = type << HSA_PACKET_HEADER_TYPE;
293 header |= barrier << HSA_PACKET_HEADER_BARRIER;
294 header |= (hsa_fence_scope_t) static_cast<int>(
295 acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE);
296 header |= (hsa_fence_scope_t) static_cast<int>(
297 rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE);
298 return header;
299 }
300 } // namespace core
301
302 /// Class containing all the device information
303 class RTLDeviceInfoTy {
304 std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
305
306 public:
307 // load binary populates symbol tables and mutates various global state
308 // run uses those symbol tables
309 std::shared_timed_mutex load_run_lock;
310
311 int NumberOfDevices;
312
313 // GPU devices
314 std::vector<hsa_agent_t> HSAAgents;
315 std::vector<hsa_queue_t *> HSAQueues; // one per gpu
316
317 // Device properties
318 std::vector<int> ComputeUnits;
319 std::vector<int> GroupsPerDevice;
320 std::vector<int> ThreadsPerGroup;
321 std::vector<int> WarpSize;
322
323 // OpenMP properties
324 std::vector<int> NumTeams;
325 std::vector<int> NumThreads;
326
327 // OpenMP Environment properties
328 int EnvNumTeams;
329 int EnvTeamLimit;
330 int EnvMaxTeamsDefault;
331
332 // OpenMP Requires Flags
333 int64_t RequiresFlags;
334
335 // Resource pools
336 SignalPoolT FreeSignalPool;
337
338 struct atmiFreePtrDeletor {
operator ()RTLDeviceInfoTy::atmiFreePtrDeletor339 void operator()(void *p) {
340 atmi_free(p); // ignore failure to free
341 }
342 };
343
344 // device_State shared across loaded binaries, error if inconsistent size
345 std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>>
346 deviceStateStore;
347
348 static const unsigned HardTeamLimit =
349 (1 << 16) - 1; // 64K needed to fit in uint16
350 static const int DefaultNumTeams = 128;
351 static const int Max_Teams =
352 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams];
353 static const int Warp_Size =
354 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
355 static const int Max_WG_Size =
356 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size];
357 static const int Default_WG_Size =
358 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size];
359
360 using MemcpyFunc = atmi_status_t (*)(hsa_signal_t, void *, const void *,
361 size_t size, hsa_agent_t);
freesignalpool_memcpy(void * dest,const void * src,size_t size,MemcpyFunc Func,int32_t deviceId)362 atmi_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size,
363 MemcpyFunc Func, int32_t deviceId) {
364 hsa_agent_t agent = HSAAgents[deviceId];
365 hsa_signal_t s = FreeSignalPool.pop();
366 if (s.handle == 0) {
367 return ATMI_STATUS_ERROR;
368 }
369 atmi_status_t r = Func(s, dest, src, size, agent);
370 FreeSignalPool.push(s);
371 return r;
372 }
373
freesignalpool_memcpy_d2h(void * dest,const void * src,size_t size,int32_t deviceId)374 atmi_status_t freesignalpool_memcpy_d2h(void *dest, const void *src,
375 size_t size, int32_t deviceId) {
376 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_d2h, deviceId);
377 }
378
freesignalpool_memcpy_h2d(void * dest,const void * src,size_t size,int32_t deviceId)379 atmi_status_t freesignalpool_memcpy_h2d(void *dest, const void *src,
380 size_t size, int32_t deviceId) {
381 return freesignalpool_memcpy(dest, src, size, atmi_memcpy_h2d, deviceId);
382 }
383
384 // Record entry point associated with device
addOffloadEntry(int32_t device_id,__tgt_offload_entry entry)385 void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
386 assert(device_id < (int32_t)FuncGblEntries.size() &&
387 "Unexpected device id!");
388 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
389
390 E.Entries.push_back(entry);
391 }
392
393 // Return true if the entry is associated with device
findOffloadEntry(int32_t device_id,void * addr)394 bool findOffloadEntry(int32_t device_id, void *addr) {
395 assert(device_id < (int32_t)FuncGblEntries.size() &&
396 "Unexpected device id!");
397 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
398
399 for (auto &it : E.Entries) {
400 if (it.addr == addr)
401 return true;
402 }
403
404 return false;
405 }
406
407 // Return the pointer to the target entries table
getOffloadEntriesTable(int32_t device_id)408 __tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
409 assert(device_id < (int32_t)FuncGblEntries.size() &&
410 "Unexpected device id!");
411 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
412
413 int32_t size = E.Entries.size();
414
415 // Table is empty
416 if (!size)
417 return 0;
418
419 __tgt_offload_entry *begin = &E.Entries[0];
420 __tgt_offload_entry *end = &E.Entries[size - 1];
421
422 // Update table info according to the entries and return the pointer
423 E.Table.EntriesBegin = begin;
424 E.Table.EntriesEnd = ++end;
425
426 return &E.Table;
427 }
428
429 // Clear entries table for a device
clearOffloadEntriesTable(int device_id)430 void clearOffloadEntriesTable(int device_id) {
431 assert(device_id < (int32_t)FuncGblEntries.size() &&
432 "Unexpected device id!");
433 FuncGblEntries[device_id].emplace_back();
434 FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
435 // KernelArgPoolMap.clear();
436 E.Entries.clear();
437 E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
438 }
439
RTLDeviceInfoTy()440 RTLDeviceInfoTy() {
441 // LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
442 // anytime. You do not need a debug library build.
