1 /* 2 * Copyright (C) 2014 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_LIBARTBASE_BASE_SCOPED_ARENA_CONTAINERS_H_ 18 #define ART_LIBARTBASE_BASE_SCOPED_ARENA_CONTAINERS_H_ 19 20 #include <deque> 21 #include <queue> 22 #include <set> 23 #include <type_traits> 24 #include <unordered_map> 25 #include <utility> 26 27 #include "arena_containers.h" // For ArenaAllocatorAdapterKind. 28 #include "dchecked_vector.h" 29 #include "hash_map.h" 30 #include "hash_set.h" 31 #include "safe_map.h" 32 #include "scoped_arena_allocator.h" 33 34 namespace art { 35 36 // Adapter for use of ScopedArenaAllocator in STL containers. 37 // Use ScopedArenaAllocator::Adapter() to create an adapter to pass to container constructors. 38 // For example, 39 // void foo(ScopedArenaAllocator* allocator) { 40 // ScopedArenaVector<int> foo_vector(allocator->Adapter(kArenaAllocMisc)); 41 // ScopedArenaSafeMap<int, int> foo_map(std::less<int>(), allocator->Adapter()); 42 // // Use foo_vector and foo_map... 43 // } 44 template <typename T> 45 class ScopedArenaAllocatorAdapter; 46 47 template <typename T> 48 using ScopedArenaDeque = std::deque<T, ScopedArenaAllocatorAdapter<T>>; 49 50 template <typename T> 51 using ScopedArenaQueue = std::queue<T, ScopedArenaDeque<T>>; 52 53 template <typename T> 54 using ScopedArenaVector = dchecked_vector<T, ScopedArenaAllocatorAdapter<T>>; 55 56 template <typename T, typename Comparator = std::less<T>> 57 using ScopedArenaPriorityQueue = std::priority_queue<T, ScopedArenaVector<T>, Comparator>; 58 59 template <typename T> 60 using ScopedArenaStdStack = std::stack<T, ScopedArenaDeque<T>>; 61 62 template <typename T, typename Comparator = std::less<T>> 63 using ScopedArenaSet = std::set<T, Comparator, ScopedArenaAllocatorAdapter<T>>; 64 65 template <typename K, typename V, typename Comparator = std::less<K>> 66 using ScopedArenaSafeMap = 67 SafeMap<K, V, Comparator, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>; 68 69 template <typename T, 70 typename EmptyFn = DefaultEmptyFn<T>, 71 typename HashFn = DefaultHashFn<T>, 72 typename Pred = DefaultPred<T>> 73 using ScopedArenaHashSet = HashSet<T, EmptyFn, HashFn, Pred, ScopedArenaAllocatorAdapter<T>>; 74 75 template <typename Key, 76 typename Value, 77 typename EmptyFn = DefaultMapEmptyFn<Key, Value>, 78 typename HashFn = DefaultHashFn<Key>, 79 typename Pred = DefaultPred<Key>> 80 using ScopedArenaHashMap = HashMap<Key, 81 Value, 82 EmptyFn, 83 HashFn, 84 Pred, 85 ScopedArenaAllocatorAdapter<std::pair<Key, Value>>>; 86 87 template <typename K, typename V, class Hash = std::hash<K>, class KeyEqual = std::equal_to<K>> 88 using ScopedArenaUnorderedMap = 89 std::unordered_map<K, V, Hash, KeyEqual, ScopedArenaAllocatorAdapter<std::pair<const K, V>>>; 90 91 template <typename K, typename V, class Hash = std::hash<K>, class KeyEqual = std::equal_to<K>> 92 using ScopedArenaUnorderedMultimap = 93 std::unordered_multimap<K, 94 V, 95 Hash, 96 KeyEqual, 97 ScopedArenaAllocatorAdapter<std::pair<const K, V>>>; 98 99 // Implementation details below. 100 101 template <> 102 class ScopedArenaAllocatorAdapter<void> 103 : private DebugStackReference, private DebugStackIndirectTopRef, 104 private ArenaAllocatorAdapterKind { 105 public: 106 typedef void value_type; 107 typedef void* pointer; 108 typedef const void* const_pointer; 109 110 template <typename U> 111 struct rebind { 112 typedef ScopedArenaAllocatorAdapter<U> other; 113 }; 114 115 explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* allocator, 116 ArenaAllocKind kind = kArenaAllocSTL) 117 : DebugStackReference(allocator), 118 DebugStackIndirectTopRef(allocator), 119 ArenaAllocatorAdapterKind(kind), 120 arena_stack_(allocator->arena_stack_) { 121 } 122 template <typename U> 123 ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other) 124 : DebugStackReference(other), 125 DebugStackIndirectTopRef(other), 126 ArenaAllocatorAdapterKind(other), 127 arena_stack_(other.arena_stack_) { 128 } 129 ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default; 130 ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default; 131 ~ScopedArenaAllocatorAdapter() = default; 132 133 private: 134 ArenaStack* arena_stack_; 135 136 template <typename U> 137 friend class ScopedArenaAllocatorAdapter; 138 }; 139 140 template <typename T> 141 class ScopedArenaAllocatorAdapter 142 : private DebugStackReference, private DebugStackIndirectTopRef, 143 private ArenaAllocatorAdapterKind { 144 public: 145 typedef T value_type; 146 typedef T* pointer; 147 typedef T& reference; 148 typedef const T* const_pointer; 149 typedef const T& const_reference; 150 typedef size_t size_type; 151 typedef ptrdiff_t difference_type; 152 153 template <typename U> 154 