1/* 2 * Copyright (c) 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a copy 5 * of this software and associated documentation files (the "Software"), to deal 6 * in the Software without restriction, including without limitation the rights 7 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 8 * copies of the Software, and to permit persons to whom the Software is 9 * furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 19 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 20 * THE SOFTWARE. 21 */ 22 23#include <clc/clc.h> 24 25#include <math/clc_remainder.h> 26#include "../clcmacro.h" 27#include "config.h" 28#include "math.h" 29 30_CLC_DEF _CLC_OVERLOAD float __clc_remquo(float x, float y, __private int *quo) 31{ 32 x = __clc_flush_denormal_if_not_supported(x); 33 y = __clc_flush_denormal_if_not_supported(y); 34 int ux = as_int(x); 35 int ax = ux & EXSIGNBIT_SP32; 36 float xa = as_float(ax); 37 int sx = ux ^ ax; 38 int ex = ax >> EXPSHIFTBITS_SP32; 39 40 int uy = as_int(y); 41 int ay = uy & EXSIGNBIT_SP32; 42 float ya = as_float(ay); 43 int sy = uy ^ ay; 44 int ey = ay >> EXPSHIFTBITS_SP32; 45 46 float xr = as_float(0x3f800000 | (ax & 0x007fffff)); 47 float yr = as_float(0x3f800000 | (ay & 0x007fffff)); 48 int c; 49 int k = ex - ey; 50 51 uint q = 0; 52 53 while (k > 0) { 54 c = xr >= yr; 55 q = (q << 1) | c; 56 xr -= c ? yr : 0.0f; 57 xr += xr; 58 --k; 59 } 60 61 c = xr > yr; 62 q = (q << 1) | c; 63 xr -= c ? yr : 0.0f; 64 65 int lt = ex < ey; 66 67 q = lt ? 0 : q; 68 xr = lt ? xa : xr; 69 yr = lt ? ya : yr; 70 71 c = (yr < 2.0f * xr) | ((yr == 2.0f * xr) & ((q & 0x1) == 0x1)); 72 xr -= c ? yr : 0.0f; 73 q += c; 74 75 float s = as_float(ey << EXPSHIFTBITS_SP32); 76 xr *= lt ? 1.0f : s; 77 78 int qsgn = sx == sy ? 1 : -1; 79 int quot = (q & 0x7f) * qsgn; 80 81 c = ax == ay; 82 quot = c ? qsgn : quot; 83 xr = c ? 0.0f : xr; 84 85 xr = as_float(sx ^ as_int(xr)); 86 87 c = ax > PINFBITPATT_SP32 | ay > PINFBITPATT_SP32 | ax == PINFBITPATT_SP32 | ay == 0; 88 quot = c ? 0 : quot; 89 xr = c ? as_float(QNANBITPATT_SP32) : xr; 90 91 *quo = quot; 92 93 return xr; 94} 95// remquo singature is special, we don't have macro for this 96#define __VEC_REMQUO(TYPE, VEC_SIZE, HALF_VEC_SIZE) \ 97_CLC_DEF _CLC_OVERLOAD TYPE##VEC_SIZE __clc_remquo(TYPE##VEC_SIZE x, TYPE##VEC_SIZE y, __private int##VEC_SIZE *quo) \ 98{ \ 99 int##HALF_VEC_SIZE lo, hi; \ 100 TYPE##VEC_SIZE ret; \ 101 ret.lo = __clc_remquo(x.lo, y.lo, &lo); \ 102 ret.hi = __clc_remquo(x.hi, y.hi, &hi); \ 103 (*quo).lo = lo; \ 104 (*quo).hi = hi; \ 105 return ret; \ 106} 107__VEC_REMQUO(float, 2,) 108__VEC_REMQUO(float, 3, 2) 109__VEC_REMQUO(float, 4, 2) 110__VEC_REMQUO(float, 8, 4) 111__VEC_REMQUO(float, 16, 8) 112 113#ifdef cl_khr_fp64 114_CLC_DEF _CLC_OVERLOAD double __clc_remquo(double x, double y, __private int *pquo) 115{ 116 ulong ux = as_ulong(x); 117 ulong ax = ux & ~SIGNBIT_DP64; 118 ulong xsgn = ux ^ ax; 119 double dx = as_double(ax); 120 int xexp = convert_int(ax >> EXPSHIFTBITS_DP64); 121 int xexp1 = 11 - (int) clz(ax & MANTBITS_DP64); 122 xexp1 = xexp < 1 ? xexp1 : xexp; 123 124 ulong uy = as_ulong(y); 125 ulong ay = uy & ~SIGNBIT_DP64; 126 double dy = as_double(ay); 127 int yexp = convert_int(ay >> EXPSHIFTBITS_DP64); 128 int yexp1 = 11 - (int) clz(ay & MANTBITS_DP64); 129 yexp1 = yexp < 1 ? yexp1 : yexp; 130 131 int qsgn = ((ux ^ uy) & SIGNBIT_DP64) == 0UL ? 