443 // 0 => no tracing
444 // 1 => tracing dispatch only
445 // >1 => verbosity increase
446 if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
447 print_kernel_trace = atoi(envStr);
448 else
449 print_kernel_trace = 0;
450
451 DP("Start initializing HSA-ATMI\n");
452 atmi_status_t err = atmi_init();
453 if (err != ATMI_STATUS_SUCCESS) {
454 DP("Error when initializing HSA-ATMI\n");
455 return;
456 }
457 // Init hostcall soon after initializing ATMI
458 hostrpc_init();
459
460 HSAAgents = find_gpu_agents();
461 NumberOfDevices = (int)HSAAgents.size();
462
463 if (NumberOfDevices == 0) {
464 DP("There are no devices supporting HSA.\n");
465 return;
466 } else {
467 DP("There are %d devices supporting HSA.\n", NumberOfDevices);
468 }
469
470 // Init the device info
471 HSAQueues.resize(NumberOfDevices);
472 FuncGblEntries.resize(NumberOfDevices);
473 ThreadsPerGroup.resize(NumberOfDevices);
474 ComputeUnits.resize(NumberOfDevices);
475 GroupsPerDevice.resize(NumberOfDevices);
476 WarpSize.resize(NumberOfDevices);
477 NumTeams.resize(NumberOfDevices);
478 NumThreads.resize(NumberOfDevices);
479 deviceStateStore.resize(NumberOfDevices);
480
481 for (int i = 0; i < NumberOfDevices; i++) {
482 uint32_t queue_size = 0;
483 {
484 hsa_status_t err;
485 err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE,
486 &queue_size);
487 ErrorCheck(Querying the agent maximum queue size, err);
488 if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) {
489 queue_size = core::Runtime::getInstance().getMaxQueueSize();
490 }
491 }
492
493 hsa_status_t rc = hsa_queue_create(
494 HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL,
495 UINT32_MAX, UINT32_MAX, &HSAQueues[i]);
496 if (rc != HSA_STATUS_SUCCESS) {
497 DP("Failed to create HSA queues\n");
498 return;
499 }
500
501 deviceStateStore[i] = {nullptr, 0};
502 }
503
504 for (int i = 0; i < NumberOfDevices; i++) {
505 ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
506 GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
507 ComputeUnits[i] = 1;
508 DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
509 GroupsPerDevice[i], ThreadsPerGroup[i]);
510 }
511
512 // Get environment variables regarding teams
513 char *envStr = getenv("OMP_TEAM_LIMIT");
514 if (envStr) {
515 // OMP_TEAM_LIMIT has been set
516 EnvTeamLimit = std::stoi(envStr);
517 DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit);
518 } else {
519 EnvTeamLimit = -1;
520 }
521 envStr = getenv("OMP_NUM_TEAMS");
522 if (envStr) {
523 // OMP_NUM_TEAMS has been set
524 EnvNumTeams = std::stoi(envStr);
525 DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams);
526 } else {
527 EnvNumTeams = -1;
528 }
529 // Get environment variables regarding expMaxTeams
530 envStr = getenv("OMP_MAX_TEAMS_DEFAULT");
531 if (envStr) {
532 EnvMaxTeamsDefault = std::stoi(envStr);
533 DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault);
534 } else {
535 EnvMaxTeamsDefault = -1;
536 }
537
538 // Default state.
539 RequiresFlags = OMP_REQ_UNDEFINED;
540 }
541
~RTLDeviceInfoTy()542 ~RTLDeviceInfoTy() {
543 DP("Finalizing the HSA-ATMI DeviceInfo.\n");
544 // Run destructors on types that use HSA before
545 // atmi_finalize removes access to it
546 deviceStateStore.clear();
547 KernelArgPoolMap.clear();
548 // Terminate hostrpc before finalizing ATMI
549 hostrpc_terminate();
550 atmi_finalize();
551 }
552 };
553
554 pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
555
556 // TODO: May need to drop the trailing to fields until deviceRTL is updated
557 struct omptarget_device_environmentTy {
558 int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG
559 // only useful for Debug build of deviceRTLs
560 int32_t num_devices; // gets number of active offload devices
561 int32_t device_num; // gets a value 0 to num_devices-1
562 };
563
564 static RTLDeviceInfoTy DeviceInfo;
565
566 namespace {
567
dataRetrieve(int32_t DeviceId,void * HstPtr,void * TgtPtr,int64_t Size,__tgt_async_info * AsyncInfoPtr)568 int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
569 __tgt_async_info *AsyncInfoPtr) {
570 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
571 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
572 // Return success if we are not copying back to host from target.
573 if (!HstPtr)
574 return OFFLOAD_SUCCESS;
575 atmi_status_t err;
576 DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
577 (long long unsigned)(Elf64_Addr)TgtPtr,
578 (long long unsigned)(Elf64_Addr)HstPtr);
579
580 err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size,
581 DeviceId);
582
583 if (err != ATMI_STATUS_SUCCESS) {
584 DP("Error when copying data from device to host. Pointers: "
585 "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
586 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
587 return OFFLOAD_FAIL;
588 }
589 DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
590 (long long unsigned)(Elf64_Addr)TgtPtr,
591 (long long unsigned)(Elf64_Addr)HstPtr);
592 return OFFLOAD_SUCCESS;
593 }
594
dataSubmit(int32_t DeviceId,void * TgtPtr,void * HstPtr,int64_t Size,__tgt_async_info * AsyncInfoPtr)595 int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
596 __tgt_async_info *AsyncInfoPtr) {
597 assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
598 atmi_status_t err;
599 assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
600 // Return success if we are not doing host to target.
601 if (!HstPtr)
602 return OFFLOAD_SUCCESS;
603
604 DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
605 (long long unsigned)(Elf64_Addr)HstPtr,
606 (long long unsigned)(Elf64_Addr)TgtPtr);
607 err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size,
608 DeviceId);
609 if (err != ATMI_STATUS_SUCCESS) {
610 DP("Error when copying data from host to device. Pointers: "
611 "host = 0x%016lx, device = 0x%016lx, size = %lld\n",
612 (Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
613 return OFFLOAD_FAIL;
614 }
615 return OFFLOAD_SUCCESS;
616 }
617
618 // Async.
619 // The implementation was written with cuda streams in mind. The semantics of
620 // that are to execute kernels on a queue in order of insertion. A synchronise
621 // call then makes writes visible between host and device. This means a series
622 // of N data_submit_async calls are expected to execute serially. HSA offers
623 // various options to run the data copies concurrently. This may require changes
624 // to libomptarget.
625
626 // __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
627 // there are no outstanding kernels that need to be synchronized. Any async call
628 // may be passed a Queue==0, at which point the cuda implementation will set it
629 // to non-null (see getStream). The cuda streams are per-device. Upstream may
630 // change this interface to explicitly initialize the async_info_pointer, but
631 // until then hsa lazily initializes it as well.
632
initAsyncInfoPtr(__tgt_async_info * async_info_ptr)633 void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) {
634 // set non-null while using async calls, return to null to indicate completion
635 assert(async_info_ptr);
636 if (!async_info_ptr->Queue) {
637 async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX);
638 }
639 }
finiAsyncInfoPtr(__tgt_async_info * async_info_ptr)640 void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) {
641 assert(async_info_ptr);
642 assert(async_info_ptr->Queue);
643 async_info_ptr->Queue = 0;
644 }
645 } // namespace
646
__tgt_rtl_is_valid_binary(__tgt_device_image * image)647 int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
648 return elf_machine_id_is_amdgcn(image);
649 }
650
__tgt_rtl_number_of_devices()651 int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }
652
__tgt_rtl_init_requires(int64_t RequiresFlags)653 int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
654 DP("Init requires flags to %ld\n", RequiresFlags);
655 DeviceInfo.RequiresFlags = RequiresFlags;
656 return RequiresFlags;
657 }
658
__tgt_rtl_init_device(int device_id)659 int32_t __tgt_rtl_init_device(int device_id) {
660 hsa_status_t err;
661
662 // this is per device id init
663 DP("Initialize the device id: %d\n", device_id);
664
665 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
666
667 // Get number of Compute Unit
668 uint32_t compute_units = 0;
669 err = hsa_agent_get_info(
670 agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
671 &compute_units);
672 if (err != HSA_STATUS_SUCCESS) {
673 DeviceInfo.ComputeUnits[device_id] = 1;
674 DP("Error getting compute units : settiing to 1\n");
675 } else {
676 DeviceInfo.ComputeUnits[device_id] = compute_units;
677 DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
678 }
679 if (print_kernel_trace == 4)
680 fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id,
681 DeviceInfo.ComputeUnits[device_id]);
682
683 // Query attributes to determine number of threads/block and blocks/grid.
