1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "inliner.h"
18 
19 #include "art_method-inl.h"
20 #include "base/enums.h"
21 #include "base/logging.h"
22 #include "builder.h"
23 #include "class_linker.h"
24 #include "class_root-inl.h"
25 #include "constant_folding.h"
26 #include "data_type-inl.h"
27 #include "dead_code_elimination.h"
28 #include "dex/inline_method_analyser.h"
29 #include "dex/verification_results.h"
30 #include "dex/verified_method.h"
31 #include "driver/compiler_options.h"
32 #include "driver/dex_compilation_unit.h"
33 #include "instruction_simplifier.h"
34 #include "intrinsics.h"
35 #include "jit/jit.h"
36 #include "jit/jit_code_cache.h"
37 #include "mirror/class_loader.h"
38 #include "mirror/dex_cache.h"
39 #include "mirror/object_array-alloc-inl.h"
40 #include "mirror/object_array-inl.h"
41 #include "nodes.h"
42 #include "reference_type_propagation.h"
43 #include "register_allocator_linear_scan.h"
44 #include "scoped_thread_state_change-inl.h"
45 #include "sharpening.h"
46 #include "ssa_builder.h"
47 #include "ssa_phi_elimination.h"
48 #include "thread.h"
49 
50 namespace art {
51 
52 // Instruction limit to control memory.
53 static constexpr size_t kMaximumNumberOfTotalInstructions = 1024;
54 
55 // Maximum number of instructions for considering a method small,
56 // which we will always try to inline if the other non-instruction limits
57 // are not reached.
58 static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3;
59 
60 // Limit the number of dex registers that we accumulate while inlining
61 // to avoid creating large amount of nested environments.
62 static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32;
63 
64 // Limit recursive call inlining, which do not benefit from too
65 // much inlining compared to code locality.
66 static constexpr size_t kMaximumNumberOfRecursiveCalls = 4;
67 
68 // Controls the use of inline caches in AOT mode.
69 static constexpr bool kUseAOTInlineCaches = true;
70 
71 // We check for line numbers to make sure the DepthString implementation
72 // aligns the output nicely.
73 #define LOG_INTERNAL(msg) \
74   static_assert(__LINE__ > 10, "Unhandled line number"); \
75   static_assert(__LINE__ < 10000, "Unhandled line number"); \
76   VLOG(compiler) << DepthString(__LINE__) << msg
77 
78 #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ")
79 #define LOG_NOTE() LOG_INTERNAL("Note: ")
80 #define LOG_SUCCESS() LOG_INTERNAL("Success: ")
81 #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ")
82 #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ")
83 
DepthString(int line) const84 std::string HInliner::DepthString(int line) const {
85   std::string value;
86   // Indent according to the inlining depth.
87   size_t count = depth_;
88   // Line numbers get printed in the log, so add a space if the log's line is less
89   // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright.
90   if (!kIsTargetBuild) {
91     if (line < 100) {
92       value += " ";
93     }
94     if (line < 1000) {
95       value += " ";
96     }
97     // Safeguard if this file reaches more than 10000 lines.
98     DCHECK_LT(line, 10000);
99   }
100   for (size_t i = 0; i < count; ++i) {
101     value += "  ";
102   }
103   return value;
104 }
105 
CountNumberOfInstructions(HGraph * graph)106 static size_t CountNumberOfInstructions(HGraph* graph) {
107   size_t number_of_instructions = 0;
108   for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) {
109     for (HInstructionIterator instr_it(block->GetInstructions());
110          !instr_it.Done();
111          instr_it.Advance()) {
112       ++number_of_instructions;
113     }
114   }
115   return number_of_instructions;
116 }
117 
UpdateInliningBudget()118 void HInliner::UpdateInliningBudget() {
119   if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) {
120     // Always try to inline small methods.
121     inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod;
122   } else {
123     inlining_budget_ = std::max(
124         kMaximumNumberOfInstructionsForSmallMethod,
125         kMaximumNumberOfTotalInstructions - total_number_of_instructions_);
126   }
127 }
128 
Run()129 bool HInliner::Run() {
130   if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) {
131     // Inlining effectively disabled.
132     return false;
133   } else if (graph_->IsDebuggable()) {
134     // For simplicity, we currently never inline when the graph is debuggable. This avoids
135     // doing some logic in the runtime to discover if a method could have been inlined.
136     return false;
137   }
138 
139   bool didInline = false;
140 
141   // Initialize the number of instructions for the method being compiled. Recursive calls
142   // to HInliner::Run have already updated the instruction count.
143   if (outermost_graph_ == graph_) {
144     total_number_of_instructions_ = CountNumberOfInstructions(graph_);
145   }
146 
147   UpdateInliningBudget();
148   DCHECK_NE(total_number_of_instructions_, 0u);
149   DCHECK_NE(inlining_budget_, 0u);
150 
151   // If we're compiling tests, honor inlining directives in method names:
152   // - if a method's name contains the substring "$noinline$", do not
153   //   inline that method;
154   // - if a method's name contains the substring "$inline$", ensure
155   //   that this method is actually inlined.
156   // We limit the latter to AOT compilation, as the JIT may or may not inline
157   // depending on the state of classes at runtime.
158   const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest();
159   const bool honor_inline_directives =
160       honor_noinline_directives && Runtime::Current()->IsAotCompiler();
161 
162   // Keep a copy of all blocks when starting the visit.
163   ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder();
164   DCHECK(!blocks.empty());
165   // Because we are changing the graph when inlining,
166   // we just iterate over the blocks of the outer method.
167   // This avoids doing the inlining work again on the inlined blocks.
168   for (HBasicBlock* block : blocks) {
169     for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
170       HInstruction* next = instruction->GetNext();
171       HInvoke* call = instruction->AsInvoke();
172       // As long as the call is not intrinsified, it is worth trying to inline.
173       if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
174         if (honor_noinline_directives) {
175           // Debugging case: directives in method names control or assert on inlining.
176           std::string callee_name =
177               call->GetMethodReference().PrettyMethod(/* with_signature= */ false);
178           // Tests prevent inlining by having $noinline$ in their method names.
179           if (callee_name.find("$noinline$") == std::string::npos) {
180             if (TryInline(call)) {
181               didInline = true;
182             } else if (honor_inline_directives) {
183               bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos);
184               CHECK(!should_have_inlined) << "Could not inline " << callee_name;
185             }
186           }
187         } else {
188           DCHECK(!honor_inline_directives);
189           // Normal case: try to inline.
190           if (TryInline(call)) {
191             didInline = true;
192           }
193         }
194       }
195       instruction = next;
196     }
197   }
198 
199   return didInline;
200 }
201 
IsMethodOrDeclaringClassFinal(ArtMethod * method)202 static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
203     REQUIRES_SHARED(Locks::mutator_lock_) {
204   return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
205 }
206 
207 /**
208  * Given the `resolved_method` looked up in the dex cache, try to find
209  * the actual runtime target of an interface or virtual call.
210  * Return nullptr if the runtime target cannot be proven.
211  */
FindVirtualOrInterfaceTarget(HInvoke * invoke)212 static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke)
213     REQUIRES_SHARED(Locks::mutator_lock_) {
214   ArtMethod* resolved_method = invoke->GetResolvedMethod();
215   if (IsMethodOrDeclaringClassFinal(resolved_method)) {
216     // No need to lookup further, the resolved method will be the target.
217     return resolved_method;
218   }
219 
220   HInstruction* receiver = invoke->InputAt(0);
221   if (receiver->IsNullCheck()) {
222     // Due to multiple levels of inlining within the same pass, it might be that
223     // null check does not have the reference type of the actual receiver.
224     receiver = receiver->InputAt(0);
225   }
226   ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
227   DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
228   if (!info.IsExact()) {
229     // We currently only support inlining with known receivers.
230     // TODO: Remove this check, we should be able to inline final methods
231     // on unknown receivers.
232     return nullptr;
233   } else if (info.GetTypeHandle()->IsInterface()) {
234     // Statically knowing that the receiver has an interface type cannot
235     // help us find what is the target method.
236     return nullptr;
237   } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
238     // The method that we're trying to call is not in the receiver's class or super classes.
239     return nullptr;
240   } else if (info.GetTypeHandle()->IsErroneous()) {
241     // If the type is erroneous, do not go further, as we are going to query the vtable or
242     // imt table, that we can only safely do on non-erroneous classes.
243     return nullptr;
244   }
245 
246   ClassLinker* cl = Runtime::Current()->GetClassLinker();
247   PointerSize pointer_size = cl->GetImagePointerSize();
248   if (invoke->IsInvokeInterface()) {
249     resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
250         resolved_method, pointer_size);
251   } else {
252     DCHECK(invoke->IsInvokeVirtual());
253     resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
254         resolved_method, pointer_size);
255   }
256 
257   if (resolved_method == nullptr) {
258     // The information we had on the receiver was not enough to find
259     // the target method. Since we check above the exact type of the receiver,
260     // the only reason this can happen is an IncompatibleClassChangeError.
261     return nullptr;
262   } else if (!resolved_method->IsInvokable()) {
263     // The information we had on the receiver was not enough to find
264     // the target method. Since we check above the exact type of the receiver,
265     // the only reason this can happen is an IncompatibleClassChangeError.
266     return nullptr;
267   } else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
268     // A final method has to be the target method.
269     return resolved_method;
270   } else if (info.IsExact()) {
271     // If we found a method and the receiver's concrete type is statically
272     // known, we know for sure the target.
273     return resolved_method;
274   } else {
275     // Even if we did find a method, the receiver type was not enough to
276     // statically find the runtime target.
