1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package runner 6 7import ( 8 "crypto" 9 "crypto/hmac" 10 "crypto/md5" 11 "crypto/sha1" 12 "crypto/sha256" 13 "hash" 14 15 "golang.org/x/crypto/hkdf" 16) 17 18// Split a premaster secret in two as specified in RFC 4346, section 5. 19func splitPreMasterSecret(secret []byte) (s1, s2 []byte) { 20 s1 = secret[0 : (len(secret)+1)/2] 21 s2 = secret[len(secret)/2:] 22 return 23} 24 25// pHash implements the P_hash function, as defined in RFC 4346, section 5. 26func pHash(result, secret, seed []byte, hash func() hash.Hash) { 27 h := hmac.New(hash, secret) 28 h.Write(seed) 29 a := h.Sum(nil) 30 31 j := 0 32 for j < len(result) { 33 h.Reset() 34 h.Write(a) 35 h.Write(seed) 36 b := h.Sum(nil) 37 todo := len(b) 38 if j+todo > len(result) { 39 todo = len(result) - j 40 } 41 copy(result[j:j+todo], b) 42 j += todo 43 44 h.Reset() 45 h.Write(a) 46 a = h.Sum(nil) 47 } 48} 49 50// prf10 implements the TLS 1.0 pseudo-random function, as defined in RFC 2246, section 5. 51func prf10(result, secret, label, seed []byte) { 52 hashSHA1 := sha1.New 53 hashMD5 := md5.New 54 55 labelAndSeed := make([]byte, len(label)+len(seed)) 56 copy(labelAndSeed, label) 57 copy(labelAndSeed[len(label):], seed) 58 59 s1, s2 := splitPreMasterSecret(secret) 60 pHash(result, s1, labelAndSeed, hashMD5) 61 result2 := make([]byte, len(result)) 62 pHash(result2, s2, labelAndSeed, hashSHA1) 63 64 for i, b := range result2 { 65 result[i] ^= b 66 } 67} 68 69// prf12 implements the TLS 1.2 pseudo-random function, as defined in RFC 5246, section 5. 70func prf12(hashFunc func() hash.Hash) func(result, secret, label, seed []byte) { 71 return func(result, secret, label, seed []byte) { 72 labelAndSeed := make([]byte, len(label)+len(seed)) 73 copy(labelAndSeed, label) 74 copy(labelAndSeed[len(label):], seed) 75 76 pHash(result, secret, labelAndSeed, hashFunc) 77 } 78} 79 80// prf30 implements the SSL 3.0 pseudo-random function, as defined in 81// www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt section 6. 82func prf30(result, secret, label, seed []byte) { 83 hashSHA1 := sha1.New() 84 hashMD5 := md5.New() 85 86 done := 0 87 i := 0 88 // RFC5246 section 6.3 says that the largest PRF output needed is 128 89 // bytes. Since no more ciphersuites will be added to SSLv3, this will 90 // remain true. Each iteration gives us 16 bytes so 10 iterations will 91 // be sufficient. 92 var b [11]byte 93 for done < len(result) { 94 for j := 0; j <= i; j++ { 95 b[j] = 'A' + byte(i) 96 } 97 98 hashSHA1.Reset() 99 hashSHA1.Write(b[:i+1]) 100 hashSHA1.Write(secret) 101 hashSHA1.Write(seed) 102 digest := hashSHA1.Sum(nil) 103 104 hashMD5.Reset() 105 hashMD5.Write(secret) 106 hashMD5.Write(digest) 107 108 done += copy(result[done:], hashMD5.Sum(nil)) 109 i++ 110 } 111} 112 113const ( 114 tlsRandomLength = 32 // Length of a random nonce in TLS 1.1. 115 masterSecretLength = 48 // Length of a master secret in TLS 1.1. 116 finishedVerifyLength = 12 // Length of verify_data in a Finished message. 