684 uint16_t workgroup_max_dim[3];
685 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
686 &workgroup_max_dim);
687 if (err != HSA_STATUS_SUCCESS) {
688 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
689 DP("Error getting grid dims: num groups : %d\n",
690 RTLDeviceInfoTy::DefaultNumTeams);
691 } else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
692 DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
693 DP("Using %d ROCm blocks per grid\n",
694 DeviceInfo.GroupsPerDevice[device_id]);
695 } else {
696 DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
697 DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
698 "at the hard limit\n",
699 workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
700 }
701
702 // Get thread limit
703 hsa_dim3_t grid_max_dim;
704 err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
705 if (err == HSA_STATUS_SUCCESS) {
706 DeviceInfo.ThreadsPerGroup[device_id] =
707 reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
708 DeviceInfo.GroupsPerDevice[device_id];
709 if ((DeviceInfo.ThreadsPerGroup[device_id] >
710 RTLDeviceInfoTy::Max_WG_Size) ||
711 DeviceInfo.ThreadsPerGroup[device_id] == 0) {
712 DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
713 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
714 } else {
715 DP("Using ROCm Queried thread limit: %d\n",
716 DeviceInfo.ThreadsPerGroup[device_id]);
717 }
718 } else {
719 DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
720 DP("Error getting max block dimension, use default:%d \n",
721 RTLDeviceInfoTy::Max_WG_Size);
722 }
723
724 // Get wavefront size
725 uint32_t wavefront_size = 0;
726 err =
727 hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
728 if (err == HSA_STATUS_SUCCESS) {
729 DP("Queried wavefront size: %d\n", wavefront_size);
730 DeviceInfo.WarpSize[device_id] = wavefront_size;
731 } else {
732 DP("Default wavefront size: %d\n",
733 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]);
734 DeviceInfo.WarpSize[device_id] =
735 llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
736 }
737
738 // Adjust teams to the env variables
739 if (DeviceInfo.EnvTeamLimit > 0 &&
740 DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) {
741 DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit;
742 DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
743 DeviceInfo.EnvTeamLimit);
744 }
745
746 // Set default number of teams
747 if (DeviceInfo.EnvNumTeams > 0) {
748 DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams;
749 DP("Default number of teams set according to environment %d\n",
750 DeviceInfo.EnvNumTeams);
751 } else {
752 DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
753 DP("Default number of teams set according to library's default %d\n",
754 RTLDeviceInfoTy::DefaultNumTeams);
755 }
756
757 if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) {
758 DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id];
759 DP("Default number of teams exceeds device limit, capping at %d\n",
760 DeviceInfo.GroupsPerDevice[device_id]);
761 }
762
763 // Set default number of threads
764 DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
765 DP("Default number of threads set according to library's default %d\n",
766 RTLDeviceInfoTy::Default_WG_Size);
767 if (DeviceInfo.NumThreads[device_id] >
768 DeviceInfo.ThreadsPerGroup[device_id]) {
769 DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id];
770 DP("Default number of threads exceeds device limit, capping at %d\n",
771 DeviceInfo.ThreadsPerGroup[device_id]);
772 }
773
774 DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
775 device_id, DeviceInfo.GroupsPerDevice[device_id],
776 DeviceInfo.ThreadsPerGroup[device_id]);
777
778 DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
779 DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
780 DeviceInfo.GroupsPerDevice[device_id],
781 DeviceInfo.GroupsPerDevice[device_id] *
782 DeviceInfo.ThreadsPerGroup[device_id]);
783
784 return OFFLOAD_SUCCESS;
785 }
786
787 namespace {
find_only_SHT_HASH(Elf * elf)788 Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
789 size_t N;
790 int rc = elf_getshdrnum(elf, &N);
791 if (rc != 0) {
792 return nullptr;
793 }
794
795 Elf64_Shdr *result = nullptr;
796 for (size_t i = 0; i < N; i++) {
797 Elf_Scn *scn = elf_getscn(elf, i);
798 if (scn) {
799 Elf64_Shdr *shdr = elf64_getshdr(scn);
800 if (shdr) {
801 if (shdr->sh_type == SHT_HASH) {
802 if (result == nullptr) {
803 result = shdr;
804 } else {
805 // multiple SHT_HASH sections not handled
806 return nullptr;
807 }
808 }
809 }
810 }
811 }
812 return result;
813 }
814
elf_lookup(Elf * elf,char * base,Elf64_Shdr * section_hash,const char * symname)815 const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
816 const char *symname) {
817
818 assert(section_hash);
819 size_t section_symtab_index = section_hash->sh_link;
820 Elf64_Shdr *section_symtab =
821 elf64_getshdr(elf_getscn(elf, section_symtab_index));
822 size_t section_strtab_index = section_symtab->sh_link;
823
824 const Elf64_Sym *symtab =
825 reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
826
827 const uint32_t *hashtab =
828 reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
829
830 // Layout:
831 // nbucket
832 // nchain
833 // bucket[nbucket]
834 // chain[nchain]
835 uint32_t nbucket = hashtab[0];
836 const uint32_t *bucket = &hashtab[2];
837 const uint32_t *chain = &hashtab[nbucket + 2];
838
839 const size_t max = strlen(symname) + 1;
840 const uint32_t hash = elf_hash(symname);
841 for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
842 char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
843 if (strncmp(symname, n, max) == 0) {
844 return &symtab[i];
845 }
846 }
847
848 return nullptr;
849 }
850
851 typedef struct {
852 void *addr = nullptr;
853 uint32_t size = UINT32_MAX;
854 } symbol_info;
855
get_symbol_info_without_loading(Elf * elf,char * base,const char * symname,symbol_info * res)856 int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
857 symbol_info *res) {
858 if (elf_kind(elf) != ELF_K_ELF) {
859 return 1;
860 }
861
862 Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