277     return nullptr;
278   }
279 }
280 
FindMethodIndexIn(ArtMethod * method,const DexFile & dex_file,uint32_t name_and_signature_index)281 static uint32_t FindMethodIndexIn(ArtMethod* method,
282                                   const DexFile& dex_file,
283                                   uint32_t name_and_signature_index)
284     REQUIRES_SHARED(Locks::mutator_lock_) {
285   if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
286     return method->GetDexMethodIndex();
287   } else {
288     return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
289   }
290 }
291 
FindClassIndexIn(ObjPtr<mirror::Class> cls,const DexCompilationUnit & compilation_unit)292 static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls,
293                                        const DexCompilationUnit& compilation_unit)
294     REQUIRES_SHARED(Locks::mutator_lock_) {
295   const DexFile& dex_file = *compilation_unit.GetDexFile();
296   dex::TypeIndex index;
297   if (cls->GetDexCache() == nullptr) {
298     DCHECK(cls->IsArrayClass()) << cls->PrettyClass();
299     index = cls->FindTypeIndexInOtherDexFile(dex_file);
300   } else if (!cls->GetDexTypeIndex().IsValid()) {
301     DCHECK(cls->IsProxyClass()) << cls->PrettyClass();
302     // TODO: deal with proxy classes.
303   } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
304     DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get());
305     index = cls->GetDexTypeIndex();
306   } else {
307     index = cls->FindTypeIndexInOtherDexFile(dex_file);
308     // We cannot guarantee the entry will resolve to the same class,
309     // as there may be different class loaders. So only return the index if it's
310     // the right class already resolved with the class loader.
311     if (index.IsValid()) {
312       ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType(
313           index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
314       if (resolved != cls) {
315         index = dex::TypeIndex::Invalid();
316       }
317     }
318   }
319 
320   return index;
321 }
322 
GetInlineCacheType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)323 HInliner::InlineCacheType HInliner::GetInlineCacheType(
324     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
325   DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize);
326   uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots();
327   if (number_of_types == 0) {
328     return kInlineCacheUninitialized;
329   } else if (number_of_types == 1) {
330     return kInlineCacheMonomorphic;
331   } else if (number_of_types == InlineCache::kIndividualCacheSize) {
332     return kInlineCacheMegamorphic;
333   } else {
334     return kInlineCachePolymorphic;
335   }
336 }
337 
GetMonomorphicType(const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)338 static inline ObjPtr<mirror::Class> GetMonomorphicType(
339     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes)
340     REQUIRES_SHARED(Locks::mutator_lock_) {
341   DCHECK(classes.GetReference(0) != nullptr);
342   return classes.GetReference(0)->AsClass();
343 }
344 
FindMethodFromCHA(ArtMethod * resolved_method)345 ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) {
346   if (!resolved_method->HasSingleImplementation()) {
347     return nullptr;
348   }
349   if (Runtime::Current()->IsAotCompiler()) {
350     // No CHA-based devirtulization for AOT compiler (yet).
351     return nullptr;
352   }
353   if (Runtime::Current()->IsZygote()) {
354     // No CHA-based devirtulization for Zygote, as it compiles with
355     // offline information.
356     return nullptr;
357   }
358   if (outermost_graph_->IsCompilingOsr()) {
359     // We do not support HDeoptimize in OSR methods.
360     return nullptr;
361   }
362   PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize();
363   ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size);
364   if (single_impl == nullptr) {
365     return nullptr;
366   }
367   if (single_impl->IsProxyMethod()) {
368     // Proxy method is a generic invoker that's not worth
369     // devirtualizing/inlining. It also causes issues when the proxy
370     // method is in another dex file if we try to rewrite invoke-interface to
371     // invoke-virtual because a proxy method doesn't have a real dex file.
372     return nullptr;
373   }
374   if (!single_impl->GetDeclaringClass()->IsResolved()) {
375     // There's a race with the class loading, which updates the CHA info
376     // before setting the class to resolved. So we just bail for this
377     // rare occurence.
378     return nullptr;
379   }
380   return single_impl;
381 }
382 
IsMethodUnverified(const CompilerOptions & compiler_options,ArtMethod * method)383 static bool IsMethodUnverified(const CompilerOptions& compiler_options, ArtMethod* method)
384     REQUIRES_SHARED(Locks::mutator_lock_) {
385   if (!method->GetDeclaringClass()->IsVerified()) {
386     if (compiler_options.IsJitCompiler()) {
387       // We're at runtime, we know this is cold code if the class
388       // is not verified, so don't bother analyzing.
389       return true;
390     }
391     uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
392     if (!compiler_options.IsMethodVerifiedWithoutFailures(method->GetDexMethodIndex(),
393                                                           class_def_idx,
394                                                           *method->GetDexFile())) {
395       // Method has soft or hard failures, don't analyze.
396       return true;
397     }
398   }
399   return false;
400 }
401 
AlwaysThrows(const CompilerOptions & compiler_options,ArtMethod * method)402 static bool AlwaysThrows(const CompilerOptions& compiler_options, ArtMethod* method)
403     REQUIRES_SHARED(Locks::mutator_lock_) {
404   DCHECK(method != nullptr);
405   // Skip non-compilable and unverified methods.
406   if (!method->IsCompilable() || IsMethodUnverified(compiler_options, method)) {
407     return false;
408   }
409   // Skip native methods, methods with try blocks, and methods that are too large.
410   CodeItemDataAccessor accessor(method->DexInstructionData());
411   if (!accessor.HasCodeItem() ||
412       accessor.TriesSize() != 0 ||
413       accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) {
414     return false;
415   }
416   // Scan for exits.
417   bool throw_seen = false;
418   for (const DexInstructionPcPair& pair : accessor) {
419     switch (pair.Inst().Opcode()) {
420       case Instruction::RETURN:
421       case Instruction::RETURN_VOID:
422       case Instruction::RETURN_WIDE:
423       case Instruction::RETURN_OBJECT:
424         return false;  // found regular control flow back
425       case Instruction::THROW:
426         throw_seen = true;
427         break;
428       default:
429         break;
430     }
431   }
432   return throw_seen;
433 }
434 
TryInline(HInvoke * invoke_instruction)435 bool HInliner::TryInline(HInvoke* invoke_instruction) {
436   MaybeRecordStat(stats_, MethodCompilationStat::kTryInline);
437 
438   // Don't bother to move further if we know the method is unresolved or the invocation is
439   // polymorphic (invoke-{polymorphic,custom}).
440   if (invoke_instruction->IsInvokeUnresolved()) {
441     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved);
442     return false;
443   } else if (invoke_instruction->IsInvokePolymorphic()) {
444     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic);
445     return false;
446   } else if (invoke_instruction->IsInvokeCustom()) {
447     MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom);
448     return false;
449   }
450 
451   ScopedObjectAccess soa(Thread::Current());
452   LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod();
453 
454   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
455   if (resolved_method == nullptr) {
456     DCHECK(invoke_instruction->IsInvokeStaticOrDirect());
457     DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit());
458     LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method";
459     return false;
460   }
461 
462   ArtMethod* actual_method = invoke_instruction->IsInvokeStaticOrDirect()
463       ? invoke_instruction->GetResolvedMethod()
464       : FindVirtualOrInterfaceTarget(invoke_instruction);
465 
466   if (actual_method != nullptr) {
467     // Single target.
468     bool result = TryInlineAndReplace(invoke_instruction,
469                                       actual_method,
470                                       ReferenceTypeInfo::CreateInvalid(),
471                                       /* do_rtp= */ true);
472     if (result) {
473       MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface);
474     } else {
475       HInvoke* invoke_to_analyze = nullptr;
476       if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) {
477         // Consider devirtualization as inlining.
478         result = true;
479         MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized);
480       } else {
481         invoke_to_analyze = invoke_instruction;
482       }
483       // Set always throws property for non-inlined method call with single
484       // target.
485       if (AlwaysThrows(codegen_->GetCompilerOptions(), actual_method)) {
486         invoke_to_analyze->SetAlwaysThrows(true);
487       }
488     }
489     return result;
490   }
491 
492   DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
493 
494   if (TryInlineFromCHA(invoke_instruction)) {
495     return true;
496   }
497   return TryInlineFromInlineCache(invoke_instruction);
498 }
499 
TryInlineFromCHA(HInvoke * invoke_instruction)500 bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) {
501   ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod());
502   if (method == nullptr) {
503     return false;
504   }
505   LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod();
506 
507   uint32_t dex_pc = invoke_instruction->GetDexPc();
508   HInstruction* cursor = invoke_instruction->GetPrevious();
509   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
510   if (!TryInlineAndReplace(invoke_instruction,
511                            method,
512                            ReferenceTypeInfo::CreateInvalid(),
513                            /* do_rtp= */ true)) {
514     return false;
515   }
516   AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor);
517   // Add dependency due to devirtualization: we are assuming the resolved method
518   // has a single implementation.
519   outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod());
520   MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline);
521   return true;
522 }
523 
UseOnlyPolymorphicInliningWithNoDeopt()524 bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() {
525   // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and
526   // do not generate a deopt.
527   //
528   // For AOT:
529   //    Generating a deopt does not ensure that we will actually capture the new types;
530   //    and the danger is that we could be stuck in a loop with "forever" deoptimizations.
531   //    Take for example the following scenario:
532   //      - we capture the inline cache in one run
533   //      - the next run, we deoptimize because we miss a type check, but the method
534   //        never becomes hot again
535   //    In this case, the inline cache will not be updated in the profile and the AOT code
536   //    will keep deoptimizing.
537   //    Another scenario is if we use profile compilation for a process which is not allowed
538   //    to JIT (e.g. system server). If we deoptimize we will run interpreted code for the
539   //    rest of the lifetime.
540   // TODO(calin):
541   //    This is a compromise because we will most likely never update the inline cache
542   //    in the profile (unless there's another reason to deopt). So we might be stuck with
543   //    a sub-optimal inline cache.
544   //    We could be smarter when capturing inline caches to mitigate this.
545   //    (e.g. by having different thresholds for new and old methods).
546   //
547   // For OSR:
548   //     We may come from the interpreter and it may have seen different receiver types.
549   return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr();
550 }
TryInlineFromInlineCache(HInvoke * invoke_instruction)551 bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction)
552     REQUIRES_SHARED(Locks::mutator_lock_) {
553   if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) {
554     return false;
555   }
556 
557   StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current());
558   // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches
559   // for it.
