1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_LIBARTBASE_BASE_STL_UTIL_H_ 18 #define ART_LIBARTBASE_BASE_STL_UTIL_H_ 19 20 #include <algorithm> 21 #include <iterator> 22 #include <set> 23 #include <sstream> 24 25 #include <android-base/logging.h> 26 27 #include "base/iteration_range.h" 28 29 namespace art { 30 31 // STLDeleteContainerPointers() 32 // For a range within a container of pointers, calls delete 33 // (non-array version) on these pointers. 34 // NOTE: for these three functions, we could just implement a DeleteObject 35 // functor and then call for_each() on the range and functor, but this 36 // requires us to pull in all of algorithm.h, which seems expensive. 37 // For hash_[multi]set, it is important that this deletes behind the iterator 38 // because the hash_set may call the hash function on the iterator when it is 39 // advanced, which could result in the hash function trying to deference a 40 // stale pointer. 41 template <class ForwardIterator> 42 void STLDeleteContainerPointers(ForwardIterator begin, 43 ForwardIterator end) { 44 while (begin != end) { 45 ForwardIterator temp = begin; 46 ++begin; 47 delete *temp; 48 } 49 } 50 51 // STLDeleteElements() deletes all the elements in an STL container and clears 52 // the container. This function is suitable for use with a vector, set, 53 // hash_set, or any other STL container which defines sensible begin(), end(), 54 // and clear() methods. 55 // 56 // If container is null, this function is a no-op. 57 // 58 // As an alternative to calling STLDeleteElements() directly, consider 59 // using a container of std::unique_ptr, which ensures that your container's 60 // elements are deleted when the container goes out of scope. 61 template <class T> 62 void STLDeleteElements(T *container) { 63 if (container != nullptr) { 64 STLDeleteContainerPointers(container->begin(), container->end()); 65 container->clear(); 66 } 67 } 68 69 // Given an STL container consisting of (key, value) pairs, STLDeleteValues 70 // deletes all the "value" components and clears the container. Does nothing 71 // in the case it's given a null pointer. 72 template <class T> 73 void STLDeleteValues(T *v) { 74 if (v != nullptr) { 75 for (typename T::iterator i = v->begin(); i != v->end(); ++i) { 76 delete i->second; 77 } 78 v->clear(); 79 } 80 } 81 82 // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below. 83 struct FreeDelete { 84 // NOTE: Deleting a const object is valid but free() takes a non-const pointer. 85 void operator()(const void* ptr) const { 86 free(const_cast<void*>(ptr)); 87 } 88 }; 89 90 // Alias for std::unique_ptr<> that uses the C function free() to delete objects. 91 template <typename T> 92 using UniqueCPtr = std::unique_ptr<T, FreeDelete>; 93 94 // Find index of the first element with the specified value known to be in the container. 95 template <typename Container, typename T> 96 size_t IndexOfElement(const Container& container, const T& value) { 97 auto it = std::find(container.begin(), container.end(), value); 98 DCHECK(it != container.end()); // Must exist. 99 return std::distance(container.begin(), it); 100 } 101 102 // Remove the first element with the specified value known to be in the container. 103 template <typename Container, typename T> 104 void RemoveElement(Container& container, const T& value) { 105 auto it = std::find(container.begin(), container.end(), value); 106 DCHECK(it != container.end()); // Must exist. 107 container.erase(it); 108 } 109 110 // Replace the first element with the specified old_value known to be in the container. 111 template <typename Container, typename T> 112 void ReplaceElement(Container& container, const T& old_value, const T& new_value) { 113 auto it = std::find(container.begin(), container.end(), old_value); 114 DCHECK(it != container.end()); // Must exist. 115 *it = new_value; 116 } 117 118 // Search for an element with the specified value and return true if it was found, false otherwise. 