863 if (!section_hash) {
864 return 1;
865 }
866
867 const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
868 if (!sym) {
869 return 1;
870 }
871
872 if (sym->st_size > UINT32_MAX) {
873 return 1;
874 }
875
876 res->size = static_cast<uint32_t>(sym->st_size);
877 res->addr = sym->st_value + base;
878 return 0;
879 }
880
get_symbol_info_without_loading(char * base,size_t img_size,const char * symname,symbol_info * res)881 int get_symbol_info_without_loading(char *base, size_t img_size,
882 const char *symname, symbol_info *res) {
883 Elf *elf = elf_memory(base, img_size);
884 if (elf) {
885 int rc = get_symbol_info_without_loading(elf, base, symname, res);
886 elf_end(elf);
887 return rc;
888 }
889 return 1;
890 }
891
interop_get_symbol_info(char * base,size_t img_size,const char * symname,void ** var_addr,uint32_t * var_size)892 atmi_status_t interop_get_symbol_info(char *base, size_t img_size,
893 const char *symname, void **var_addr,
894 uint32_t *var_size) {
895 symbol_info si;
896 int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
897 if (rc == 0) {
898 *var_addr = si.addr;
899 *var_size = si.size;
900 return ATMI_STATUS_SUCCESS;
901 } else {
902 return ATMI_STATUS_ERROR;
903 }
904 }
905
906 template <typename C>
module_register_from_memory_to_place(void * module_bytes,size_t module_size,atmi_place_t place,C cb)907 atmi_status_t module_register_from_memory_to_place(void *module_bytes,
908 size_t module_size,
909 atmi_place_t place, C cb) {
910 auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t {
911 C *unwrapped = static_cast<C *>(cb_state);
912 return (*unwrapped)(data, size);
913 };
914 return atmi_module_register_from_memory_to_place(
915 module_bytes, module_size, place, L, static_cast<void *>(&cb));
916 }
917 } // namespace
918
get_device_State_bytes(char * ImageStart,size_t img_size)919 static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
920 uint64_t device_State_bytes = 0;
921 {
922 // If this is the deviceRTL, get the state variable size
923 symbol_info size_si;
924 int rc = get_symbol_info_without_loading(
925 ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
926
927 if (rc == 0) {
928 if (size_si.size != sizeof(uint64_t)) {
929 fprintf(stderr,
930 "Found device_State_size variable with wrong size, aborting\n");
931 exit(1);
932 }
933
934 // Read number of bytes directly from the elf
935 memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
936 }
937 }
938 return device_State_bytes;
939 }
940
941 static __tgt_target_table *
942 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
943
944 static __tgt_target_table *
945 __tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
946
__tgt_rtl_load_binary(int32_t device_id,__tgt_device_image * image)947 __tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
948 __tgt_device_image *image) {
949 DeviceInfo.load_run_lock.lock();
950 __tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
951 DeviceInfo.load_run_lock.unlock();
952 return res;
953 }
954
atmi_calloc(void ** ret_ptr,size_t size,atmi_mem_place_t place)955 static atmi_status_t atmi_calloc(void **ret_ptr, size_t size,
956 atmi_mem_place_t place) {
957 uint64_t rounded = 4 * ((size + 3) / 4);
958 void *ptr;
959 atmi_status_t err = atmi_malloc(&ptr, rounded, place);
960 if (err != ATMI_STATUS_SUCCESS) {
961 return err;
962 }
963
964 hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4);
965 if (rc != HSA_STATUS_SUCCESS) {
966 fprintf(stderr, "zero fill device_state failed with %u\n", rc);
967 atmi_free(ptr);
968 return ATMI_STATUS_ERROR;
969 }
970
971 *ret_ptr = ptr;
972 return ATMI_STATUS_SUCCESS;
973 }
974
__tgt_rtl_load_binary_locked(int32_t device_id,__tgt_device_image * image)975 __tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
976 __tgt_device_image *image) {
977 // This function loads the device image onto gpu[device_id] and does other
978 // per-image initialization work. Specifically:
979 //
980 // - Initialize an omptarget_device_environmentTy instance embedded in the
981 // image at the symbol "omptarget_device_environment"
982 // Fields debug_level, device_num, num_devices. Used by the deviceRTL.
983 //
984 // - Allocate a large array per-gpu (could be moved to init_device)
985 // - Read a uint64_t at symbol omptarget_nvptx_device_State_size
986 // - Allocate at least that many bytes of gpu memory
987 // - Zero initialize it
988 // - Write the pointer to the symbol omptarget_nvptx_device_State
989 //
990 // - Pulls some per-kernel information together from various sources and
991 // records it in the KernelsList for quicker access later
992 //
993 // The initialization can be done before or after loading the image onto the
994 // gpu. This function presently does a mixture. Using the hsa api to get/set
995 // the information is simpler to implement, in exchange for more complicated
996 // runtime behaviour. E.g. launching a kernel or using dma to get eight bytes
997 // back from the gpu vs a hashtable lookup on the host.
998
999 const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
1000
1001 DeviceInfo.clearOffloadEntriesTable(device_id);
1002
1003 // We do not need to set the ELF version because the caller of this function
1004 // had to do that to decide the right runtime to use
1005
1006 if (!elf_machine_id_is_amdgcn(image)) {
1007 return NULL;
1008 }
1009
1010 omptarget_device_environmentTy host_device_env;
1011 host_device_env.num_devices = DeviceInfo.NumberOfDevices;
1012 host_device_env.device_num = device_id;
1013 host_device_env.debug_level = 0;
1014 #ifdef OMPTARGET_DEBUG
1015 if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
1016 host_device_env.debug_level = std::stoi(envStr);
1017 }
1018 #endif
1019
1020 auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t {
1021 const char *device_env_Name = "omptarget_device_environment";
1022 symbol_info si;
1023 int rc = get_symbol_info_without_loading((char *)image->ImageStart,
1024 img_size, device_env_Name, &si);
1025 if (rc != 0) {
1026 DP("Finding global device environment '%s' - symbol missing.\n",
1027 device_env_Name);
1028 // no need to return FAIL, consider this is a not a device debug build.