117) 118 119var masterSecretLabel = []byte("master secret") 120var extendedMasterSecretLabel = []byte("extended master secret") 121var keyExpansionLabel = []byte("key expansion") 122var clientFinishedLabel = []byte("client finished") 123var serverFinishedLabel = []byte("server finished") 124var finishedLabel = []byte("finished") 125var channelIDLabel = []byte("TLS Channel ID signature\x00") 126var channelIDResumeLabel = []byte("Resumption\x00") 127 128func prfForVersion(version uint16, suite *cipherSuite) func(result, secret, label, seed []byte) { 129 switch version { 130 case VersionSSL30: 131 return prf30 132 case VersionTLS10, VersionTLS11: 133 return prf10 134 case VersionTLS12: 135 return prf12(suite.hash().New) 136 } 137 panic("unknown version") 138} 139 140// masterFromPreMasterSecret generates the master secret from the pre-master 141// secret. See http://tools.ietf.org/html/rfc5246#section-8.1 142func masterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret, clientRandom, serverRandom []byte) []byte { 143 var seed [tlsRandomLength * 2]byte 144 copy(seed[0:len(clientRandom)], clientRandom) 145 copy(seed[len(clientRandom):], serverRandom) 146 masterSecret := make([]byte, masterSecretLength) 147 prfForVersion(version, suite)(masterSecret, preMasterSecret, masterSecretLabel, seed[0:]) 148 return masterSecret 149} 150 151// extendedMasterFromPreMasterSecret generates the master secret from the 152// pre-master secret when the Triple Handshake fix is in effect. See 153// https://tools.ietf.org/html/rfc7627 154func extendedMasterFromPreMasterSecret(version uint16, suite *cipherSuite, preMasterSecret []byte, h finishedHash) []byte { 155 masterSecret := make([]byte, masterSecretLength) 156 prfForVersion(version, suite)(masterSecret, preMasterSecret, extendedMasterSecretLabel, h.Sum()) 157 return masterSecret 158} 159 160// keysFromMasterSecret generates the connection keys from the master 161// secret, given the lengths of the MAC key, cipher key and IV, as defined in 162// RFC 2246, section 6.3. 163func keysFromMasterSecret(version uint16, suite *cipherSuite, masterSecret, clientRandom, serverRandom []byte, macLen, keyLen, ivLen int) (clientMAC, serverMAC, clientKey, serverKey, clientIV, serverIV []byte) { 164 var seed [tlsRandomLength * 2]byte 165 copy(seed[0:len(clientRandom)], serverRandom) 166 copy(seed[len(serverRandom):], clientRandom) 167 168 n := 2*macLen + 2*keyLen + 2*ivLen 169 keyMaterial := make([]byte, n) 170 prfForVersion(version, suite)(keyMaterial, masterSecret, keyExpansionLabel, seed[0:]) 171 clientMAC = keyMaterial[:macLen] 172 keyMaterial = keyMaterial[macLen:] 173 serverMAC = keyMaterial[:macLen] 174 keyMaterial = keyMaterial[macLen:] 175 clientKey = keyMaterial[:keyLen] 176 keyMaterial = keyMaterial[keyLen:] 177 serverKey = keyMaterial[:keyLen] 178 keyMaterial = keyMaterial[keyLen:] 179 clientIV = keyMaterial[:ivLen] 180 keyMaterial = keyMaterial[ivLen:] 181 serverIV = keyMaterial[:ivLen] 182 return 183} 184 185func newFinishedHash(wireVersion uint16, isDTLS bool, cipherSuite *cipherSuite) finishedHash { 186 var ret finishedHash 187 188 version, ok := wireToVersion(wireVersion, isDTLS) 189 if !ok { 190 panic("unknown version") 191 } 192 193 if version >= VersionTLS12 { 194 ret.hash = cipherSuite.hash() 195 196 ret.client = ret.hash.New() 197 ret.server = ret.hash.New() 198 199 if version == VersionTLS12 { 200 ret.prf = prf12(ret.hash.New) 201 } else { 202 ret.secret = make([]byte, ret.hash.Size()) 203 } 204 } else { 205 ret.hash = crypto.MD5SHA1 206 207 ret.client = sha1.New() 208 ret.server = sha1.New() 209 ret.clientMD5 = md5.New() 210 ret.serverMD5 = md5.New() 211 212 ret.prf = prf10 213 } 214 215 ret.buffer = []byte{} 216 ret.version = version 217 ret.wireVersion = wireVersion 218 return ret 219} 220 221// A finishedHash calculates the hash of a set of handshake messages suitable 222// for including in a Finished message. 