560   InlineCacheType inline_cache_type =
561       (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote())
562           ? GetInlineCacheAOT(invoke_instruction, &classes)
563           : GetInlineCacheJIT(invoke_instruction, &classes);
564 
565   switch (inline_cache_type) {
566     case kInlineCacheNoData: {
567       LOG_FAIL_NO_STAT()
568           << "No inline cache information for call to "
569           << invoke_instruction->GetMethodReference().PrettyMethod();
570       return false;
571     }
572 
573     case kInlineCacheUninitialized: {
574       LOG_FAIL_NO_STAT()
575           << "Interface or virtual call to "
576           << invoke_instruction->GetMethodReference().PrettyMethod()
577           << " is not hit and not inlined";
578       return false;
579     }
580 
581     case kInlineCacheMonomorphic: {
582       MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall);
583       if (UseOnlyPolymorphicInliningWithNoDeopt()) {
584         return TryInlinePolymorphicCall(invoke_instruction, classes);
585       } else {
586         return TryInlineMonomorphicCall(invoke_instruction, classes);
587       }
588     }
589 
590     case kInlineCachePolymorphic: {
591       MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall);
592       return TryInlinePolymorphicCall(invoke_instruction, classes);
593     }
594 
595     case kInlineCacheMegamorphic: {
596       LOG_FAIL_NO_STAT()
597           << "Interface or virtual call to "
598           << invoke_instruction->GetMethodReference().PrettyMethod()
599           << " is megamorphic and not inlined";
600       MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall);
601       return false;
602     }
603 
604     case kInlineCacheMissingTypes: {
605       LOG_FAIL_NO_STAT()
606           << "Interface or virtual call to "
607           << invoke_instruction->GetMethodReference().PrettyMethod()
608           << " is missing types and not inlined";
609       return false;
610     }
611   }
612   UNREACHABLE();
613 }
614 
GetInlineCacheJIT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)615 HInliner::InlineCacheType HInliner::GetInlineCacheJIT(
616     HInvoke* invoke_instruction,
617     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
618   DCHECK(codegen_->GetCompilerOptions().IsJitCompiler());
619 
620   ArtMethod* caller = graph_->GetArtMethod();
621   // Under JIT, we should always know the caller.
622   DCHECK(caller != nullptr);
623   ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), caller, Thread::Current());
624   ProfilingInfo* profiling_info = spiu.GetProfilingInfo();
625 
626   if (profiling_info == nullptr) {
627     return kInlineCacheNoData;
628   }
629 
630   Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto(
631       *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()),
632       classes);
633   return GetInlineCacheType(*classes);
634 }
635 
GetInlineCacheAOT(HInvoke * invoke_instruction,StackHandleScope<InlineCache::kIndividualCacheSize> * classes)636 HInliner::InlineCacheType HInliner::GetInlineCacheAOT(
637     HInvoke* invoke_instruction,
638     /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) {
639   DCHECK_EQ(classes->NumberOfReferences(), InlineCache::kIndividualCacheSize);
640   DCHECK_EQ(classes->RemainingSlots(), InlineCache::kIndividualCacheSize);
641 
642   const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo();
643   if (pci == nullptr) {
644     return kInlineCacheNoData;
645   }
646 
647   ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference(
648       caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex()));
649   if (!hotness.IsHot()) {
650     return kInlineCacheNoData;  // no profile information for this invocation.
651   }
652 
653   const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
654   DCHECK(inline_caches != nullptr);
655   const auto it = inline_caches->find(invoke_instruction->GetDexPc());
656   if (it == inline_caches->end()) {
657     return kInlineCacheUninitialized;
658   }
659 
660   const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second;
661   if (dex_pc_data.is_missing_types) {
662     return kInlineCacheMissingTypes;
663   }
664   if (dex_pc_data.is_megamorphic) {
665     return kInlineCacheMegamorphic;
666   }
667   DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize);
668 
669   // Walk over the class descriptors and look up the actual classes.
670   // If we cannot find a type we return kInlineCacheMissingTypes.
671   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
672   for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
673     const DexFile* dex_file = caller_compilation_unit_.GetDexFile();
674     const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index);
675     ObjPtr<mirror::ClassLoader> class_loader = caller_compilation_unit_.GetClassLoader().Get();
676     ObjPtr<mirror::Class> clazz = class_linker->LookupResolvedType(descriptor, class_loader);
677     if (clazz == nullptr) {
678       VLOG(compiler) << "Could not find class from inline cache in AOT mode "
679           << invoke_instruction->GetMethodReference().PrettyMethod()
680           << " : "
681           << descriptor;
682       return kInlineCacheMissingTypes;
683     }
684     DCHECK_NE(classes->RemainingSlots(), 0u);
685     classes->NewHandle(clazz);
686   }
687 
688   return GetInlineCacheType(*classes);
689 }
690 
BuildGetReceiverClass(ClassLinker * class_linker,HInstruction * receiver,uint32_t dex_pc) const691 HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
692                                                    HInstruction* receiver,
693                                                    uint32_t dex_pc) const {
694   ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0);
695   DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
696   HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet(
697       receiver,
698       field,
699       DataType::Type::kReference,
700       field->GetOffset(),
701       field->IsVolatile(),
702       field->GetDexFieldIndex(),
703       field->GetDeclaringClass()->GetDexClassDefIndex(),
704       *field->GetDexFile(),
705       dex_pc);
706   // The class of a field is effectively final, and does not have any memory dependencies.
707   result->SetSideEffects(SideEffects::None());
708   return result;
709 }
710 
ResolveMethodFromInlineCache(Handle<mirror::Class> klass,HInvoke * invoke_instruction,PointerSize pointer_size)711 static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass,
712                                                HInvoke* invoke_instruction,
713                                                PointerSize pointer_size)
714     REQUIRES_SHARED(Locks::mutator_lock_) {
715   ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod();
716   if (Runtime::Current()->IsAotCompiler()) {
717     // We can get unrelated types when working with profiles (corruption,
718     // systme updates, or anyone can write to it). So first check if the class
719     // actually implements the declaring class of the method that is being
720     // called in bytecode.
721     // Note: the lookup methods used below require to have assignable types.
722     if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) {
723       return nullptr;
724     }
725   }
726 
727   if (invoke_instruction->IsInvokeInterface()) {
728     resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size);
729   } else {
730     DCHECK(invoke_instruction->IsInvokeVirtual());
731     resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size);
732   }
733   // Even if the class exists we can still not have the function the
734   // inline-cache targets if the profile is from far enough in the past/future.
735   // We need to allow this since we don't update boot-profiles very often. This
736   // can occur in boot-profiles with inline-caches.
737   DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr);
738   return resolved_method;
739 }
740 
TryInlineMonomorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)741 bool HInliner::TryInlineMonomorphicCall(
742     HInvoke* invoke_instruction,
743     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
744   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
745       << invoke_instruction->DebugName();
746 
747   dex::TypeIndex class_index = FindClassIndexIn(
748       GetMonomorphicType(classes), caller_compilation_unit_);
749   if (!class_index.IsValid()) {
750     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
751         << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod())
752         << " from inline cache is not inlined because its class is not"
753         << " accessible to the caller";
754     return false;
755   }
756 
757   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
758   PointerSize pointer_size = class_linker->GetImagePointerSize();
759   Handle<mirror::Class> monomorphic_type =
760       graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes));
761   ArtMethod* resolved_method = ResolveMethodFromInlineCache(
762       monomorphic_type, invoke_instruction, pointer_size);
763   if (resolved_method == nullptr) {
764     // Bogus AOT profile, bail.
765     DCHECK(Runtime::Current()->IsAotCompiler());
766     return false;
767   }
768 
769   LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod();
770   HInstruction* receiver = invoke_instruction->InputAt(0);
771   HInstruction* cursor = invoke_instruction->GetPrevious();
772   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
773   if (!TryInlineAndReplace(invoke_instruction,
774                            resolved_method,
775                            ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true),
776                            /* do_rtp= */ false)) {
777     return false;
778   }
779 
780   // We successfully inlined, now add a guard.
781   AddTypeGuard(receiver,
782                cursor,
783                bb_cursor,
784                class_index,
785                monomorphic_type,
786                invoke_instruction,
787                /* with_deoptimization= */ true);
788 
789   // Run type propagation to get the guard typed, and eventually propagate the
790   // type of the receiver.
791   ReferenceTypePropagation rtp_fixup(graph_,
792                                      outer_compilation_unit_.GetClassLoader(),
793                                      outer_compilation_unit_.GetDexCache(),
794                                      /* is_first_run= */ false);
795   rtp_fixup.Run();
796 
797   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall);
798   return true;
799 }
800 
AddCHAGuard(HInstruction * invoke_instruction,uint32_t dex_pc,HInstruction * cursor,HBasicBlock * bb_cursor)801 void HInliner::AddCHAGuard(HInstruction* invoke_instruction,
802                            uint32_t dex_pc,
803                            HInstruction* cursor,
804                            HBasicBlock* bb_cursor) {
805   HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator())
806       HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc);
807   HInstruction* compare = new (graph_->GetAllocator()) HNotEqual(
808       deopt_flag, graph_->GetIntConstant(0, dex_pc));
809   HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize(
810       graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc);
811 
812   if (cursor != nullptr) {
813     bb_cursor->InsertInstructionAfter(deopt_flag, cursor);
814   } else {
815     bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction());
816   }
817   bb_cursor->InsertInstructionAfter(compare, deopt_flag);
818   bb_cursor->InsertInstructionAfter(deopt, compare);
819 
820   // Add receiver as input to aid CHA guard optimization later.