1029 return ATMI_STATUS_SUCCESS;
1030 }
1031 if (si.size != sizeof(host_device_env)) {
1032 return ATMI_STATUS_ERROR;
1033 }
1034 DP("Setting global device environment %u bytes\n", si.size);
1035 uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
1036 void *pos = (char *)data + offset;
1037 memcpy(pos, &host_device_env, sizeof(host_device_env));
1038 return ATMI_STATUS_SUCCESS;
1039 };
1040
1041 atmi_status_t err;
1042 {
1043 err = module_register_from_memory_to_place(
1044 (void *)image->ImageStart, img_size, get_gpu_place(device_id),
1045 on_deserialized_data);
1046
1047 check("Module registering", err);
1048 if (err != ATMI_STATUS_SUCCESS) {
1049 char GPUName[64] = "--unknown gpu--";
1050 hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
1051 (void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
1052 (void *)GPUName);
1053 fprintf(stderr,
1054 "Possible gpu arch mismatch: %s, please check"
1055 " compiler: -march=<gpu> flag\n",
1056 GPUName);
1057 return NULL;
1058 }
1059 }
1060
1061 DP("ATMI module successfully loaded!\n");
1062
1063 {
1064 // the device_State array is either large value in bss or a void* that
1065 // needs to be assigned to a pointer to an array of size device_state_bytes
1066
1067 void *state_ptr;
1068 uint32_t state_ptr_size;
1069 atmi_status_t err = atmi_interop_hsa_get_symbol_info(
1070 get_gpu_mem_place(device_id), "omptarget_nvptx_device_State",
1071 &state_ptr, &state_ptr_size);
1072
1073 if (err != ATMI_STATUS_SUCCESS) {
1074 fprintf(stderr, "failed to find device_state symbol\n");
1075 return NULL;
1076 }
1077
1078 if (state_ptr_size < sizeof(void *)) {
1079 fprintf(stderr, "unexpected size of state_ptr %u != %zu\n",
1080 state_ptr_size, sizeof(void *));
1081 return NULL;
1082 }
1083
1084 // if it's larger than a void*, assume it's a bss array and no further
1085 // initialization is required. Only try to set up a pointer for
1086 // sizeof(void*)
1087 if (state_ptr_size == sizeof(void *)) {
1088 uint64_t device_State_bytes =
1089 get_device_State_bytes((char *)image->ImageStart, img_size);
1090 if (device_State_bytes == 0) {
1091 return NULL;
1092 }
1093
1094 auto &dss = DeviceInfo.deviceStateStore[device_id];
1095 if (dss.first.get() == nullptr) {
1096 assert(dss.second == 0);
1097 void *ptr = NULL;
1098 atmi_status_t err =
1099 atmi_calloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id));
1100 if (err != ATMI_STATUS_SUCCESS) {
1101 fprintf(stderr, "Failed to allocate device_state array\n");
1102 return NULL;
1103 }
1104 dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr},
1105 device_State_bytes};
1106 }
1107
1108 void *ptr = dss.first.get();
1109 if (device_State_bytes != dss.second) {
1110 fprintf(stderr, "Inconsistent sizes of device_State unsupported\n");
1111 exit(1);
1112 }
1113
1114 // write ptr to device memory so it can be used by later kernels
1115 err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr,
1116 sizeof(void *), device_id);
1117 if (err != ATMI_STATUS_SUCCESS) {
1118 fprintf(stderr, "memcpy install of state_ptr failed\n");
1119 return NULL;
1120 }
1121 }
1122 }
1123
1124 // TODO: Check with Guansong to understand the below comment more thoroughly.
1125 // Here, we take advantage of the data that is appended after img_end to get
1126 // the symbols' name we need to load. This data consist of the host entries
1127 // begin and end as well as the target name (see the offloading linker script
1128 // creation in clang compiler).
1129
1130 // Find the symbols in the module by name. The name can be obtain by
1131 // concatenating the host entry name with the target name
1132
1133 __tgt_offload_entry *HostBegin = image->EntriesBegin;
1134 __tgt_offload_entry *HostEnd = image->EntriesEnd;
1135
1136 for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
1137
1138 if (!e->addr) {
1139 // The host should have always something in the address to
1140 // uniquely identify the target region.
1141 fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n",
1142 (unsigned long long)e->size);
1143 return NULL;
1144 }
1145
1146 if (e->size) {
1147 __tgt_offload_entry entry = *e;
1148
1149 void *varptr;
1150 uint32_t varsize;
1151
1152 err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id),
1153 e->name, &varptr, &varsize);
1154
1155 if (err != ATMI_STATUS_SUCCESS) {
1156 DP("Loading global '%s' (Failed)\n", e->name);
1157 // Inform the user what symbol prevented offloading
1158 fprintf(stderr, "Loading global '%s' (Failed)\n", e->name);
1159 return NULL;
1160 }
1161
1162 if (varsize != e->size) {
1163 DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
1164 varsize, e->size);
1165 return NULL;
1166 }
1167
1168 DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
1169 DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
1170 entry.addr = (void *)varptr;
1171
1172 DeviceInfo.addOffloadEntry(device_id, entry);
1173
1174 if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
1175 e->flags & OMP_DECLARE_TARGET_LINK) {
1176 // If unified memory is present any target link variables
1177 // can access host addresses directly. There is no longer a
1178 // need for device copies.
1179 err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr,
1180 sizeof(void *), device_id);
1181 if (err != ATMI_STATUS_SUCCESS)
1182 DP("Error when copying USM\n");
1183 DP("Copy linked variable host address (" DPxMOD ")"
1184 "to device address (" DPxMOD ")\n",
1185 DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
1186 }
1187
1188 continue;
1189 }
1190
1191 DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
1192
1193 atmi_mem_place_t place = get_gpu_mem_place(device_id);
1194 uint32_t kernarg_segment_size;
1195 err = atmi_interop_hsa_get_kernel_info(
1196 place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE,
1197 &kernarg_segment_size);
1198
1199 // each arg is a void * in this openmp implementation
1200 uint32_t arg_num = kernarg_segment_size / sizeof(void *);
1201 std::vector<size_t> arg_sizes(arg_num);
1202 for (std::vector<size_t>::iterator it = arg_sizes.begin();
1203 it != arg_sizes.end(); it++) {
1204 *it = sizeof(void *);
1205 }
1206
1207 // default value GENERIC (in case symbol is missing from cubin file)
1208 int8_t ExecModeVal = ExecutionModeType::GENERIC;
1209
1210 // get flat group size if present, else Default_WG_Size
1211 int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1212
1213 // get Kernel Descriptor if present.
1214 // Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
1215 struct KernDescValType {
1216 uint16_t Version;
1217 uint16_t TSize;
1218 uint16_t WG_Size;
1219 uint8_t Mode;
1220 };
1221 struct KernDescValType KernDescVal;
1222 std::string KernDescNameStr(e->name);
1223 KernDescNameStr += "_kern_desc";
1224 const char *KernDescName = KernDescNameStr.c_str();
1225
1226 void *KernDescPtr;
1227 uint32_t KernDescSize;
1228 void *CallStackAddr = nullptr;
1229 err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1230 KernDescName, &KernDescPtr, &KernDescSize);
1231
1232 if (err == ATMI_STATUS_SUCCESS) {
1233 if ((size_t)KernDescSize != sizeof(KernDescVal))
1234 DP("Loading global computation properties '%s' - size mismatch (%u != "
1235 "%lu)\n",
1236 KernDescName, KernDescSize, sizeof(KernDescVal));
1237
1238 memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
1239
1240 // Check structure size against recorded size.