223type finishedHash struct { 224 hash crypto.Hash 225 226 client hash.Hash 227 server hash.Hash 228 229 // Prior to TLS 1.2, an additional MD5 hash is required. 230 clientMD5 hash.Hash 231 serverMD5 hash.Hash 232 233 // In TLS 1.2 (and SSL 3 for implementation convenience), a 234 // full buffer is required. 235 buffer []byte 236 237 version uint16 238 wireVersion uint16 239 prf func(result, secret, label, seed []byte) 240 241 // secret, in TLS 1.3, is the running input secret. 242 secret []byte 243} 244 245func (h *finishedHash) UpdateForHelloRetryRequest() (err error) { 246 data := newByteBuilder() 247 data.addU8(typeMessageHash) 248 data.addU24(h.hash.Size()) 249 data.addBytes(h.Sum()) 250 h.client = h.hash.New() 251 h.server = h.hash.New() 252 if h.buffer != nil { 253 h.buffer = []byte{} 254 } 255 h.Write(data.finish()) 256 return nil 257} 258 259func (h *finishedHash) Write(msg []byte) (n int, err error) { 260 h.client.Write(msg) 261 h.server.Write(msg) 262 263 if h.version < VersionTLS12 { 264 h.clientMD5.Write(msg) 265 h.serverMD5.Write(msg) 266 } 267 268 if h.buffer != nil { 269 h.buffer = append(h.buffer, msg...) 270 } 271 272 return len(msg), nil 273} 274 275func (h finishedHash) Sum() []byte { 276 if h.version >= VersionTLS12 { 277 return h.client.Sum(nil) 278 } 279 280 out := make([]byte, 0, md5.Size+sha1.Size) 281 out = h.clientMD5.Sum(out) 282 return h.client.Sum(out) 283} 284 285// finishedSum30 calculates the contents of the verify_data member of a SSLv3 286// Finished message given the MD5 and SHA1 hashes of a set of handshake 287// messages. 288func finishedSum30(md5, sha1 hash.Hash, masterSecret []byte, magic []byte) []byte { 289 md5.Write(magic) 290 md5.Write(masterSecret) 291 md5.Write(ssl30Pad1[:]) 292 md5Digest := md5.Sum(nil) 293 294 md5.Reset() 295 md5.Write(masterSecret) 296 md5.Write(ssl30Pad2[:]) 297 md5.Write(md5Digest) 298 md5Digest = md5.Sum(nil) 299 300 sha1.Write(magic) 301 sha1.Write(masterSecret) 302 sha1.Write(ssl30Pad1[:40]) 303 sha1Digest := sha1.Sum(nil) 304 305 sha1.Reset() 306 sha1.Write(masterSecret) 307 sha1.Write(ssl30Pad2[:40]) 308 sha1.Write(sha1Digest) 309 sha1Digest = sha1.Sum(nil) 310 311 ret := make([]byte, len(md5Digest)+len(sha1Digest)) 312 copy(ret, md5Digest) 313 copy(ret[len(md5Digest):], sha1Digest) 314 return ret 315} 316 317var ssl3ClientFinishedMagic = [4]byte{0x43, 0x4c, 0x4e, 0x54} 318var ssl3ServerFinishedMagic = [4]byte{0x53, 0x52, 0x56, 0x52} 319 320// clientSum returns the contents of the verify_data member of a client's 321// Finished message. 322func (h finishedHash) clientSum(baseKey []byte) []byte { 323 if h.version == VersionSSL30 { 324 return finishedSum30(h.clientMD5, h.client, baseKey, ssl3ClientFinishedMagic[:]) 325 } 326 327 if h.version < VersionTLS13 { 328 out := make([]byte, finishedVerifyLength) 329 h.prf(out, baseKey, clientFinishedLabel, h.Sum()) 330 return out 331 } 332 333 clientFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size()) 334 finishedHMAC := hmac.New(h.hash.New, clientFinishedKey) 335 finishedHMAC.Write(h.appendContextHashes(nil)) 336 return finishedHMAC.Sum(nil) 337} 338 339// serverSum returns the contents of the verify_data member of a server's 340// Finished message. 