821   deopt_flag->AddInput(invoke_instruction->InputAt(0));
822   DCHECK_EQ(deopt_flag->InputCount(), 1u);
823   deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
824   outermost_graph_->IncrementNumberOfCHAGuards();
825 }
826 
AddTypeGuard(HInstruction * receiver,HInstruction * cursor,HBasicBlock * bb_cursor,dex::TypeIndex class_index,Handle<mirror::Class> klass,HInstruction * invoke_instruction,bool with_deoptimization)827 HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
828                                      HInstruction* cursor,
829                                      HBasicBlock* bb_cursor,
830                                      dex::TypeIndex class_index,
831                                      Handle<mirror::Class> klass,
832                                      HInstruction* invoke_instruction,
833                                      bool with_deoptimization) {
834   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
835   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
836       class_linker, receiver, invoke_instruction->GetDexPc());
837   if (cursor != nullptr) {
838     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
839   } else {
840     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
841   }
842 
843   const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
844   bool is_referrer;
845   ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod();
846   if (outermost_art_method == nullptr) {
847     DCHECK(Runtime::Current()->IsAotCompiler());
848     // We are in AOT mode and we don't have an ART method to determine
849     // if the inlined method belongs to the referrer. Assume it doesn't.
850     is_referrer = false;
851   } else {
852     is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass();
853   }
854 
855   // Note that we will just compare the classes, so we don't need Java semantics access checks.
856   // Note that the type index and the dex file are relative to the method this type guard is
857   // inlined into.
858   HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(),
859                                                                    class_index,
860                                                                    caller_dex_file,
861                                                                    klass,
862                                                                    is_referrer,
863                                                                    invoke_instruction->GetDexPc(),
864                                                                    /* needs_access_check= */ false);
865   HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind(
866       load_class, codegen_, caller_compilation_unit_);
867   DCHECK(kind != HLoadClass::LoadKind::kInvalid)
868       << "We should always be able to reference a class for inline caches";
869   // Load kind must be set before inserting the instruction into the graph.
870   load_class->SetLoadKind(kind);
871   bb_cursor->InsertInstructionAfter(load_class, receiver_class);
872   // In AOT mode, we will most likely load the class from BSS, which will involve a call
873   // to the runtime. In this case, the load instruction will need an environment so copy
874   // it from the invoke instruction.
875   if (load_class->NeedsEnvironment()) {
876     DCHECK(Runtime::Current()->IsAotCompiler());
877     load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
878   }
879 
880   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class);
881   bb_cursor->InsertInstructionAfter(compare, load_class);
882   if (with_deoptimization) {
883     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
884         graph_->GetAllocator(),
885         compare,
886         receiver,
887         Runtime::Current()->IsAotCompiler()
888             ? DeoptimizationKind::kAotInlineCache
889             : DeoptimizationKind::kJitInlineCache,
890         invoke_instruction->GetDexPc());
891     bb_cursor->InsertInstructionAfter(deoptimize, compare);
892     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
893     DCHECK_EQ(invoke_instruction->InputAt(0), receiver);
894     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
895     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
896   }
897   return compare;
898 }
899 
MaybeReplaceAndRemove(HInstruction * new_instruction,HInstruction * old_instruction)900 static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) {
901   DCHECK(new_instruction != old_instruction);
902   if (new_instruction != nullptr) {
903     old_instruction->ReplaceWith(new_instruction);
904   }
905   old_instruction->GetBlock()->RemoveInstruction(old_instruction);
906 }
907 
TryInlinePolymorphicCall(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)908 bool HInliner::TryInlinePolymorphicCall(
909     HInvoke* invoke_instruction,
910     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
911   DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
912       << invoke_instruction->DebugName();
913 
914   if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) {
915     return true;
916   }
917 
918   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
919   PointerSize pointer_size = class_linker->GetImagePointerSize();
920 
921   bool all_targets_inlined = true;
922   bool one_target_inlined = false;
923   DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize);
924   uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots();
925   for (size_t i = 0; i != number_of_types; ++i) {
926     DCHECK(classes.GetReference(i) != nullptr);
927     Handle<mirror::Class> handle =
928         graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass());
929     ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size);
930     if (method == nullptr) {
931       DCHECK(Runtime::Current()->IsAotCompiler());
932       // AOT profile is bogus. This loop expects to iterate over all entries,
933       // so just just continue.
934       all_targets_inlined = false;
935       continue;
936     }
937 
938     HInstruction* receiver = invoke_instruction->InputAt(0);
939     HInstruction* cursor = invoke_instruction->GetPrevious();
940     HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
941 
942     dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_);
943     HInstruction* return_replacement = nullptr;
944     LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod();
945     if (!class_index.IsValid() ||
946         !TryBuildAndInline(invoke_instruction,
947                            method,
948                            ReferenceTypeInfo::Create(handle, /* is_exact= */ true),
949                            &return_replacement)) {
950       all_targets_inlined = false;
951     } else {
952       one_target_inlined = true;
953 
954       LOG_SUCCESS() << "Polymorphic call to "
955                     << invoke_instruction->GetMethodReference().PrettyMethod()
956                     << " has inlined " << ArtMethod::PrettyMethod(method);
957 
958       // If we have inlined all targets before, and this receiver is the last seen,
959       // we deoptimize instead of keeping the original invoke instruction.
960       bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() &&
961           all_targets_inlined &&
962           (i + 1 == number_of_types);
963 
964       HInstruction* compare = AddTypeGuard(receiver,
965                                            cursor,
966                                            bb_cursor,
967                                            class_index,
968                                            handle,
969                                            invoke_instruction,
970                                            deoptimize);
971       if (deoptimize) {
972         MaybeReplaceAndRemove(return_replacement, invoke_instruction);
973       } else {
974         CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
975       }
976     }
977   }
978 
979   if (!one_target_inlined) {
980     LOG_FAIL_NO_STAT()
981         << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod()
982         << " from inline cache is not inlined because none"
983         << " of its targets could be inlined";
984     return false;
985   }
986 
987   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
988 
989   // Run type propagation to get the guards typed.
990   ReferenceTypePropagation rtp_fixup(graph_,
991                                      outer_compilation_unit_.GetClassLoader(),
992                                      outer_compilation_unit_.GetDexCache(),
993                                      /* is_first_run= */ false);
994   rtp_fixup.Run();
995   return true;
996 }
997 
CreateDiamondPatternForPolymorphicInline(HInstruction * compare,HInstruction * return_replacement,HInstruction * invoke_instruction)998 void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
999                                                         HInstruction* return_replacement,
1000                                                         HInstruction* invoke_instruction) {
1001   uint32_t dex_pc = invoke_instruction->GetDexPc();
1002   HBasicBlock* cursor_block = compare->GetBlock();
1003   HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
1004   ArenaAllocator* allocator = graph_->GetAllocator();
1005 
1006   // Spit the block after the compare: `cursor_block` will now be the start of the diamond,
1007   // and the returned block is the start of the then branch (that could contain multiple blocks).
1008   HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
1009 
1010   // Split the block containing the invoke before and after the invoke. The returned block
1011   // of the split before will contain the invoke and will be the otherwise branch of
1012   // the diamond. The returned block of the split after will be the merge block
1013   // of the diamond.
1014   HBasicBlock* end_then = invoke_instruction->GetBlock();
1015   HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
1016   HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
1017 
1018   // If the methods we are inlining return a value, we create a phi in the merge block
1019   // that will have the `invoke_instruction and the `return_replacement` as inputs.
1020   if (return_replacement != nullptr) {
1021     HPhi* phi = new (allocator) HPhi(
1022         allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
1023     merge->AddPhi(phi);
1024     invoke_instruction->ReplaceWith(phi);
1025     phi->AddInput(return_replacement);
1026     phi->AddInput(invoke_instruction);
1027   }
1028 
1029   // Add the control flow instructions.
1030   otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
1031   end_then->AddInstruction(new (allocator) HGoto(dex_pc));
1032   cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
1033 
1034   // Add the newly created blocks to the graph.
1035   graph_->AddBlock(then);
1036   graph_->AddBlock(otherwise);
1037   graph_->AddBlock(merge);
1038 
1039   // Set up successor (and implictly predecessor) relations.
1040   cursor_block->AddSuccessor(otherwise);
1041   cursor_block->AddSuccessor(then);
1042   end_then->AddSuccessor(merge);
1043   otherwise->AddSuccessor(merge);
1044 
1045   // Set up dominance information.
1046   then->SetDominator(cursor_block);
1047   cursor_block->AddDominatedBlock(then);
1048   otherwise->SetDominator(cursor_block);
1049   cursor_block->AddDominatedBlock(otherwise);
1050   merge->SetDominator(cursor_block);
1051   cursor_block->AddDominatedBlock(merge);
1052 
1053   // Update the revert post order.
1054   size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
1055   MakeRoomFor(&graph_->reverse_post_order_, 1, index);
1056   graph_->reverse_post_order_[++index] = then;
1057   index = IndexOfElement(graph_->reverse_post_order_, end_then);
1058   MakeRoomFor(&graph_->reverse_post_order_, 2, index);
1059   graph_->reverse_post_order_[++index] = otherwise;
1060   graph_->reverse_post_order_[++index] = merge;
1061 
1062 
1063   graph_->UpdateLoopAndTryInformationOfNewBlock(
1064       then, original_invoke_block, /* replace_if_back_edge= */ false);
1065   graph_->UpdateLoopAndTryInformationOfNewBlock(
1066       otherwise, original_invoke_block, /* replace_if_back_edge= */ false);
1067 
1068   // In case the original invoke location was a back edge, we need to update
1069   // the loop to now have the merge block as a back edge.
1070   graph_->UpdateLoopAndTryInformationOfNewBlock(
1071       merge, original_invoke_block, /* replace_if_back_edge= */ true);
1072 }
1073 
TryInlinePolymorphicCallToSameTarget(HInvoke * invoke_instruction,const StackHandleScope<InlineCache::kIndividualCacheSize> & classes)1074 bool HInliner::TryInlinePolymorphicCallToSameTarget(
1075     HInvoke* invoke_instruction,
1076     const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) {
1077   // This optimization only works under JIT for now.
1078   if (!codegen_->GetCompilerOptions().IsJitCompiler()) {
1079     return false;
1080   }
1081 
1082   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1083   PointerSize pointer_size = class_linker->GetImagePointerSize();
1084 
1085   ArtMethod* actual_method = nullptr;
1086   size_t method_index = invoke_instruction->IsInvokeVirtual()
1087       ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
1088       : invoke_instruction->AsInvokeInterface()->GetImtIndex();
1089 
1090   // Check whether we are actually calling the same method among
1091   // the different types seen.