1241 if ((size_t)KernDescSize != KernDescVal.TSize)
1242 DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
1243 sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
1244
1245 DP("After loading global for %s KernDesc \n", KernDescName);
1246 DP("KernDesc: Version: %d\n", KernDescVal.Version);
1247 DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
1248 DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
1249 DP("KernDesc: Mode: %d\n", KernDescVal.Mode);
1250
1251 // Get ExecMode
1252 ExecModeVal = KernDescVal.Mode;
1253 DP("ExecModeVal %d\n", ExecModeVal);
1254 if (KernDescVal.WG_Size == 0) {
1255 KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
1256 DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
1257 }
1258 WGSizeVal = KernDescVal.WG_Size;
1259 DP("WGSizeVal %d\n", WGSizeVal);
1260 check("Loading KernDesc computation property", err);
1261 } else {
1262 DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
1263
1264 // Generic
1265 std::string ExecModeNameStr(e->name);
1266 ExecModeNameStr += "_exec_mode";
1267 const char *ExecModeName = ExecModeNameStr.c_str();
1268
1269 void *ExecModePtr;
1270 uint32_t varsize;
1271 err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1272 ExecModeName, &ExecModePtr, &varsize);
1273
1274 if (err == ATMI_STATUS_SUCCESS) {
1275 if ((size_t)varsize != sizeof(int8_t)) {
1276 DP("Loading global computation properties '%s' - size mismatch(%u != "
1277 "%lu)\n",
1278 ExecModeName, varsize, sizeof(int8_t));
1279 return NULL;
1280 }
1281
1282 memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
1283
1284 DP("After loading global for %s ExecMode = %d\n", ExecModeName,
1285 ExecModeVal);
1286
1287 if (ExecModeVal < 0 || ExecModeVal > 1) {
1288 DP("Error wrong exec_mode value specified in HSA code object file: "
1289 "%d\n",
1290 ExecModeVal);
1291 return NULL;
1292 }
1293 } else {
1294 DP("Loading global exec_mode '%s' - symbol missing, using default "
1295 "value "
1296 "GENERIC (1)\n",
1297 ExecModeName);
1298 }
1299 check("Loading computation property", err);
1300
1301 // Flat group size
1302 std::string WGSizeNameStr(e->name);
1303 WGSizeNameStr += "_wg_size";
1304 const char *WGSizeName = WGSizeNameStr.c_str();
1305
1306 void *WGSizePtr;
1307 uint32_t WGSize;
1308 err = interop_get_symbol_info((char *)image->ImageStart, img_size,
1309 WGSizeName, &WGSizePtr, &WGSize);
1310
1311 if (err == ATMI_STATUS_SUCCESS) {
1312 if ((size_t)WGSize != sizeof(int16_t)) {
1313 DP("Loading global computation properties '%s' - size mismatch (%u "
1314 "!= "
1315 "%lu)\n",
1316 WGSizeName, WGSize, sizeof(int16_t));
1317 return NULL;
1318 }
1319
1320 memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
1321
1322 DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
1323
1324 if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
1325 WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
1326 DP("Error wrong WGSize value specified in HSA code object file: "
1327 "%d\n",
1328 WGSizeVal);
1329 WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
1330 }
1331 } else {
1332 DP("Warning: Loading WGSize '%s' - symbol not found, "
1333 "using default value %d\n",
1334 WGSizeName, WGSizeVal);
1335 }
1336
1337 check("Loading WGSize computation property", err);
1338 }
1339
1340 KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id,
1341 CallStackAddr, e->name,
1342 kernarg_segment_size));
1343 __tgt_offload_entry entry = *e;
1344 entry.addr = (void *)&KernelsList.back();
1345 DeviceInfo.addOffloadEntry(device_id, entry);
1346 DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
1347 }
1348
1349 return DeviceInfo.getOffloadEntriesTable(device_id);
1350 }
1351
__tgt_rtl_data_alloc(int device_id,int64_t size,void *)1352 void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) {
1353 void *ptr = NULL;
1354 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1355 atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id));
1356 DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
1357 (long long unsigned)(Elf64_Addr)ptr);
1358 ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL;
1359 return ptr;
1360 }
1361
__tgt_rtl_data_submit(int device_id,void * tgt_ptr,void * hst_ptr,int64_t size)1362 int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
1363 int64_t size) {
1364 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1365 __tgt_async_info async_info;
1366 int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info);
1367 if (rc != OFFLOAD_SUCCESS)
1368 return OFFLOAD_FAIL;
1369
1370 return __tgt_rtl_synchronize(device_id, &async_info);
1371 }
1372
__tgt_rtl_data_submit_async(int device_id,void * tgt_ptr,void * hst_ptr,int64_t size,__tgt_async_info * async_info_ptr)1373 int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
1374 int64_t size,
1375 __tgt_async_info *async_info_ptr) {
1376 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1377 if (async_info_ptr) {
1378 initAsyncInfoPtr(async_info_ptr);
1379 return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr);
1380 } else {
1381 return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
1382 }
1383 }
1384
__tgt_rtl_data_retrieve(int device_id,void * hst_ptr,void * tgt_ptr,int64_t size)1385 int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
1386 int64_t size) {
1387 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1388 __tgt_async_info async_info;
1389 int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info);
1390 if (rc != OFFLOAD_SUCCESS)
1391 return OFFLOAD_FAIL;
1392
1393 return __tgt_rtl_synchronize(device_id, &async_info);
1394 }
1395
__tgt_rtl_data_retrieve_async(int device_id,void * hst_ptr,void * tgt_ptr,int64_t size,__tgt_async_info * async_info_ptr)1396 int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
1397 void *tgt_ptr, int64_t size,
1398 __tgt_async_info *async_info_ptr) {
1399 assert(async_info_ptr && "async_info is nullptr");
1400 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1401 initAsyncInfoPtr(async_info_ptr);
1402 return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr);
1403 }
1404
__tgt_rtl_data_delete(int device_id,void * tgt_ptr)1405 int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
1406 assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
1407 atmi_status_t err;
1408 DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
1409 err = atmi_free(tgt_ptr);
1410 if (err != ATMI_STATUS_SUCCESS) {
1411 DP("Error when freeing CUDA memory\n");
1412 return OFFLOAD_FAIL;
1413 }
1414 return OFFLOAD_SUCCESS;
1415 }
1416
1417 // Determine launch values for threadsPerGroup and num_groups.
1418 // Outputs: treadsPerGroup, num_groups
1419 // Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode,
1420 // EnvTeamLimit, EnvNumTeams, num_teams, thread_limit,
1421 // loop_tripcount.