1 : -1; 132 133 // First assume |x| > |y| 134 135 // Set ntimes to the number of times we need to do a 136 // partial remainder. If the exponent of x is an exact multiple 137 // of 53 larger than the exponent of y, and the mantissa of x is 138 // less than the mantissa of y, ntimes will be one too large 139 // but it doesn't matter - it just means that we'll go round 140 // the loop below one extra time. 141 int ntimes = max(0, (xexp1 - yexp1) / 53); 142 double w = ldexp(dy, ntimes * 53); 143 w = ntimes == 0 ? dy : w; 144 double scale = ntimes == 0 ? 1.0 : 0x1.0p-53; 145 146 // Each time round the loop we compute a partial remainder. 147 // This is done by subtracting a large multiple of w 148 // from x each time, where w is a scaled up version of y. 149 // The subtraction must be performed exactly in quad 150 // precision, though the result at each stage can 151 // fit exactly in a double precision number. 152 int i; 153 double t, v, p, pp; 154 155 for (i = 0; i < ntimes; i++) { 156 // Compute integral multiplier 157 t = trunc(dx / w); 158 159 // Compute w * t in quad precision 160 p = w * t; 161 pp = fma(w, t, -p); 162 163 // Subtract w * t from dx 164 v = dx - p; 165 dx = v + (((dx - v) - p) - pp); 166 167 // If t was one too large, dx will be negative. Add back one w. 168 dx += dx < 0.0 ? w : 0.0; 169 170 // Scale w down by 2^(-53) for the next iteration 171 w *= scale; 172 } 173 174 // One more time 175 // Variable todd says whether the integer t is odd or not 176 t = floor(dx / w); 177 long lt = (long)t; 178 int todd = lt & 1; 179 180 p = w * t; 181 pp = fma(w, t, -p); 182 v = dx - p; 183 dx = v + (((dx - v) - p) - pp); 184 i = dx < 0.0; 185 todd ^= i; 186 dx += i ? w : 0.0; 187 188 lt -= i; 189 190 // At this point, dx lies in the range [0,dy) 191 192 // For the remainder function, we need to adjust dx 193 // so that it lies in the range (-y/2, y/2] by carefully 194 // subtracting w (== dy == y) if necessary. The rigmarole 195 // with todd is to get the correct sign of the result 196 // when x/y lies exactly half way between two integers, 197 // when we need to choose the even integer. 198 199 int al = (2.0*dx > w) | (todd & (2.0*dx == w)); 200 double dxl = dx - (al ? w : 0.0); 201 202 int ag = (dx > 0.5*w) | (todd & (dx == 0.5*w)); 203 double dxg = dx - (ag ? w : 0.0); 204 205 dx = dy < 0x1.0p+1022 ? dxl : dxg; 206 lt += dy < 0x1.0p+1022 ? al : ag; 207 int quo = ((int)lt & 0x7f) * qsgn; 208 209 double ret = as_double(xsgn ^ as_ulong(dx)); 210 dx = as_double(ax); 211 212 // Now handle |x| == |y| 213 int c = dx == dy; 214 t = as_double(xsgn); 215 quo = c ? qsgn : quo; 216 ret = c ? t : ret; 217 218 // Next, handle |x| < |y| 219 c = dx < dy; 220 quo = c ? 0 : quo; 221 ret = c ? x : ret; 222 223 c &= (yexp < 1023 & 2.0*dx > dy) | (dx > 0.5*dy); 224 quo = c ? qsgn : quo; 225 // we could use a conversion here instead since qsgn = +-1 226 p = qsgn == 1 ? -1.0 : 1.0; 227 t = fma(y, p, x); 228 ret = c ? t : ret; 229 230 // We don't need anything special for |x| == 0 231 232 // |y| is 0 233 c = dy == 0.0; 234 quo = c ? 0 : quo; 235 ret = c ? as_double(QNANBITPATT_DP64) : ret; 236 237 // y is +-Inf, NaN 238 c = yexp > BIASEDEMAX_DP64; 239 quo = c ? 0 : quo; 240 t = y == y ? x : y; 241 ret = c ? t : ret; 242 243 // x is +=Inf, NaN 244 c = xexp > BIASEDEMAX_DP64; 245 quo = c ? 0 : quo; 246 ret = c ? as_double(QNANBITPATT_DP64) : ret; 247 248 *pquo = quo; 249 return ret; 250} 251__VEC_REMQUO(double, 2,) 252__VEC_REMQUO(double, 3, 2) 253__VEC_REMQUO(double, 4, 2) 254__VEC_REMQUO(double, 8, 4) 255__VEC_REMQUO(double, 16, 8) 256#endif 257