1092   DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize);
1093   uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots();
1094   for (size_t i = 0; i != number_of_types; ++i) {
1095     DCHECK(classes.GetReference(i) != nullptr);
1096     ArtMethod* new_method = nullptr;
1097     if (invoke_instruction->IsInvokeInterface()) {
1098       new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get(
1099           method_index, pointer_size);
1100       if (new_method->IsRuntimeMethod()) {
1101         // Bail out as soon as we see a conflict trampoline in one of the target's
1102         // interface table.
1103         return false;
1104       }
1105     } else {
1106       DCHECK(invoke_instruction->IsInvokeVirtual());
1107       new_method =
1108           classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size);
1109     }
1110     DCHECK(new_method != nullptr);
1111     if (actual_method == nullptr) {
1112       actual_method = new_method;
1113     } else if (actual_method != new_method) {
1114       // Different methods, bailout.
1115       return false;
1116     }
1117   }
1118 
1119   HInstruction* receiver = invoke_instruction->InputAt(0);
1120   HInstruction* cursor = invoke_instruction->GetPrevious();
1121   HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
1122 
1123   HInstruction* return_replacement = nullptr;
1124   if (!TryBuildAndInline(invoke_instruction,
1125                          actual_method,
1126                          ReferenceTypeInfo::CreateInvalid(),
1127                          &return_replacement)) {
1128     return false;
1129   }
1130 
1131   // We successfully inlined, now add a guard.
1132   HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
1133       class_linker, receiver, invoke_instruction->GetDexPc());
1134 
1135   DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
1136       ? DataType::Type::kInt64
1137       : DataType::Type::kInt32;
1138   HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet(
1139       receiver_class,
1140       type,
1141       invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
1142                                             : HClassTableGet::TableKind::kIMTable,
1143       method_index,
1144       invoke_instruction->GetDexPc());
1145 
1146   HConstant* constant;
1147   if (type == DataType::Type::kInt64) {
1148     constant = graph_->GetLongConstant(
1149         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1150   } else {
1151     constant = graph_->GetIntConstant(
1152         reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
1153   }
1154 
1155   HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant);
1156   if (cursor != nullptr) {
1157     bb_cursor->InsertInstructionAfter(receiver_class, cursor);
1158   } else {
1159     bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
1160   }
1161   bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
1162   bb_cursor->InsertInstructionAfter(compare, class_table_get);
1163 
1164   if (outermost_graph_->IsCompilingOsr()) {
1165     CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
1166   } else {
1167     HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize(
1168         graph_->GetAllocator(),
1169         compare,
1170         receiver,
1171         DeoptimizationKind::kJitSameTarget,
1172         invoke_instruction->GetDexPc());
1173     bb_cursor->InsertInstructionAfter(deoptimize, compare);
1174     deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1175     MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1176     receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize);
1177     deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo());
1178   }
1179 
1180   // Run type propagation to get the guard typed.
1181   ReferenceTypePropagation rtp_fixup(graph_,
1182                                      outer_compilation_unit_.GetClassLoader(),
1183                                      outer_compilation_unit_.GetDexCache(),
1184                                      /* is_first_run= */ false);
1185   rtp_fixup.Run();
1186 
1187   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall);
1188 
1189   LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod();
1190   return true;
1191 }
1192 
MaybeRunReferenceTypePropagation(HInstruction * replacement,HInvoke * invoke_instruction)1193 void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement,
1194                                                 HInvoke* invoke_instruction) {
1195   if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) {
1196     // Actual return value has a more specific type than the method's declared
1197     // return type. Run RTP again on the outer graph to propagate it.
1198     ReferenceTypePropagation(graph_,
1199                              outer_compilation_unit_.GetClassLoader(),
1200                              outer_compilation_unit_.GetDexCache(),
1201                              /* is_first_run= */ false).Run();
1202   }
1203 }
1204 
TryDevirtualize(HInvoke * invoke_instruction,ArtMethod * method,HInvoke ** replacement)1205 bool HInliner::TryDevirtualize(HInvoke* invoke_instruction,
1206                                ArtMethod* method,
1207                                HInvoke** replacement) {
1208   DCHECK(invoke_instruction != *replacement);
1209   if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) {
1210     return false;
1211   }
1212 
1213   // Don't bother trying to call directly a default conflict method. It
1214   // doesn't have a proper MethodReference, but also `GetCanonicalMethod`
1215   // will return an actual default implementation.
1216   if (method->IsDefaultConflicting()) {
1217     return false;
1218   }
1219   DCHECK(!method->IsProxyMethod());
1220   ClassLinker* cl = Runtime::Current()->GetClassLinker();
1221   PointerSize pointer_size = cl->GetImagePointerSize();
1222   // The sharpening logic assumes the caller isn't passing a copied method.
1223   method = method->GetCanonicalMethod(pointer_size);
1224   uint32_t dex_method_index = FindMethodIndexIn(
1225       method,
1226       *invoke_instruction->GetMethodReference().dex_file,
1227       invoke_instruction->GetMethodReference().index);
1228   if (dex_method_index == dex::kDexNoIndex) {
1229     return false;
1230   }
1231   HInvokeStaticOrDirect::DispatchInfo dispatch_info =
1232       HSharpening::SharpenLoadMethod(method,
1233                                      /* has_method_id= */ true,
1234                                      /* for_interface_call= */ false,
1235                                      codegen_);
1236   DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative);
1237   if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) {
1238     // If sharpening returns that we need to load the method at runtime, keep
1239     // the virtual/interface call which will be faster.
1240     // Also, the entrypoints for runtime calls do not handle devirtualized
1241     // calls.
1242     return false;
1243   }
1244 
1245   HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect(
1246       graph_->GetAllocator(),
1247       invoke_instruction->GetNumberOfArguments(),
1248       invoke_instruction->GetType(),
1249       invoke_instruction->GetDexPc(),
1250       MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index),
1251       method,
1252       dispatch_info,
1253       kDirect,
1254       MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1255       HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
1256   HInputsRef inputs = invoke_instruction->GetInputs();
1257   DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments());
1258   for (size_t index = 0; index != inputs.size(); ++index) {
1259     new_invoke->SetArgumentAt(index, inputs[index]);
1260   }
1261   if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) {
1262     new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(),
1263                               graph_->GetCurrentMethod());
1264   }
1265   invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1266   new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1267   if (invoke_instruction->GetType() == DataType::Type::kReference) {
1268     new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1269   }
1270   *replacement = new_invoke;
1271 
1272   MaybeReplaceAndRemove(*replacement, invoke_instruction);
1273   // No need to call MaybeRunReferenceTypePropagation, as we know the return type
1274   // cannot be more specific.
1275   DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction));
1276   return true;
1277 }
1278 
1279 
TryInlineAndReplace(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,bool do_rtp)1280 bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction,
1281                                    ArtMethod* method,
1282                                    ReferenceTypeInfo receiver_type,
1283                                    bool do_rtp) {
1284   DCHECK(!invoke_instruction->IsIntrinsic());
1285   HInstruction* return_replacement = nullptr;
1286 
1287   if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) {
1288     return false;
1289   }
1290 
1291   MaybeReplaceAndRemove(return_replacement, invoke_instruction);
1292   FixUpReturnReferenceType(method, return_replacement);
1293   if (do_rtp) {
1294     MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction);
1295   }
1296   return true;
1297 }
1298 
CountRecursiveCallsOf(ArtMethod * method) const1299 size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const {
1300   const HInliner* current = this;
1301   size_t count = 0;
1302   do {
1303     if (current->graph_->GetArtMethod() == method) {
1304       ++count;
1305     }
1306     current = current->parent_;
1307   } while (current != nullptr);
1308   return count;
1309 }
1310 
MayInline(const CompilerOptions & compiler_options,const DexFile & inlined_from,const DexFile & inlined_into)1311 static inline bool MayInline(const CompilerOptions& compiler_options,
1312                              const DexFile& inlined_from,
1313                              const DexFile& inlined_into) {
1314   // We're not allowed to inline across dex files if we're the no-inline-from dex file.
1315   if (!IsSameDexFile(inlined_from, inlined_into) &&
1316       ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) {
1317     return false;
1318   }
1319 
1320   return true;
1321 }
1322 
1323 // Returns whether inlining is allowed based on ART semantics.
IsInliningAllowed(ArtMethod * method,const CodeItemDataAccessor & accessor) const1324 bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const {
1325   if (!accessor.HasCodeItem()) {
1326     LOG_FAIL_NO_STAT()
1327         << "Method " << method->PrettyMethod() << " is not inlined because it is native";
1328     return false;
1329   }
1330 
1331   if (!method->IsCompilable()) {
1332     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1333         << "Method " << method->PrettyMethod()
1334         << " has soft failures un-handled by the compiler, so it cannot be inlined";
1335     return false;
1336   }
1337 
1338   if (IsMethodUnverified(codegen_->GetCompilerOptions(), method)) {
1339     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified)
1340         << "Method " << method->PrettyMethod()
1341         << " couldn't be verified, so it cannot be inlined";
1342     return false;
1343   }
1344 
1345   return true;
1346 }
1347 
1348 // Returns whether ART supports inlining this method.
1349 //
1350 // Some methods are not supported because they have features for which inlining
1351 // is not implemented. For example, we do not currently support inlining throw
1352 // instructions into a try block.
IsInliningSupported(const HInvoke * invoke_instruction,ArtMethod * method,const CodeItemDataAccessor & accessor) const1353 bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction,
1354                                    ArtMethod* method,
1355                                    const CodeItemDataAccessor& accessor) const {
1356   if (method->IsProxyMethod()) {
1357     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy)
1358         << "Method " << method->PrettyMethod()
1359         << " is not inlined because of unimplemented inline support for proxy methods.";
1360     return false;
1361   }
1362 
1363   if (accessor.TriesSize() != 0) {
1364     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1365         << "Method " << method->PrettyMethod() << " is not inlined because of try block";
1366     return false;
1367   }
1368 
1369   if (invoke_instruction->IsInvokeStaticOrDirect() &&
1370       invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
1371     // Case of a static method that cannot be inlined because it implicitly
1372     // requires an initialization check of its declaring class.