119 template <typename Container, typename T> 120 bool ContainsElement(const Container& container, const T& value, size_t start_pos = 0u) { 121 DCHECK_LE(start_pos, container.size()); 122 auto start = container.begin(); 123 std::advance(start, start_pos); 124 auto it = std::find(start, container.end(), value); 125 return it != container.end(); 126 } 127 128 template <typename T> 129 bool ContainsElement(const std::set<T>& container, const T& value) { 130 return container.count(value) != 0u; 131 } 132 133 // 32-bit FNV-1a hash function suitable for std::unordered_map. 134 // It can be used with any container which works with range-based for loop. 135 // See http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function 136 template <typename Vector> 137 struct FNVHash { 138 size_t operator()(const Vector& vector) const { 139 uint32_t hash = 2166136261u; 140 for (const auto& value : vector) { 141 hash = (hash ^ value) * 16777619u; 142 } 143 return hash; 144 } 145 }; 146 147 // Returns a copy of the passed vector that doesn't memory-own its entries. 148 template <typename T> 149 static inline std::vector<T*> MakeNonOwningPointerVector(const std::vector<std::unique_ptr<T>>& src) { 150 std::vector<T*> result; 151 result.reserve(src.size()); 152 for (const std::unique_ptr<T>& t : src) { 153 result.push_back(t.get()); 154 } 155 return result; 156 } 157 158 template <typename IterLeft, typename IterRight> 159 class ZipLeftIter : public std::iterator< 160 std::forward_iterator_tag, 161 std::pair<typename IterLeft::value_type, typename IterRight::value_type>> { 162 public: 163 ZipLeftIter(IterLeft left, IterRight right) : left_iter_(left), right_iter_(right) {} 164 ZipLeftIter<IterLeft, IterRight>& operator++() { 165 ++left_iter_; 166 ++right_iter_; 167 return *this; 168 } 169 ZipLeftIter<IterLeft, IterRight> operator++(int) { 170 ZipLeftIter<IterLeft, IterRight> ret(left_iter_, right_iter_); 171 ++(*this); 172 return ret; 173 } 174 bool operator==(const ZipLeftIter<IterLeft, IterRight>& other) const { 175 return left_iter_ == other.left_iter_; 176 } 177 bool operator!=(const ZipLeftIter<IterLeft, IterRight>& other) const { 178 return !(*this == other); 179 } 180 std::pair<typename IterLeft::value_type, typename IterRight::value_type> operator*() const { 181 return std::make_pair(*left_iter_, *right_iter_); 182 } 183 184 private: 185 IterLeft left_iter_; 186 IterRight right_iter_; 187 }; 188 189 class CountIter : public std::iterator<std::forward_iterator_tag, size_t, size_t, size_t, size_t> { 190 public: 191 CountIter() : count_(0) {} 192 explicit CountIter(size_t count) : count_(count) {} 193 CountIter& operator++() { 194 ++count_; 195 return *this; 196 } 197 CountIter operator++(int) { 198 size_t ret = count_; 199 ++count_; 200 return CountIter(ret); 201 } 202 bool operator==(const CountIter& other) const { 203 return count_ == other.count_; 204 } 205 bool operator!=(const CountIter& other) const { 206 return !(*this == other); 207 } 208 size_t operator*() const { 209 return count_; 210 } 211 212 private: 213 size_t count_; 214 }; 215 216 // Make an iteration range that returns a pair of the element and the index of the element. 217 template <typename Iter> 218 static inline IterationRange<ZipLeftIter<Iter, CountIter>> ZipCount(IterationRange<Iter> iter) { 219 return IterationRange(ZipLeftIter(iter.begin(), CountIter(0)), 220 ZipLeftIter(iter.end(), CountIter(-1))); 221 } 222 223 // Make an iteration range that returns a pair of the outputs of two iterators. Stops when the first 224 // (left) one is exhausted. The left iterator must be at least as long as the right one. 225 template <typename IterLeft, typename IterRight> 226 static inline IterationRange<ZipLeftIter<IterLeft, IterRight>> ZipLeft( 227 IterationRange<IterLeft> iter_left, IterationRange<IterRight> iter_right) { 228 return IterationRange(ZipLeftIter(iter_left.begin(), iter_right.begin()), 229 ZipLeftIter(iter_left.end(), iter_right.end())); 230 } 231 232 static inline IterationRange<CountIter> Range(size_t start, size_t end) { 233 return IterationRange(CountIter(start), CountIter(end)); 234 } 235 236 static inline IterationRange<CountIter> Range(size_t end) { 237 return Range(0, end); 238 } 239 240 template <typename RealIter, typename Filter> 241 struct FilterIterator 242 : public std::iterator<std::forward_iterator_tag, typename RealIter::value_type> { 243 public: 244 FilterIterator(RealIter rl, 245 Filter cond, 246 std::optional<RealIter> end = std::nullopt) 247 : real_iter_(rl), cond_(cond), end_(end) { 248 DCHECK(std::make_optional(rl) == end_ || cond_(*real_iter_)); 249 } 250 251 FilterIterator<RealIter, Filter>& operator++() { 252 DCHECK(std::make_optional(real_iter_) != end_); 253 do { 254 if (std::make_optional(++real_iter_) == end_) { 255 break; 256 } 257 } while (!cond_(*real_iter_)); 258 return *this; 259 } 260 FilterIterator<RealIter, Filter> operator++(int) { 261 FilterIterator<RealIter, Filter> ret(real_iter_, cond_, end_); 262 ++(*this); 263 return ret; 264 } 265 bool operator==(const FilterIterator<RealIter, Filter>& other) const { 266 return real_iter_ == other.real_iter_; 267 } 268 bool operator!