getLaunchVals(int & threadsPerGroup,int & num_groups,int ConstWGSize,int ExecutionMode,int EnvTeamLimit,int EnvNumTeams,int num_teams,int thread_limit,uint64_t loop_tripcount)1422 void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize,
1423 int ExecutionMode, int EnvTeamLimit, int EnvNumTeams,
1424 int num_teams, int thread_limit, uint64_t loop_tripcount) {
1425
1426 int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0
1427 ? DeviceInfo.EnvMaxTeamsDefault
1428 : DeviceInfo.Max_Teams;
1429 if (Max_Teams > DeviceInfo.HardTeamLimit)
1430 Max_Teams = DeviceInfo.HardTeamLimit;
1431
1432 if (print_kernel_trace == 4) {
1433 fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n",
1434 RTLDeviceInfoTy::Max_Teams);
1435 fprintf(stderr, "Max_Teams: %d\n", Max_Teams);
1436 fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n",
1437 RTLDeviceInfoTy::Warp_Size);
1438 fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n",
1439 RTLDeviceInfoTy::Max_WG_Size);
1440 fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n",
1441 RTLDeviceInfoTy::Default_WG_Size);
1442 fprintf(stderr, "thread_limit: %d\n", thread_limit);
1443 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1444 fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize);
1445 }
1446 // check for thread_limit() clause
1447 if (thread_limit > 0) {
1448 threadsPerGroup = thread_limit;
1449 DP("Setting threads per block to requested %d\n", thread_limit);
1450 if (ExecutionMode == GENERIC) { // Add master warp for GENERIC
1451 threadsPerGroup += RTLDeviceInfoTy::Warp_Size;
1452 DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size);
1453 }
1454 if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
1455 threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
1456 DP("Setting threads per block to maximum %d\n", threadsPerGroup);
1457 }
1458 }
1459 // check flat_max_work_group_size attr here
1460 if (threadsPerGroup > ConstWGSize) {
1461 threadsPerGroup = ConstWGSize;
1462 DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
1463 threadsPerGroup);
1464 }
1465 if (print_kernel_trace == 4)
1466 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1467 DP("Preparing %d threads\n", threadsPerGroup);
1468
1469 // Set default num_groups (teams)
1470 if (DeviceInfo.EnvTeamLimit > 0)
1471 num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit)
1472 ? Max_Teams
1473 : DeviceInfo.EnvTeamLimit;
1474 else
1475 num_groups = Max_Teams;
1476 DP("Set default num of groups %d\n", num_groups);
1477
1478 if (print_kernel_trace == 4) {
1479 fprintf(stderr, "num_groups: %d\n", num_groups);
1480 fprintf(stderr, "num_teams: %d\n", num_teams);
1481 }
1482
1483 // Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
1484 // This reduction is typical for default case (no thread_limit clause).
1485 // or when user goes crazy with num_teams clause.
1486 // FIXME: We cant distinguish between a constant or variable thread limit.
1487 // So we only handle constant thread_limits.
1488 if (threadsPerGroup >
1489 RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024
1490 // Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size
1491 // here?
1492 num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
1493
1494 // check for num_teams() clause
1495 if (num_teams > 0) {
1496 num_groups = (num_teams < num_groups) ? num_teams : num_groups;
1497 }
1498 if (print_kernel_trace == 4) {
1499 fprintf(stderr, "num_groups: %d\n", num_groups);
1500 fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams);
1501 fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit);
1502 }
1503
1504 if (DeviceInfo.EnvNumTeams > 0) {
1505 num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams
1506 : num_groups;
1507 DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams);
1508 } else if (DeviceInfo.EnvTeamLimit > 0) {
1509 num_groups = (DeviceInfo.EnvTeamLimit < num_groups)
1510 ? DeviceInfo.EnvTeamLimit
1511 : num_groups;
1512 DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit);
1513 } else {
1514 if (num_teams <= 0) {
1515 if (loop_tripcount > 0) {
1516 if (ExecutionMode == SPMD) {
1517 // round up to the nearest integer
1518 num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
1519 } else {
1520 num_groups = loop_tripcount;
1521 }
1522 DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
1523 "threads per block %d\n",
1524 num_groups, loop_tripcount, threadsPerGroup);
1525 }
1526 } else {
1527 num_groups = num_teams;
1528 }
1529 if (num_groups > Max_Teams) {
1530 num_groups = Max_Teams;
1531 if (print_kernel_trace == 4)
1532 fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups,
1533 Max_Teams);
1534 }
1535 if (num_groups > num_teams && num_teams > 0) {
1536 num_groups = num_teams;
1537 if (print_kernel_trace == 4)
1538 fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n",
1539 num_groups, num_teams);
1540 }
1541 }
1542
1543 // num_teams clause always honored, no matter what, unless DEFAULT is active.
1544 if (num_teams > 0) {
1545 num_groups = num_teams;
1546 // Cap num_groups to EnvMaxTeamsDefault if set.
1547 if (DeviceInfo.EnvMaxTeamsDefault > 0 &&
1548 num_groups > DeviceInfo.EnvMaxTeamsDefault)
1549 num_groups = DeviceInfo.EnvMaxTeamsDefault;
1550 }
1551 if (print_kernel_trace == 4) {
1552 fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
1553 fprintf(stderr, "num_groups: %d\n", num_groups);
1554 fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount);
1555 }
1556 DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
1557 threadsPerGroup);
1558 }
1559
acquire_available_packet_id(hsa_queue_t * queue)1560 static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
1561 uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
1562 bool full = true;
1563 while (full) {
1564 full =
1565 packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
1566 }
1567 return packet_id;
1568 }
1569
1570 extern bool g_atmi_hostcall_required; // declared without header by atmi
1571
1572 static int32_t __tgt_rtl_run_target_team_region_locked(
1573 int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
1574 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
1575 int32_t thread_limit, uint64_t loop_tripcount);
1576
__tgt_rtl_run_target_team_region(int32_t device_id,void * tgt_entry_ptr,void ** tgt_args,ptrdiff_t * tgt_offsets,int32_t arg_num,int32_t num_teams,int32_t thread_limit,uint64_t loop_tripcount)1577 int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
1578 void **tgt_args,
1579 ptrdiff_t *tgt_offsets,
1580 int32_t arg_num, int32_t num_teams,
1581 int32_t thread_limit,
1582 uint64_t loop_tripcount) {
1583
1584 DeviceInfo.load_run_lock.lock_shared();
1585 int32_t res = __tgt_rtl_run_target_team_region_locked(
1586 device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
1587 thread_limit, loop_tripcount);
1588
1589 DeviceInfo.load_run_lock.unlock_shared();
1590 return res;
1591 }
1592
__tgt_rtl_run_target_team_region_locked(int32_t device_id,void * tgt_entry_ptr,void ** tgt_args,ptrdiff_t * tgt_offsets,int32_t arg_num,int32_t num_teams,int32_t thread_limit,uint64_t loop_tripcount)1593 int32_t __tgt_rtl_run_target_team_region_locked(
1594 int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
1595 ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
1596 int32_t thread_limit, uint64_t loop_tripcount) {
1597 // Set the context we are using
1598 // update thread limit content in gpu memory if un-initialized or specified
1599 // from host
1600
1601 DP("Run target team region thread_limit %d\n", thread_limit);
1602
1603 // All args are references.
1604 std::vector<void *> args(arg_num);
1605 std::vector<void *> ptrs(arg_num);
1606
1607 DP("Arg_num: %d\n", arg_num);
1608 for (int32_t i = 0; i < arg_num; ++i) {
1609 ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
1610 args[i] = &ptrs[i];
1611 DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
1612 }
1613
1614 KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
1615
1616 /*
1617 * Set limit based on ThreadsPerGroup and GroupsPerDevice
1618 */
1619 int num_groups = 0;
1620
1621 int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
1622
1623 getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize,
1624 KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit,
1625 DeviceInfo.EnvNumTeams,
1626 num_teams, // From run_region arg
1627 thread_limit, // From run_region arg
1628 loop_tripcount // From run_region arg
1629 );
1630
1631 if (print_kernel_trace == 4)
1632 // enum modes are SPMD, GENERIC, NONE 0,1,2
1633 fprintf(stderr,
1634 "DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
1635 "reqd:(%4dX%4d) n:%s\n",
1636 device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
1637 arg_num, num_groups, threadsPerGroup, num_teams, thread_limit,
1638 KernelInfo->Name);
1639
1640 // Run on the device.