1373     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCache)
1374         << "Method " << method->PrettyMethod()
1375         << " is not inlined because it is static and requires a clinit"
1376         << " check that cannot be emitted due to Dex cache limitations";
1377     return false;
1378   }
1379 
1380   return true;
1381 }
1382 
1383 // Returns whether our resource limits allow inlining this method.
IsInliningBudgetAvailable(ArtMethod * method,const CodeItemDataAccessor & accessor) const1384 bool HInliner::IsInliningBudgetAvailable(ArtMethod* method,
1385                                          const CodeItemDataAccessor& accessor) const {
1386   if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) {
1387     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget)
1388         << "Method "
1389         << method->PrettyMethod()
1390         << " is not inlined because it has reached its recursive call budget.";
1391     return false;
1392   }
1393 
1394   size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits();
1395   if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) {
1396     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem)
1397         << "Method " << method->PrettyMethod()
1398         << " is not inlined because its code item is too big: "
1399         << accessor.InsnsSizeInCodeUnits()
1400         << " > "
1401         << inline_max_code_units;
1402     return false;
1403   }
1404 
1405   return true;
1406 }
1407 
TryBuildAndInline(HInvoke * invoke_instruction,ArtMethod * method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement)1408 bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
1409                                  ArtMethod* method,
1410                                  ReferenceTypeInfo receiver_type,
1411                                  HInstruction** return_replacement) {
1412   // If invoke_instruction is devirtualized to a different method, give intrinsics
1413   // another chance before we try to inline it.
1414   if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) {
1415     MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized);
1416     // For simplicity, always create a new instruction to replace the existing
1417     // invoke.
1418     HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual(
1419         graph_->GetAllocator(),
1420         invoke_instruction->GetNumberOfArguments(),
1421         invoke_instruction->GetType(),
1422         invoke_instruction->GetDexPc(),
1423         invoke_instruction->GetMethodReference(),  // Use existing invoke's method's reference.
1424         method,
1425         MethodReference(method->GetDexFile(), method->GetDexMethodIndex()),
1426         method->GetMethodIndex());
1427     DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone);
1428     HInputsRef inputs = invoke_instruction->GetInputs();
1429     for (size_t index = 0; index != inputs.size(); ++index) {
1430       new_invoke->SetArgumentAt(index, inputs[index]);
1431     }
1432     invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
1433     new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
1434     if (invoke_instruction->GetType() == DataType::Type::kReference) {
1435       new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
1436     }
1437     *return_replacement = new_invoke;
1438     return true;
1439   }
1440 
1441   // Check whether we're allowed to inline. The outermost compilation unit is the relevant
1442   // dex file here (though the transitivity of an inline chain would allow checking the caller).
1443   if (!MayInline(codegen_->GetCompilerOptions(),
1444                  *method->GetDexFile(),
1445                  *outer_compilation_unit_.GetDexFile())) {
1446     if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
1447       LOG_SUCCESS() << "Successfully replaced pattern of invoke "
1448                     << method->PrettyMethod();
1449       MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern);
1450       return true;
1451     }
1452     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont)
1453         << "Won't inline " << method->PrettyMethod() << " in "
1454         << outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
1455         << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
1456         << method->GetDexFile()->GetLocation();
1457     return false;
1458   }
1459 
1460   CodeItemDataAccessor accessor(method->DexInstructionData());
1461 
1462   if (!IsInliningAllowed(method, accessor)) {
1463     return false;
1464   }
1465 
1466   if (!IsInliningSupported(invoke_instruction, method, accessor)) {
1467     return false;
1468   }
1469 
1470   if (!IsInliningBudgetAvailable(method, accessor)) {
1471     return false;
1472   }
1473 
1474   if (!TryBuildAndInlineHelper(
1475           invoke_instruction, method, receiver_type, return_replacement)) {
1476     return false;
1477   }
1478 
1479   LOG_SUCCESS() << method->PrettyMethod();
1480   MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke);
1481   return true;
1482 }
1483 
GetInvokeInputForArgVRegIndex(HInvoke * invoke_instruction,size_t arg_vreg_index)1484 static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
1485                                                    size_t arg_vreg_index)
1486     REQUIRES_SHARED(Locks::mutator_lock_) {
1487   size_t input_index = 0;
1488   for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
1489     DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1490     if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
1491       ++i;
1492       DCHECK_NE(i, arg_vreg_index);
1493     }
1494   }
1495   DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
1496   return invoke_instruction->InputAt(input_index);
1497 }
1498 
1499 // Try to recognize known simple patterns and replace invoke call with appropriate instructions.
TryPatternSubstitution(HInvoke * invoke_instruction,ArtMethod * method,HInstruction ** return_replacement)1500 bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
1501                                       ArtMethod* method,
1502                                       HInstruction** return_replacement) {
1503   InlineMethod inline_method;
1504   if (!InlineMethodAnalyser::AnalyseMethodCode(method, &inline_method)) {
1505     return false;
1506   }
1507 
1508   switch (inline_method.opcode) {
1509     case kInlineOpNop:
1510       DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid);
1511       *return_replacement = nullptr;
1512       break;
1513     case kInlineOpReturnArg:
1514       *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
1515                                                           inline_method.d.return_data.arg);
1516       break;
1517     case kInlineOpNonWideConst:
1518       if (method->GetShorty()[0] == 'L') {
1519         DCHECK_EQ(inline_method.d.data, 0u);
1520         *return_replacement = graph_->GetNullConstant();
1521       } else {
1522         *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
1523       }
1524       break;
1525     case kInlineOpIGet: {
1526       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1527       if (data.method_is_static || data.object_arg != 0u) {
1528         // TODO: Needs null check.
1529         return false;
1530       }
1531       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1532       HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj);
1533       DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
1534       DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
1535       invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
1536       *return_replacement = iget;
1537       break;
1538     }
1539     case kInlineOpIPut: {
1540       const InlineIGetIPutData& data = inline_method.d.ifield_data;
1541       if (data.method_is_static || data.object_arg != 0u) {
1542         // TODO: Needs null check.
1543         return false;
1544       }
1545       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
1546       HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
1547       HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value);
1548       DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
1549       DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
1550       invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1551       if (data.return_arg_plus1 != 0u) {
1552         size_t return_arg = data.return_arg_plus1 - 1u;
1553         *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
1554       }
1555       break;
1556     }
1557     case kInlineOpConstructor: {
1558       const InlineConstructorData& data = inline_method.d.constructor_data;
1559       // Get the indexes to arrays for easier processing.
1560       uint16_t iput_field_indexes[] = {
1561           data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
1562       };
1563       uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
1564       static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
1565       // Count valid field indexes.
1566       size_t number_of_iputs = 0u;
1567       while (number_of_iputs != arraysize(iput_field_indexes) &&
1568           iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
1569         // Check that there are no duplicate valid field indexes.
1570         DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
1571                                 iput_field_indexes + arraysize(iput_field_indexes),
1572                                 iput_field_indexes[number_of_iputs]));
1573         ++number_of_iputs;
1574       }
1575       // Check that there are no valid field indexes in the rest of the array.
1576       DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
1577                                  iput_field_indexes + arraysize(iput_field_indexes),
1578                                  [](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
1579 
1580       // Create HInstanceFieldSet for each IPUT that stores non-zero data.
1581       HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction,
1582                                                         /* arg_vreg_index= */ 0u);
1583       bool needs_constructor_barrier = false;
1584       for (size_t i = 0; i != number_of_iputs; ++i) {
1585         HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
1586         if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
1587           uint16_t field_index = iput_field_indexes[i];
1588           bool is_final;
1589           HInstanceFieldSet* iput =
1590               CreateInstanceFieldSet(field_index, method, obj, value, &is_final);
1591           invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
1592 
1593           // Check whether the field is final. If it is, we need to add a barrier.
1594           if (is_final) {
1595             needs_constructor_barrier = true;
1596           }
1597         }
1598       }
1599       if (needs_constructor_barrier) {
1600         // See DexCompilationUnit::RequiresConstructorBarrier for more details.
1601         DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence";
1602 
1603         HConstructorFence* constructor_fence =
1604             new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator());
1605         invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence,
1606                                                                 invoke_instruction);
1607       }
1608       *return_replacement = nullptr;
1609       break;
1610     }
1611     default:
1612       LOG(FATAL) << "UNREACHABLE";
1613       UNREACHABLE();
1614   }
1615   return true;
1616 }
1617 
CreateInstanceFieldGet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj)1618 HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index,
1619                                                     ArtMethod* referrer,
1620                                                     HInstruction* obj)
1621     REQUIRES_SHARED(Locks::mutator_lock_) {
1622   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1623   ArtField* resolved_field =
1624       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1625   DCHECK(resolved_field != nullptr);
1626   HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet(
1627       obj,
1628       resolved_field,
1629       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1630       resolved_field->GetOffset(),
1631       resolved_field->IsVolatile(),
1632       field_index,
1633       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1634       *referrer->GetDexFile(),
1635       // Read barrier generates a runtime call in slow path and we need a valid
1636       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1637       /* dex_pc= */ 0);
1638   if (iget->GetType() == DataType::Type::kReference) {
1639     // Use the same dex_cache that we used for field lookup as the hint_dex_cache.
1640     Handle<mirror::DexCache> dex_cache =
1641         graph_->GetHandleCache()->NewHandle(referrer->GetDexCache());
1642     ReferenceTypePropagation rtp(graph_,
1643                                  outer_compilation_unit_.GetClassLoader(),
1644                                  dex_cache,
1645                                  /* is_first_run= */ false);
1646     rtp.Visit(iget);
1647   }
1648   return iget;
1649 }
1650 
CreateInstanceFieldSet(uint32_t field_index,ArtMethod * referrer,HInstruction * obj,HInstruction * value,bool * is_final)1651 HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index,
1652                                                     ArtMethod* referrer,
1653                                                     HInstruction* obj,
1654                                                     HInstruction* value,
1655                                                     bool* is_final)
1656     REQUIRES_SHARED(Locks::mutator_lock_) {
1657   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1658   ArtField* resolved_field =
1659       class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false);
1660   DCHECK(resolved_field != nullptr);
1661   if (is_final != nullptr) {
1662     // This information is needed only for constructors.