341func (h finishedHash) serverSum(baseKey []byte) []byte { 342 if h.version == VersionSSL30 { 343 return finishedSum30(h.serverMD5, h.server, baseKey, ssl3ServerFinishedMagic[:]) 344 } 345 346 if h.version < VersionTLS13 { 347 out := make([]byte, finishedVerifyLength) 348 h.prf(out, baseKey, serverFinishedLabel, h.Sum()) 349 return out 350 } 351 352 serverFinishedKey := hkdfExpandLabel(h.hash, baseKey, finishedLabel, nil, h.hash.Size()) 353 finishedHMAC := hmac.New(h.hash.New, serverFinishedKey) 354 finishedHMAC.Write(h.appendContextHashes(nil)) 355 return finishedHMAC.Sum(nil) 356} 357 358// hashForClientCertificateSSL3 returns the hash to be signed for client 359// certificates in SSL 3.0. 360func (h finishedHash) hashForClientCertificateSSL3(masterSecret []byte) []byte { 361 md5Hash := md5.New() 362 md5Hash.Write(h.buffer) 363 sha1Hash := sha1.New() 364 sha1Hash.Write(h.buffer) 365 return finishedSum30(md5Hash, sha1Hash, masterSecret, nil) 366} 367 368// hashForChannelID returns the hash to be signed for TLS Channel 369// ID. If a resumption, resumeHash has the previous handshake 370// hash. Otherwise, it is nil. 371func (h finishedHash) hashForChannelID(resumeHash []byte) []byte { 372 hash := sha256.New() 373 hash.Write(channelIDLabel) 374 if resumeHash != nil { 375 hash.Write(channelIDResumeLabel) 376 hash.Write(resumeHash) 377 } 378 hash.Write(h.Sum()) 379 return hash.Sum(nil) 380} 381 382// discardHandshakeBuffer is called when there is no more need to 383// buffer the entirety of the handshake messages. 384func (h *finishedHash) discardHandshakeBuffer() { 385 h.buffer = nil 386} 387 388// zeroSecretTLS13 returns the default all zeros secret for TLS 1.3, used when a 389// given secret is not available in the handshake. See RFC 8446, section 7.1. 390func (h *finishedHash) zeroSecret() []byte { 391 return make([]byte, h.hash.Size()) 392} 393 394// addEntropy incorporates ikm into the running TLS 1.3 secret with HKDF-Expand. 395func (h *finishedHash) addEntropy(ikm []byte) { 396 h.secret = hkdf.Extract(h.hash.New, ikm, h.secret) 397} 398 399func (h *finishedHash) nextSecret() { 400 h.secret = hkdfExpandLabel(h.hash, h.secret, []byte("derived"), h.hash.New().Sum(nil), h.hash.Size()) 401} 402 403// hkdfExpandLabel implements TLS 1.3's HKDF-Expand-Label function, as defined 404// in section 7.1 of RFC 8446. 405func hkdfExpandLabel(hash crypto.Hash, secret, label, hashValue []byte, length int) []byte { 406 if len(label) > 255 || len(hashValue) > 255 { 407 panic("hkdfExpandLabel: label or hashValue too long") 408 } 409 410 versionLabel := []byte("tls13 ") 411 hkdfLabel := make([]byte, 3+len(versionLabel)+len(label)+1+len(hashValue)) 412 x := hkdfLabel 413 x[0] = byte(length >> 8) 414 x[1] = byte(length) 415 x[2] = byte(len(versionLabel) + len(label)) 416 x = x[3:] 417 copy(x, versionLabel) 418 x = x[len(versionLabel):] 419 copy(x, label) 420 x = x[len(label):] 421 x[0] = byte(len(hashValue)) 422 copy(x[1:], hashValue) 423 ret := make([]byte, length) 424 if n, err := hkdf.Expand(hash.New, secret, hkdfLabel).Read(ret); err != nil || n != length { 425 panic("hkdfExpandLabel: hkdf.Expand unexpectedly failed") 426 } 427 return ret 428} 429 430// appendContextHashes returns the concatenation of the handshake hash and the 431// resumption context hash, as used in TLS 1.3. 432func (h *finishedHash) appendContextHashes(b []byte) []byte { 433 b = h.client.Sum(b) 434 return b 435} 436 437// The following are labels for traffic secret derivation in TLS 1.3. 