/external/tensorflow/tensorflow/python/keras/benchmarks/keras_examples_benchmarks/ |
D | reuters_mlp_benchmark_test.py | 39 self.epochs = 5 71 epochs=self.epochs, 88 epochs=self.epochs, 105 epochs=self.epochs, 127 epochs=self.epochs,
|
D | mnist_conv_benchmark_test.py | 38 self.epochs = 15 71 epochs=self.epochs, 88 epochs=self.epochs, 105 epochs=self.epochs, 127 epochs=self.epochs,
|
D | cifar10_cnn_benchmark_test.py | 34 self.epochs = 5 80 epochs=self.epochs, 97 epochs=self.epochs, 114 epochs=self.epochs, 136 epochs=self.epochs,
|
D | mnist_conv_custom_training_benchmark_test.py | 36 self.epochs = 15 122 epochs=2, argument 152 for _ in range(epochs): 180 epochs=10, argument 229 total_num_examples = epochs * self.num_examples 241 epochs, distribution_strategy, 249 avg_epoch_time_list.append((end_time - t2) / epochs) 262 metrics.append({'name': 'epochs', 'value': epochs}) 284 run_iters, self.epochs) 306 run_iters, self.epochs) [all …]
|
/external/libopus/training/ |
D | rnn_train.py | 111 epochs=10, validation_data=(x_train, y_train)) 117 epochs=50, initial_epoch=10) 127 epochs=100, initial_epoch=50) 133 epochs=150, initial_epoch=100) 139 epochs=200, initial_epoch=150) 145 epochs=201, initial_epoch=200) 151 epochs=202, initial_epoch=201, validation_data=(x_train, y_train)) 157 epochs=203, initial_epoch=202, validation_data=(x_train, y_train)) 163 epochs=204, initial_epoch=203, validation_data=(x_train, y_train)) 169 epochs=205, initial_epoch=204, validation_data=(x_train, y_train)) [all …]
|
/external/tensorflow/tensorflow/python/keras/utils/ |
D | multi_gpu_utils_test.py | 61 epochs = 2 78 parallel_model.fit(x, y, epochs=epochs) 82 parallel_model.fit(x, y, epochs=epochs) 92 epochs = 2 115 parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs) 120 parallel_model.fit([a_x, b_x], [a_y, b_y], epochs=epochs) 140 parallel_model.fit(x, y, epochs=2) 145 parallel_model.fit(x, y, epochs=2) 149 parallel_model.fit(x, y, epochs=2) 153 parallel_model.fit(x, y, epochs=2) [all …]
|
/external/tensorflow/tensorflow/python/keras/distribute/ |
D | keras_utils_test.py | 93 epochs = 2 99 epochs=epochs, 119 'on_batch_begin': epochs * num_batch_call_per_epoch, 120 'on_batch_end': epochs * num_batch_call_per_epoch, 121 'on_epoch_begin': epochs, 122 'on_epoch_end': epochs, 123 'on_test_batch_begin': epochs * validation_steps, 124 'on_test_batch_end': epochs * validation_steps, 125 'on_test_begin': epochs, 126 'on_test_end': epochs, [all …]
|
D | multi_worker_callback_tf2_test.py | 119 epochs=num_epoch, 160 epochs=num_epoch, 204 epochs=num_epoch, 222 epochs=num_epoch, 261 epochs=num_epoch, 298 epochs=num_epoch, 321 epochs=num_epoch, 357 model.fit(x=train_ds, epochs=100, steps_per_epoch=steps, callbacks=cbks)
|
D | keras_premade_models_test.py | 77 hist = model.fit(inputs, output, epochs=5) 79 hist = model.fit(get_dataset(), epochs=5) 95 hist = wide_deep_model.fit(inputs, output, epochs=5) 97 hist = wide_deep_model.fit(get_dataset(), epochs=5)
|
D | distribute_strategy_test.py | 492 epochs=1, 542 epochs=1, 635 model.fit(inputs, targets, epochs=1, batch_size=8, verbose=0) 815 model.fit(inputs, epochs=1, steps_per_epoch=2) 904 epochs=1, 911 epochs=1, 942 epochs=2, 953 dataset, epochs=1, steps_per_epoch=2, verbose=1, shuffle=False) 994 model.fit(dataset_tuple, epochs=1, steps_per_epoch=2, verbose=1) 1004 model.fit(dataset_dict, epochs=1, steps_per_epoch=2, verbose=1) [all …]