1663     DCHECK(referrer->IsConstructor());
1664     *is_final = resolved_field->IsFinal();
1665   }
1666   HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet(
1667       obj,
1668       value,
1669       resolved_field,
1670       DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]),
1671       resolved_field->GetOffset(),
1672       resolved_field->IsVolatile(),
1673       field_index,
1674       resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
1675       *referrer->GetDexFile(),
1676       // Read barrier generates a runtime call in slow path and we need a valid
1677       // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
1678       /* dex_pc= */ 0);
1679   return iput;
1680 }
1681 
1682 template <typename T>
NewHandleIfDifferent(ObjPtr<T> object,Handle<T> hint,HGraph * graph)1683 static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph)
1684     REQUIRES_SHARED(Locks::mutator_lock_) {
1685   return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint;
1686 }
1687 
CanEncodeInlinedMethodInStackMap(const DexFile & caller_dex_file,ArtMethod * callee)1688 static bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee)
1689     REQUIRES_SHARED(Locks::mutator_lock_) {
1690   if (!Runtime::Current()->IsAotCompiler()) {
1691     // JIT can always encode methods in stack maps.
1692     return true;
1693   }
1694   if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) {
1695     return true;
1696   }
1697   // TODO(ngeoffray): Support more AOT cases for inlining:
1698   // - methods in multidex
1699   // - methods in boot image for on-device non-PIC compilation.
1700   return false;
1701 }
1702 
1703   // Substitutes parameters in the callee graph with their values from the caller.
SubstituteArguments(HGraph * callee_graph,HInvoke * invoke_instruction,ReferenceTypeInfo receiver_type,const DexCompilationUnit & dex_compilation_unit)1704 void HInliner::SubstituteArguments(HGraph* callee_graph,
1705                                    HInvoke* invoke_instruction,
1706                                    ReferenceTypeInfo receiver_type,
1707                                    const DexCompilationUnit& dex_compilation_unit) {
1708   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1709   size_t parameter_index = 0;
1710   bool run_rtp = false;
1711   for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
1712        !instructions.Done();
1713        instructions.Advance()) {
1714     HInstruction* current = instructions.Current();
1715     if (current->IsParameterValue()) {
1716       HInstruction* argument = invoke_instruction->InputAt(parameter_index);
1717       if (argument->IsNullConstant()) {
1718         current->ReplaceWith(callee_graph->GetNullConstant());
1719       } else if (argument->IsIntConstant()) {
1720         current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
1721       } else if (argument->IsLongConstant()) {
1722         current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
1723       } else if (argument->IsFloatConstant()) {
1724         current->ReplaceWith(
1725             callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
1726       } else if (argument->IsDoubleConstant()) {
1727         current->ReplaceWith(
1728             callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
1729       } else if (argument->GetType() == DataType::Type::kReference) {
1730         if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) {
1731           run_rtp = true;
1732           current->SetReferenceTypeInfo(receiver_type);
1733         } else {
1734           current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
1735         }
1736         current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
1737       }
1738       ++parameter_index;
1739     }
1740   }
1741 
1742   // We have replaced formal arguments with actual arguments. If actual types
1743   // are more specific than the declared ones, run RTP again on the inner graph.
1744   if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
1745     ReferenceTypePropagation(callee_graph,
1746                              outer_compilation_unit_.GetClassLoader(),
1747                              dex_compilation_unit.GetDexCache(),
1748                              /* is_first_run= */ false).Run();
1749   }
1750 }
1751 
1752 // Returns whether we can inline the callee_graph into the target_block.
1753 //
1754 // This performs a combination of semantics checks, compiler support checks, and
1755 // resource limit checks.
1756 //
1757 // If this function returns true, it will also set out_number_of_instructions to
1758 // the number of instructions in the inlined body.
CanInlineBody(const HGraph * callee_graph,const HBasicBlock * target_block,size_t * out_number_of_instructions) const1759 bool HInliner::CanInlineBody(const HGraph* callee_graph,
1760                              const HBasicBlock* target_block,
1761                              size_t* out_number_of_instructions) const {
1762   ArtMethod* const resolved_method = callee_graph->GetArtMethod();
1763 
1764   HBasicBlock* exit_block = callee_graph->GetExitBlock();
1765   if (exit_block == nullptr) {
1766     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1767         << "Method " << resolved_method->PrettyMethod()
1768         << " could not be inlined because it has an infinite loop";
1769     return false;
1770   }
1771 
1772   bool has_one_return = false;
1773   for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
1774     if (predecessor->GetLastInstruction()->IsThrow()) {
1775       if (target_block->IsTryBlock()) {
1776         // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto.
1777         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatch)
1778             << "Method " << resolved_method->PrettyMethod()
1779             << " could not be inlined because one branch always throws and"
1780             << " caller is in a try/catch block";
1781         return false;
1782       } else if (graph_->GetExitBlock() == nullptr) {
1783         // TODO(ngeoffray): Support adding HExit in the caller graph.
1784         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop)
1785             << "Method " << resolved_method->PrettyMethod()
1786             << " could not be inlined because one branch always throws and"
1787             << " caller does not have an exit block";
1788         return false;
1789       } else if (graph_->HasIrreducibleLoops()) {
1790         // TODO(ngeoffray): Support re-computing loop information to graphs with
1791         // irreducible loops?
1792         VLOG(compiler) << "Method " << resolved_method->PrettyMethod()
1793                        << " could not be inlined because one branch always throws and"
1794                        << " caller has irreducible loops";
1795         return false;
1796       }
1797     } else {
1798       has_one_return = true;
1799     }
1800   }
1801 
1802   if (!has_one_return) {
1803     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows)
1804         << "Method " << resolved_method->PrettyMethod()
1805         << " could not be inlined because it always throws";
1806     return false;
1807   }
1808 
1809   size_t number_of_instructions = 0;
1810   // Skip the entry block, it does not contain instructions that prevent inlining.
1811   for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) {
1812     if (block->IsLoopHeader()) {
1813       if (block->GetLoopInformation()->IsIrreducible()) {
1814         // Don't inline methods with irreducible loops, they could prevent some
1815         // optimizations to run.
1816         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoop)
1817             << "Method " << resolved_method->PrettyMethod()
1818             << " could not be inlined because it contains an irreducible loop";
1819         return false;
1820       }
1821       if (!block->GetLoopInformation()->HasExitEdge()) {
1822         // Don't inline methods with loops without exit, since they cause the
1823         // loop information to be computed incorrectly when updating after
1824         // inlining.
1825         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit)
1826             << "Method " << resolved_method->PrettyMethod()
1827             << " could not be inlined because it contains a loop with no exit";
1828         return false;
1829       }
1830     }
1831 
1832     for (HInstructionIterator instr_it(block->GetInstructions());
1833          !instr_it.Done();
1834          instr_it.Advance()) {
1835       if (++number_of_instructions > inlining_budget_) {
1836         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget)
1837             << "Method " << resolved_method->PrettyMethod()
1838             << " is not inlined because the outer method has reached"
1839             << " its instruction budget limit.";
1840         return false;
1841       }
1842       HInstruction* current = instr_it.Current();
1843       if (current->NeedsEnvironment() &&
1844           (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters)) {
1845         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget)
1846             << "Method " << resolved_method->PrettyMethod()
1847             << " is not inlined because its caller has reached"
1848             << " its environment budget limit.";
1849         return false;
1850       }
1851 
1852       if (current->NeedsEnvironment() &&
1853           !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(),
1854                                             resolved_method)) {
1855         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps)
1856             << "Method " << resolved_method->PrettyMethod()
1857             << " could not be inlined because " << current->DebugName()
1858             << " needs an environment, is in a different dex file"
1859             << ", and cannot be encoded in the stack maps.";
1860         return false;
1861       }
1862 
1863       if (current->IsUnresolvedStaticFieldGet() ||
1864           current->IsUnresolvedInstanceFieldGet() ||
1865           current->IsUnresolvedStaticFieldSet() ||
1866           current->IsUnresolvedInstanceFieldSet()) {
1867         // Entrypoint for unresolved fields does not handle inlined frames.
1868         LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint)
1869             << "Method " << resolved_method->PrettyMethod()
1870             << " could not be inlined because it is using an unresolved"
1871             << " entrypoint";
1872         return false;
1873       }
1874     }
1875   }
1876 
1877   *out_number_of_instructions = number_of_instructions;
1878   return true;
1879 }
1880 
TryBuildAndInlineHelper(HInvoke * invoke_instruction,ArtMethod * resolved_method,ReferenceTypeInfo receiver_type,HInstruction ** return_replacement)1881 bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
1882                                        ArtMethod* resolved_method,
1883                                        ReferenceTypeInfo receiver_type,
1884                                        HInstruction** return_replacement) {
1885   DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid()));
1886   const dex::CodeItem* code_item = resolved_method->GetCodeItem();
1887   const DexFile& callee_dex_file = *resolved_method->GetDexFile();
1888   uint32_t method_index = resolved_method->GetDexMethodIndex();
1889   CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo());
1890   ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
1891   Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(),
1892                                                             caller_compilation_unit_.GetDexCache(),
1893                                                             graph_);
1894   Handle<mirror::ClassLoader> class_loader =
1895       NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(),
1896                            caller_compilation_unit_.GetClassLoader(),
1897                            graph_);
1898 
1899   Handle<mirror::Class> compiling_class =
1900       graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass());
1901   DexCompilationUnit dex_compilation_unit(
1902       class_loader,
1903       class_linker,
1904       callee_dex_file,
1905       code_item,
1906       resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
1907       method_index,
1908       resolved_method->GetAccessFlags(),
1909       /* verified_method= */ nullptr,
1910       dex_cache,
1911       compiling_class);
1912 
1913   InvokeType invoke_type = invoke_instruction->GetInvokeType();
1914   if (invoke_type == kInterface) {
1915     // We have statically resolved the dispatch. To please the class linker
1916     // at runtime, we change this call as if it was a virtual call.