struct rebind { 155 typedef ScopedArenaAllocatorAdapter<U> other; 156 }; 157 158 explicit ScopedArenaAllocatorAdapter(ScopedArenaAllocator* allocator, 159 ArenaAllocKind kind = kArenaAllocSTL) 160 : DebugStackReference(allocator), 161 DebugStackIndirectTopRef(allocator), 162 ArenaAllocatorAdapterKind(kind), 163 arena_stack_(allocator->arena_stack_) { 164 } 165 template <typename U> 166 ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter<U>& other) 167 : DebugStackReference(other), 168 DebugStackIndirectTopRef(other), 169 ArenaAllocatorAdapterKind(other), 170 arena_stack_(other.arena_stack_) { 171 } 172 ScopedArenaAllocatorAdapter(const ScopedArenaAllocatorAdapter&) = default; 173 ScopedArenaAllocatorAdapter& operator=(const ScopedArenaAllocatorAdapter&) = default; 174 ~ScopedArenaAllocatorAdapter() = default; 175 176 size_type max_size() const { 177 return static_cast<size_type>(-1) / sizeof(T); 178 } 179 180 pointer address(reference x) const { return &x; } 181 const_pointer address(const_reference x) const { return &x; } 182 183 pointer allocate(size_type n, 184 ScopedArenaAllocatorAdapter<void>::pointer hint ATTRIBUTE_UNUSED = nullptr) { 185 DCHECK_LE(n, max_size()); 186 DebugStackIndirectTopRef::CheckTop(); 187 return reinterpret_cast<T*>(arena_stack_->Alloc(n * sizeof(T), 188 ArenaAllocatorAdapterKind::Kind())); 189 } 190 void deallocate(pointer p, size_type n) { 191 DebugStackIndirectTopRef::CheckTop(); 192 arena_stack_->MakeInaccessible(p, sizeof(T) * n); 193 } 194 195 template <typename U, typename... Args> 196 void construct(U* p, Args&&... args) { 197 // Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top. 198 ::new (static_cast<void*>(p)) U(std::forward<Args>(args)...); 199 } 200 template <typename U> 201 void destroy(U* p) { 202 // Don't CheckTop(), allow reusing existing capacity of a vector/deque below the top. 203 p->~U(); 204 } 205 206 private: 207 ArenaStack* arena_stack_; 208 209 template <typename U> 210 friend class ScopedArenaAllocatorAdapter; 211 212 template <typename U> 213 friend bool operator==(const ScopedArenaAllocatorAdapter<U>& lhs, 214 const ScopedArenaAllocatorAdapter<U>& rhs); 215 }; 216 217 template <typename T> 218 inline bool operator==(const ScopedArenaAllocatorAdapter<T>& lhs, 219 const ScopedArenaAllocatorAdapter<T>& rhs) { 220 return lhs.arena_stack_ == rhs.arena_stack_; 221 } 222 223 template <typename T> 224 inline bool operator!=(const ScopedArenaAllocatorAdapter<T>& lhs, 225 const ScopedArenaAllocatorAdapter<T>& rhs) { 226 return !(lhs == rhs); 227 } 228 229 inline ScopedArenaAllocatorAdapter<void> ScopedArenaAllocator::Adapter(ArenaAllocKind kind) { 230 return ScopedArenaAllocatorAdapter<void>(this, kind); 231 } 232 233 // Special deleter that only calls the destructor. Also checks for double free errors. 234 template <typename T> 235 class ArenaDelete { 236 static constexpr uint8_t kMagicFill = 0xCE; 237 238 protected: 239 // Used for variable sized objects such as RegisterLine. 240 ALWAYS_INLINE void ProtectMemory(T* ptr, size_t size) const { 241 if (kRunningOnMemoryTool) { 242 // Writing to the memory will fail ift we already destroyed the pointer with 243 // DestroyOnlyDelete since we make it no access. 244 memset(ptr, kMagicFill, size); 245 MEMORY_TOOL_MAKE_NOACCESS(ptr, size); 246 } else if (kIsDebugBuild) { 247 CHECK(ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) == ArenaFreeTag::kUsed) 248 << "Freeing invalid object " << ptr; 249 ArenaStack::ArenaTagForAllocation(reinterpret_cast<void*>(ptr)) = ArenaFreeTag::kFree; 250 // Write a magic value to try and catch use after free error. 251 memset(ptr, kMagicFill, size); 252 } 253 } 254 255 public: 256 void operator()(T* ptr) const { 257 if (ptr != nullptr) { 258 ptr->~T(); 259 ProtectMemory(ptr, sizeof(T)); 260 } 261 } 262 }; 263 264 // In general we lack support for arrays. We would need to call the destructor on each element, 265 // which requires access to the array size. Support for that is future work. 266 // 267 // However, we can support trivially destructible component types, as then a destructor doesn't 268 // need to be called. 269 template <typename T> 270 class ArenaDelete<T[]> { 271 public: 272 void operator()(T* ptr ATTRIBUTE_UNUSED) const { 273 static_assert(std::is_trivially_destructible<T>::value, 274 "ArenaUniquePtr does not support non-trivially-destructible arrays."); 275 // TODO: Implement debug checks, and MEMORY_TOOL support. 276 } 277 }; 278 279 // Arena unique ptr that only calls the destructor of the element. 280 template <typename T> 281 using ArenaUniquePtr = std::unique_ptr<T, ArenaDelete<T>>; 282 283 } // namespace art 284 285 #endif // ART_LIBARTBASE_BASE_SCOPED_ARENA_CONTAINERS_H_ 286