=(const FilterIterator<RealIter, Filter>& other) const { 269 return !(*this == other); 270 } 271 typename RealIter::value_type operator*() const { 272 return *real_iter_; 273 } 274 275 private: 276 RealIter real_iter_; 277 Filter cond_; 278 std::optional<RealIter> end_; 279 }; 280 281 template <typename Iter, typename Filter> 282 static inline IterationRange<FilterIterator<Iter, Filter>> Filter( 283 IterationRange<Iter> it, Filter cond) { 284 auto end = it.end(); 285 auto start = std::find_if(it.begin(), end, cond); 286 return MakeIterationRange(FilterIterator(start, cond, std::make_optional(end)), 287 FilterIterator(end, cond, std::make_optional(end))); 288 } 289 290 template <typename Val> 291 struct NonNullFilter { 292 public: 293 static_assert(std::is_pointer<Val>::value, "Must be pointer type!"); 294 constexpr bool operator()(Val v) const { 295 return v != nullptr; 296 } 297 }; 298 299 template <typename InnerIter> 300 using FilterNull = FilterIterator<InnerIter, NonNullFilter<typename InnerIter::value_type>>; 301 302 template <typename InnerIter> 303 static inline IterationRange<FilterNull<InnerIter>> FilterOutNull(IterationRange<InnerIter> inner) { 304 return Filter(inner, NonNullFilter<typename InnerIter::value_type>()); 305 } 306 307 template <typename Val> 308 struct SafePrinter { 309 const Val* val_; 310 }; 311 312 template<typename Val> 313 std::ostream& operator<<(std::ostream& os, const SafePrinter<Val>& v) { 314 if (v.val_ == nullptr) { 315 return os << "NULL"; 316 } else { 317 return os << *v.val_; 318 } 319 } 320 321 template<typename Val> 322 SafePrinter<Val> SafePrint(const Val* v) { 323 return SafePrinter<Val>{v}; 324 } 325 326 // Helper struct for iterating a split-string without allocation. 327 struct SplitStringIter : public std::iterator<std::forward_iterator_tag, std::string_view> { 328 public: 329 // Direct iterator constructor. The iteration state is only the current index. 330 // We use that with the split char and the full string to get the current and 331 // next segment. 332 SplitStringIter(size_t index, char split, std::string_view sv) 333 : cur_index_(index), split_on_(split), sv_(sv) {} 334 SplitStringIter(const SplitStringIter&) = default; 335 SplitStringIter(SplitStringIter&&) = default; 336 SplitStringIter& operator=(SplitStringIter&&) = default; 337 SplitStringIter& operator=(const SplitStringIter&) = default; 338 339 SplitStringIter& operator++() { 340 size_t nxt = sv_.find(split_on_, cur_index_); 341 if (nxt == std::string_view::npos) { 342 cur_index_ = std::string_view::npos; 343 } else { 344 cur_index_ = nxt + 1; 345 } 346 return *this; 347 } 348 349 SplitStringIter operator++(int) { 350 SplitStringIter ret(cur_index_, split_on_, sv_); 351 ++(*this); 352 return ret; 353 } 354 355 bool operator==(const SplitStringIter& other) const { 356 return sv_ == other.sv_ && split_on_ == other.split_on_ && cur_index_== other.cur_index_; 357 } 358 359 bool operator!=(const SplitStringIter& other) const { 360 return !(*this == other); 361 } 362 363 typename std::string_view operator*() const { 364 return sv_.substr(cur_index_, sv_.substr(cur_index_).find(split_on_)); 365 } 366 367 private: 368 size_t cur_index_; 369 char split_on_; 370 std::string_view sv_; 371 }; 372 373 // Create an iteration range over the string 'sv' split at each 'target' occurrence. 374 // Eg: SplitString(":foo::bar") -> ["", "foo", "", "bar"] 375 inline IterationRange<SplitStringIter> SplitString(std::string_view sv, char target) { 376 return MakeIterationRange(SplitStringIter(0, target, sv), 377 SplitStringIter(std::string_view::npos, target, sv)); 378 } 379 380 } // namespace art 381 382 #endif // ART_LIBARTBASE_BASE_STL_UTIL_H_ 383