1917     invoke_type = kVirtual;
1918   }
1919 
1920   bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe();
1921   const dex::ClassDef& callee_class = resolved_method->GetClassDef();
1922   // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation()
1923   // is currently rarely true.
1924   bool callee_dead_reference_safe =
1925       annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class)
1926       && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index);
1927 
1928   const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
1929   HGraph* callee_graph = new (graph_->GetAllocator()) HGraph(
1930       graph_->GetAllocator(),
1931       graph_->GetArenaStack(),
1932       graph_->GetHandleCache()->GetHandles(),
1933       callee_dex_file,
1934       method_index,
1935       codegen_->GetCompilerOptions().GetInstructionSet(),
1936       invoke_type,
1937       callee_dead_reference_safe,
1938       graph_->IsDebuggable(),
1939       graph_->GetCompilationKind(),
1940       /* start_instruction_id= */ caller_instruction_counter);
1941   callee_graph->SetArtMethod(resolved_method);
1942 
1943   // When they are needed, allocate `inline_stats_` on the Arena instead
1944   // of on the stack, as Clang might produce a stack frame too large
1945   // for this function, that would not fit the requirements of the
1946   // `-Wframe-larger-than` option.
1947   if (stats_ != nullptr) {
1948     // Reuse one object for all inline attempts from this caller to keep Arena memory usage low.
1949     if (inline_stats_ == nullptr) {
1950       void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc);
1951       inline_stats_ = new (storage) OptimizingCompilerStats;
1952     } else {
1953       inline_stats_->Reset();
1954     }
1955   }
1956   HGraphBuilder builder(callee_graph,
1957                         code_item_accessor,
1958                         &dex_compilation_unit,
1959                         &outer_compilation_unit_,
1960                         codegen_,
1961                         inline_stats_);
1962 
1963   if (builder.BuildGraph() != kAnalysisSuccess) {
1964     LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild)
1965         << "Method " << callee_dex_file.PrettyMethod(method_index)
1966         << " could not be built, so cannot be inlined";
1967     return false;
1968   }
1969 
1970   SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit);
1971 
1972   RunOptimizations(callee_graph, code_item, dex_compilation_unit);
1973 
1974   size_t number_of_instructions = 0;
1975   if (!CanInlineBody(callee_graph, invoke_instruction->GetBlock(), &number_of_instructions)) {
1976     return false;
1977   }
1978 
1979   DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
1980       << "No instructions can be added to the outer graph while inner graph is being built";
1981 
1982   // Inline the callee graph inside the caller graph.
1983   const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
1984   graph_->SetCurrentInstructionId(callee_instruction_counter);
1985   *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
1986   // Update our budget for other inlining attempts in `caller_graph`.
1987   total_number_of_instructions_ += number_of_instructions;
1988   UpdateInliningBudget();
1989 
1990   DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
1991       << "No instructions can be added to the inner graph during inlining into the outer graph";
1992 
1993   if (stats_ != nullptr) {
1994     DCHECK(inline_stats_ != nullptr);
1995     inline_stats_->AddTo(stats_);
1996   }
1997 
1998   if (caller_dead_reference_safe && !callee_dead_reference_safe) {
1999     // Caller was dead reference safe, but is not anymore, since we inlined dead
2000     // reference unsafe code. Prior transformations remain valid, since they did not
2001     // affect the inlined code.
2002     graph_->MarkDeadReferenceUnsafe();
2003   }
2004 
2005   return true;
2006 }
2007 
RunOptimizations(HGraph * callee_graph,const dex::CodeItem * code_item,const DexCompilationUnit & dex_compilation_unit)2008 void HInliner::RunOptimizations(HGraph* callee_graph,
2009                                 const dex::CodeItem* code_item,
2010                                 const DexCompilationUnit& dex_compilation_unit) {
2011   // Note: if the outermost_graph_ is being compiled OSR, we should not run any
2012   // optimization that could lead to a HDeoptimize. The following optimizations do not.
2013   HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner");
2014   HConstantFolding fold(callee_graph, "constant_folding$inliner");
2015   InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_);
2016 
2017   HOptimization* optimizations[] = {
2018     &simplify,
2019     &fold,
2020     &dce,
2021   };
2022 
2023   for (size_t i = 0; i < arraysize(optimizations); ++i) {
2024     HOptimization* optimization = optimizations[i];
2025     optimization->Run();
2026   }
2027 
2028   // Bail early for pathological cases on the environment (for example recursive calls,
2029   // or too large environment).
2030   if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) {
2031     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2032              << " will not be inlined because the outer method has reached"
2033              << " its environment budget limit.";
2034     return;
2035   }
2036 
2037   // Bail early if we know we already are over the limit.
2038   size_t number_of_instructions = CountNumberOfInstructions(callee_graph);
2039   if (number_of_instructions > inlining_budget_) {
2040     LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod()
2041              << " will not be inlined because the outer method has reached"
2042              << " its instruction budget limit. " << number_of_instructions;
2043     return;
2044   }
2045 
2046   CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item);
2047   HInliner inliner(callee_graph,
2048                    outermost_graph_,
2049                    codegen_,
2050                    outer_compilation_unit_,
2051                    dex_compilation_unit,
2052                    inline_stats_,
2053                    total_number_of_dex_registers_ + accessor.RegistersSize(),
2054                    total_number_of_instructions_ + number_of_instructions,
2055                    this,
2056                    depth_ + 1);
2057   inliner.Run();
2058 }
2059 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_is_exact,bool declared_can_be_null,HInstruction * actual_obj)2060 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2061                                       bool declared_is_exact,
2062                                       bool declared_can_be_null,
2063                                       HInstruction* actual_obj)
2064     REQUIRES_SHARED(Locks::mutator_lock_) {
2065   if (declared_can_be_null && !actual_obj->CanBeNull()) {
2066     return true;
2067   }
2068 
2069   ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
2070   ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get();
2071   return (actual_rti.IsExact() && !declared_is_exact) ||
2072          (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class));
2073 }
2074 
IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,bool declared_can_be_null,HInstruction * actual_obj)2075 static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class,
2076                                       bool declared_can_be_null,
2077                                       HInstruction* actual_obj)
2078     REQUIRES_SHARED(Locks::mutator_lock_) {
2079   bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class);
2080   return IsReferenceTypeRefinement(
2081       admissible ? declared_class : GetClassRoot<mirror::Class>(),
2082       /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(),
2083       declared_can_be_null,
2084       actual_obj);
2085 }
2086 
ArgumentTypesMoreSpecific(HInvoke * invoke_instruction,ArtMethod * resolved_method)2087 bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
2088   // If this is an instance call, test whether the type of the `this` argument
2089   // is more specific than the class which declares the method.
2090   if (!resolved_method->IsStatic()) {
2091     if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(),
2092                                   /*declared_can_be_null=*/ false,
2093                                   invoke_instruction->InputAt(0u))) {
2094       return true;
2095     }
2096   }
2097 
2098   // Iterate over the list of parameter types and test whether any of the
2099   // actual inputs has a more specific reference type than the type declared in
2100   // the signature.
2101   const dex::TypeList* param_list = resolved_method->GetParameterTypeList();
2102   for (size_t param_idx = 0,
2103               input_idx = resolved_method->IsStatic() ? 0 : 1,
2104               e = (param_list == nullptr ? 0 : param_list->Size());
2105        param_idx < e;
2106        ++param_idx, ++input_idx) {
2107     HInstruction* input = invoke_instruction->InputAt(input_idx);
2108     if (input->GetType() == DataType::Type::kReference) {
2109       ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex(
2110           param_list->GetTypeItem(param_idx).type_idx_);
2111       if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) {
2112         return true;
2113       }
2114     }
2115   }
2116 
2117   return false;
2118 }
2119 
ReturnTypeMoreSpecific(HInstruction * return_replacement,HInvoke * invoke_instruction)2120 bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement,
2121                                       HInvoke* invoke_instruction) {
2122   // Check the integrity of reference types and run another type propagation if needed.
2123   if (return_replacement != nullptr) {
2124     if (return_replacement->GetType() == DataType::Type::kReference) {
2125       // Test if the return type is a refinement of the declared return type.
2126       ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo();
2127       if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(),
2128                                     invoke_rti.IsExact(),
2129                                     /*declared_can_be_null=*/ true,
2130                                     return_replacement)) {
2131         return true;
2132       } else if (return_replacement->IsInstanceFieldGet()) {
2133         HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet();
2134         if (field_get->GetFieldInfo().GetField() ==
2135                 GetClassRoot<mirror::Object>()->GetInstanceField(0)) {
2136           return true;
2137         }
2138       }
2139     } else if (return_replacement->IsInstanceOf()) {
2140       // Inlining InstanceOf into an If may put a tighter bound on reference types.
2141       return true;
2142     }
2143   }
2144 
2145   return false;
2146 }
2147 
FixUpReturnReferenceType(ArtMethod * resolved_method,HInstruction * return_replacement)2148 void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
2149                                         HInstruction* return_replacement) {
2150   if (return_replacement != nullptr) {
2151     if (return_replacement->GetType() == DataType::Type::kReference) {
2152       if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
2153         // Make sure that we have a valid type for the return. We may get an invalid one when
2154         // we inline invokes with multiple branches and create a Phi for the result.
2155         // TODO: we could be more precise by merging the phi inputs but that requires
2156         // some functionality from the reference type propagation.
2157         DCHECK(return_replacement->IsPhi());
2158         ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType();
2159         ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls)
2160             ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls))
2161             : graph_->GetInexactObjectRti();
2162         return_replacement->SetReferenceTypeInfo(rti);
2163       }
2164     }
2165   }
2166 }
2167 
2168 }  // namespace art
2169