|
/external/tensorflow/tensorflow/python/keras/engine/ |
D | training_generator_v1.py | 45 epochs=1, argument 137 model, data, steps_per_epoch, epochs=epochs, steps_name=steps_name) 144 epochs=epochs - initial_epoch, 174 epochs=epochs, 200 for epoch in range(initial_epoch, epochs): 234 % (steps_name, steps_per_epoch * epochs)) 247 'dataset.' % (steps_name, steps_per_epoch * epochs)) 274 epochs=epochs, 325 if reset_dataset_after_each_epoch and epoch < epochs - 1: 428 epochs=1, argument [all …]
|
D | training_eager_test.py | 102 epochs=1, 108 epochs=1, 114 epochs=1, batch_size=2, verbose=0, 127 epochs=1, 131 epochs=1, batch_size=2, verbose=0, 135 epochs=1, 167 model.fit(inputs, targets, epochs=1, batch_size=2, verbose=0) 168 model.fit(inputs, targets, epochs=1, batch_size=3, verbose=0, shuffle=False) 169 model.fit(inputs, targets, epochs=1, batch_size=4, verbose=0, 189 model.fit(dataset, epochs=1, verbose=0) [all …]
|
D | training_generator_test.py | 110 epochs=1, 117 epochs=1, 123 epochs=1, 212 epochs=1, 218 epochs=1, 250 epochs=1, 257 epochs=1, 294 epochs=2) 307 epochs=1, 313 epochs=1, [all …]
|
D | training_dataset_test.py | 76 epochs=1, 83 epochs=1, 108 model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) 115 epochs=1, 125 epochs=1, 137 epochs=1, 145 model.fit(dataset, dataset, epochs=1, steps_per_epoch=2, verbose=0) 149 model.fit(dataset, epochs=1, verbose=0) 182 model.fit(dataset_tuple, epochs=1, steps_per_epoch=2, verbose=1) 197 model.fit(dataset_dict, epochs=1, steps_per_epoch=2, verbose=1) [all …]
|
D | feature_columns_integration_test.py | 69 model.fit(x, y, epochs=1, batch_size=5) 70 model.fit(x, y, epochs=1, batch_size=5) 133 model.fit(ds, epochs=1) 134 model.fit(ds, epochs=1) 154 dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) 155 dnn_model.fit(x=x, y=y, epochs=1, batch_size=5) 208 model.fit(*data, epochs=1) 243 model.fit(*data_list, epochs=1) 254 model.fit(*data_bloated_list, epochs=1) 266 model.fit(*data_dict, epochs=1) [all …]
|
D | training_arrays_v1.py | 51 epochs=1, argument 143 model, inputs, steps_per_epoch, epochs=epochs, steps_name=steps_name) 200 epochs=epochs, 222 epochs=epochs, 258 for epoch in range(initial_epoch, epochs): 309 % (steps_name, steps_per_epoch * epochs)) 322 'dataset.' % (steps_name, steps_per_epoch * epochs)) 434 if val_iterator and epoch < epochs - 1: 442 if reset_dataset_after_each_epoch and epoch < epochs - 1: 606 epochs=1, argument [all …]
|
D | training_test.py | 165 train_dataset, epochs=2, verbose=1, validation_data=val_dataset) 198 train_dataset, epochs=2, verbose=1, validation_data=val_dataset) 267 train_dataset, epochs=2, verbose=1, validation_data=val_dataset) 306 epochs=1, 311 epochs=1, 316 epochs=2, 326 epochs=1, 333 epochs=2, 340 epochs=2, 346 epochs=2, [all …]
|
D | training_distributed_v1.py | 125 epochs=100, argument 208 epochs=epochs, 227 for epoch in range(initial_epoch, epochs): 248 steps_per_epoch * epochs) 367 epochs=1, 509 epochs=1, 587 epochs=1, argument 621 epochs=epochs) 655 model, dataset, steps_per_epoch, epochs, steps_name='steps_per_epoch') 665 epochs=epochs, [all …]
|
/external/tensorflow/tensorflow/python/keras/wrappers/ |
D | scikit_learn_test.py | 58 clf.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 94 reg.fit(x_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS) 111 epochs=EPOCHS) 127 epochs=EPOCHS) 143 epochs=EPOCHS) 153 epochs=EPOCHS) 169 epochs=EPOCHS) 185 epochs=EPOCHS)