438var ( 439 externalPSKBinderLabel = []byte("ext binder") 440 resumptionPSKBinderLabel = []byte("res binder") 441 earlyTrafficLabel = []byte("c e traffic") 442 clientHandshakeTrafficLabel = []byte("c hs traffic") 443 serverHandshakeTrafficLabel = []byte("s hs traffic") 444 clientApplicationTrafficLabel = []byte("c ap traffic") 445 serverApplicationTrafficLabel = []byte("s ap traffic") 446 applicationTrafficLabel = []byte("traffic upd") 447 earlyExporterLabel = []byte("e exp master") 448 exporterLabel = []byte("exp master") 449 resumptionLabel = []byte("res master") 450 451 resumptionPSKLabel = []byte("resumption") 452) 453 454// deriveSecret implements TLS 1.3's Derive-Secret function, as defined in 455// section 7.1 of draft ietf-tls-tls13-16. 456func (h *finishedHash) deriveSecret(label []byte) []byte { 457 return hkdfExpandLabel(h.hash, h.secret, label, h.appendContextHashes(nil), h.hash.Size()) 458} 459 460// deriveSecretPeek is the same as deriveSecret, but it enables the caller to 461// tentatively append messages to the transcript. The |extraMessages| parameter 462// contains the bytes of these tentative messages. 463func (h *finishedHash) deriveSecretPeek(label []byte, extraMessages []byte) []byte { 464 hashPeek := h.hash.New() 465 hashPeek.Write(h.buffer) 466 hashPeek.Write(extraMessages) 467 return hkdfExpandLabel(h.hash, h.secret, label, hashPeek.Sum(nil), h.hash.Size()) 468} 469 470// The following are context strings for CertificateVerify in TLS 1.3. 471var ( 472 clientCertificateVerifyContextTLS13 = []byte("TLS 1.3, client CertificateVerify") 473 serverCertificateVerifyContextTLS13 = []byte("TLS 1.3, server CertificateVerify") 474 channelIDContextTLS13 = []byte("TLS 1.3, Channel ID") 475) 476 477// certificateVerifyMessage returns the input to be signed for CertificateVerify 478// in TLS 1.3. 479func (h *finishedHash) certificateVerifyInput(context []byte) []byte { 480 const paddingLen = 64 481 b := make([]byte, paddingLen, paddingLen+len(context)+1+2*h.hash.Size()) 482 for i := 0; i < paddingLen; i++ { 483 b[i] = 32 484 } 485 b = append(b, context...) 486 b = append(b, 0) 487 b = h.appendContextHashes(b) 488 return b 489} 490 491type trafficDirection int 492 493const ( 494 clientWrite trafficDirection = iota 495 serverWrite 496) 497 498var ( 499 keyTLS13 = []byte("key") 500 ivTLS13 = []byte("iv") 501) 502 503// deriveTrafficAEAD derives traffic keys and constructs an AEAD given a traffic 504// secret. 505func deriveTrafficAEAD(version uint16, suite *cipherSuite, secret []byte, side trafficDirection) interface{} { 506 key := hkdfExpandLabel(suite.hash(), secret, keyTLS13, nil, suite.keyLen) 507 iv := hkdfExpandLabel(suite.hash(), secret, ivTLS13, nil, suite.ivLen(version)) 508 509 return suite.aead(version, key, iv) 510} 511 512func updateTrafficSecret(hash crypto.Hash, version uint16, secret []byte) []byte { 513 return hkdfExpandLabel(hash, secret, applicationTrafficLabel, nil, hash.Size()) 514} 515 516func computePSKBinder(psk []byte, version uint16, label []byte, cipherSuite *cipherSuite, clientHello, helloRetryRequest, truncatedHello []byte) []byte { 517 finishedHash := newFinishedHash(version, false, cipherSuite) 518 finishedHash.addEntropy(psk) 519 binderKey := finishedHash.deriveSecret(label) 520 finishedHash.Write(clientHello) 521 if len(helloRetryRequest) != 0 { 522 finishedHash.UpdateForHelloRetryRequest() 523 } 524 finishedHash.Write(helloRetryRequest) 525 finishedHash.Write(truncatedHello) 526 return finishedHash.clientSum(binderKey) 527} 528 529func deriveSessionPSK(suite *cipherSuite, version uint16, masterSecret []byte, nonce []byte) []byte { 530 hash := suite.hash() 531 return hkdfExpandLabel(hash, masterSecret, resumptionPSKLabel, nonce, hash.Size()) 532} 533