1641 {
1642 hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id];
1643 uint64_t packet_id = acquire_available_packet_id(queue);
1644
1645 const uint32_t mask = queue->size - 1; // size is a power of 2
1646 hsa_kernel_dispatch_packet_t *packet =
1647 (hsa_kernel_dispatch_packet_t *)queue->base_address +
1648 (packet_id & mask);
1649
1650 // packet->header is written last
1651 packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
1652 packet->workgroup_size_x = threadsPerGroup;
1653 packet->workgroup_size_y = 1;
1654 packet->workgroup_size_z = 1;
1655 packet->reserved0 = 0;
1656 packet->grid_size_x = num_groups * threadsPerGroup;
1657 packet->grid_size_y = 1;
1658 packet->grid_size_z = 1;
1659 packet->private_segment_size = 0;
1660 packet->group_segment_size = 0;
1661 packet->kernel_object = 0;
1662 packet->kernarg_address = 0; // use the block allocator
1663 packet->reserved2 = 0; // atmi writes id_ here
1664 packet->completion_signal = {0}; // may want a pool of signals
1665
1666 std::string kernel_name = std::string(KernelInfo->Name);
1667 {
1668 assert(KernelInfoTable[device_id].find(kernel_name) !=
1669 KernelInfoTable[device_id].end());
1670 auto it = KernelInfoTable[device_id][kernel_name];
1671 packet->kernel_object = it.kernel_object;
1672 packet->private_segment_size = it.private_segment_size;
1673 packet->group_segment_size = it.group_segment_size;
1674 assert(arg_num == (int)it.num_args);
1675 }
1676
1677 KernelArgPool *ArgPool = nullptr;
1678 {
1679 auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
1680 if (it != KernelArgPoolMap.end()) {
1681 ArgPool = (it->second).get();
1682 }
1683 }
1684 if (!ArgPool) {
1685 fprintf(stderr, "Warning: No ArgPool for %s on device %d\n",
1686 KernelInfo->Name, device_id);
1687 }
1688 {
1689 void *kernarg = nullptr;
1690 if (ArgPool) {
1691 assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
1692 kernarg = ArgPool->allocate(arg_num);
1693 }
1694 if (!kernarg) {
1695 printf("Allocate kernarg failed\n");
1696 exit(1);
1697 }
1698
1699 // Copy explicit arguments
1700 for (int i = 0; i < arg_num; i++) {
1701 memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
1702 }
1703
1704 // Initialize implicit arguments. ATMI seems to leave most fields
1705 // uninitialized
1706 atmi_implicit_args_t *impl_args =
1707 reinterpret_cast<atmi_implicit_args_t *>(
1708 static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
1709 memset(impl_args, 0,
1710 sizeof(atmi_implicit_args_t)); // may not be necessary
1711 impl_args->offset_x = 0;
1712 impl_args->offset_y = 0;
1713 impl_args->offset_z = 0;
1714
1715 // assign a hostcall buffer for the selected Q
1716 if (g_atmi_hostcall_required) {
1717 // hostrpc_assign_buffer is not thread safe, and this function is
1718 // under a multiple reader lock, not a writer lock.
1719 static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER;
1720 pthread_mutex_lock(&hostcall_init_lock);
1721 impl_args->hostcall_ptr = hostrpc_assign_buffer(
1722 DeviceInfo.HSAAgents[device_id], queue, device_id);
1723 pthread_mutex_unlock(&hostcall_init_lock);
1724 if (!impl_args->hostcall_ptr) {
1725 DP("hostrpc_assign_buffer failed, gpu would dereference null and "
1726 "error\n");
1727 return OFFLOAD_FAIL;
1728 }
1729 }
1730
1731 packet->kernarg_address = kernarg;
1732 }
1733
1734 {
1735 hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
1736 if (s.handle == 0) {
1737 printf("Failed to get signal instance\n");
1738 exit(1);
1739 }
1740 packet->completion_signal = s;
1741 hsa_signal_store_relaxed(packet->completion_signal, 1);
1742 }
1743
1744 core::packet_store_release(
1745 reinterpret_cast<uint32_t *>(packet),
1746 core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0,
1747 ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM),
1748 packet->setup);
1749
1750 hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
1751
1752 while (hsa_signal_wait_scacquire(packet->completion_signal,
1753 HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
1754 HSA_WAIT_STATE_BLOCKED) != 0)
1755 ;
1756
1757 assert(ArgPool);
1758 ArgPool->deallocate(packet->kernarg_address);
1759 DeviceInfo.FreeSignalPool.push(packet->completion_signal);
1760 }
1761
1762 DP("Kernel completed\n");
1763 return OFFLOAD_SUCCESS;
1764 }
1765
__tgt_rtl_run_target_region(int32_t device_id,void * tgt_entry_ptr,void ** tgt_args,ptrdiff_t * tgt_offsets,int32_t arg_num)1766 int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
1767 void **tgt_args, ptrdiff_t *tgt_offsets,
1768 int32_t arg_num) {
1769 // use one team and one thread
1770 // fix thread num
1771 int32_t team_num = 1;
1772 int32_t thread_limit = 0; // use default
1773 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
1774 tgt_offsets, arg_num, team_num,
1775 thread_limit, 0);
1776 }
1777
__tgt_rtl_run_target_region_async(int32_t device_id,void * tgt_entry_ptr,void ** tgt_args,ptrdiff_t * tgt_offsets,int32_t arg_num,__tgt_async_info * async_info_ptr)1778 int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
1779 void *tgt_entry_ptr, void **tgt_args,
1780 ptrdiff_t *tgt_offsets,
1781 int32_t arg_num,
1782 __tgt_async_info *async_info_ptr) {
1783 assert(async_info_ptr && "async_info is nullptr");
1784 initAsyncInfoPtr(async_info_ptr);
1785
1786 // use one team and one thread
1787 // fix thread num
1788 int32_t team_num = 1;
1789 int32_t thread_limit = 0; // use default
1790 return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
1791 tgt_offsets, arg_num, team_num,
1792 thread_limit, 0);
1793 }
1794
__tgt_rtl_synchronize(int32_t device_id,__tgt_async_info * async_info_ptr)1795 int32_t __tgt_rtl_synchronize(int32_t device_id,
1796 __tgt_async_info *async_info_ptr) {
1797 assert(async_info_ptr && "async_info is nullptr");
1798
1799 // Cuda asserts that async_info_ptr->Queue is non-null, but this invariant
1800 // is not ensured by devices.cpp for amdgcn
1801 // assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr");
1802 if (async_info_ptr->Queue) {
1803 finiAsyncInfoPtr(async_info_ptr);
1804 }
1805 return OFFLOAD_SUCCESS;
1806 }
1807