|
/external/tensorflow/tensorflow/python/keras/ |
D | callbacks_test.py | 170 epochs=5, 281 model.fit(dataset, epochs=2, steps_per_epoch=10) 309 epochs=1, 335 epochs=1) 350 model.fit(dataset, epochs=2, steps_per_epoch=10) 365 model.fit(training_dataset, epochs=2, validation_data=val_dataset) 380 model.fit(x, y, batch_size=10, epochs=2, validation_split=0.2) 411 x=training, validation_data=validation, epochs=2, steps_per_epoch=20) 496 epochs=1, 516 epochs=1, [all …]
|
D | callbacks_v1_test.py | 111 epochs=3, 121 epochs=2, 128 epochs=2, 139 epochs=2, 148 epochs=2, 156 data_generator(True), len(x_train), epochs=2, callbacks=cbks) 217 callbacks=callbacks_factory(histogram_freq=0), epochs=3) 222 callbacks=callbacks_factory(histogram_freq=1), epochs=2) 225 model.fit_generator(data_generator(True), len(x_train), epochs=2, 229 model.fit_generator(data_generator(True), len(x_train), epochs=2, [all …]
|
/external/tensorflow/tensorflow/python/keras/benchmarks/ |
D | benchmark_util.py | 101 epochs=2, argument 160 total_num_examples = epochs * num_examples 183 model.fit(x=x, y=y, batch_size=batch_size, epochs=1) 190 epochs=epochs, 211 metrics.append({'name': 'epochs', 'value': epochs})
|
/external/tensorflow/tensorflow/python/keras/premade/ |
D | wide_deep_test.py | 55 wide_deep_model.fit(inputs, output, epochs=5) 76 wide_deep_model.fit(inputs, output, epochs=1) 95 wide_deep_model.fit(inputs, output, epochs=5) 134 wide_deep_model.fit(inputs, output, epochs=5) 158 model.fit([linear_input_np, dnn_input_np, input_b_np], output_np, epochs=5) 180 linear_model.fit(linear_inp, output, epochs=50) 181 dnn_model.fit(dnn_inp, output, epochs=50) 187 wide_deep_model.fit(inputs, output, epochs=50) 215 combined.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10) 248 wide_deep_model.fit(x={'symbol': data}, y=y, batch_size=32, epochs=10)
|
/external/zstd/lib/dictBuilder/ |
D | cover.c | 659 COVER_epoch_info_t epochs; in COVER_computeEpochs() local 660 epochs.num = MAX(1, maxDictSize / k / passes); in COVER_computeEpochs() 661 epochs.size = nbDmers / epochs.num; in COVER_computeEpochs() 662 if (epochs.size >= minEpochSize) { in COVER_computeEpochs() 663 assert(epochs.size * epochs.num <= nbDmers); in COVER_computeEpochs() 664 return epochs; in COVER_computeEpochs() 666 epochs.size = MIN(minEpochSize, nbDmers); in COVER_computeEpochs() 667 epochs.num = nbDmers / epochs.size; in COVER_computeEpochs() 668 assert(epochs.size * epochs.num <= nbDmers); in COVER_computeEpochs() 669 return epochs; in COVER_computeEpochs() [all …]
|
/external/tensorflow/tensorflow/python/keras/tests/ |
D | model_subclassing_compiled_test.py | 57 model.fit(x, y, epochs=2, batch_size=32, verbose=0) 78 model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) 100 model.fit(dataset, epochs=2, steps_per_epoch=10, verbose=0) 212 model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) 215 epochs=2, batch_size=32) 216 model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0, 274 model.fit([x1, x2], [y1, y2], epochs=2, batch_size=32, verbose=0) 318 model.fit(x, y, epochs=2, batch_size=32, verbose=0) 342 model.fit(x, y, epochs=2, batch_size=32, verbose=0) 367 model.fit(x, y, epochs=2, batch_size=32, verbose=0) [all …]
|