1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <float.h>
33 
34 #include "math.h"
35 #include "math_private.h"
36 
37 #define	TBLBITS	4
38 #define	TBLSIZE	(1 << TBLBITS)
39 
40 static const float
41     redux   = 0x1.8p23f / TBLSIZE,
42     P1	    = 0x1.62e430p-1f,
43     P2	    = 0x1.ebfbe0p-3f,
44     P3	    = 0x1.c6b348p-5f,
45     P4	    = 0x1.3b2c9cp-7f;
46 
47 static volatile float
48     huge    = 0x1p100f,
49     twom100 = 0x1p-100f;
50 
51 static const double exp2ft[TBLSIZE] = {
52 	0x1.6a09e667f3bcdp-1,
53 	0x1.7a11473eb0187p-1,
54 	0x1.8ace5422aa0dbp-1,
55 	0x1.9c49182a3f090p-1,
56 	0x1.ae89f995ad3adp-1,
57 	0x1.c199bdd85529cp-1,
58 	0x1.d5818dcfba487p-1,
59 	0x1.ea4afa2a490dap-1,
60 	0x1.0000000000000p+0,
61 	0x1.0b5586cf9890fp+0,
62 	0x1.172b83c7d517bp+0,
63 	0x1.2387a6e756238p+0,
64 	0x1.306fe0a31b715p+0,
65 	0x1.3dea64c123422p+0,
66 	0x1.4bfdad5362a27p+0,
67 	0x1.5ab07dd485429p+0,
68 };
69 
70 /*
71  * exp2f(x): compute the base 2 exponential of x
72  *
73  * Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
74  *
75  * Method: (equally-spaced tables)
76  *
77  *   Reduce x:
78  *     x = 2**k + y, for integer k and |y| <= 1/2.
79  *     Thus we have exp2f(x) = 2**k * exp2(y).
80  *
81  *   Reduce y:
82  *     y = i/TBLSIZE + z for integer i near y * TBLSIZE.
83  *     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
84  *     with |z| <= 2**-(TBLSIZE+1).
85  *
86  *   We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
87  *   degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
88  *   Using double precision for everything except the reduction makes
89  *   roundoff error insignificant and simplifies the scaling step.
90  *
91  *   This method is due to Tang, but I do not use his suggested parameters:
92  *
93  *	Tang, P.  Table-driven Implementation of the Exponential Function
94  *	in IEEE Floating-Point Arithmetic.  TOMS 15(2), 144-157 (1989).
95  */
96 float
exp2f(float x)97 exp2f(float x)
98 {
99 	double tv, twopk, u, z;
100 	float t;
101 	uint32_t hx, ix, i0;
102 	int32_t k;
103 
104 	/* Filter out exceptional cases. */
105 	GET_FLOAT_WORD(hx, x);
106 	ix = hx & 0x7fffffff;		/* high word of |x| */
107 	if(ix >= 0x43000000) {			/* |x| >= 128 */
108 		if(ix >= 0x7f800000) {
109 			if ((ix & 0x7fffff) != 0 || (hx & 0x80000000) == 0)
110 				return (x + x);	/* x is NaN or +Inf */
111 			else
112 				return (0.0);	/* x is -Inf */
113 		}
114 		if(x >= 0x1.0p7f)
115 			return (huge * huge);	/* overflow */
116 		if(x <= -0x1.2cp7f)
117 			return (twom100 * twom100); /* underflow */
118 	} else if (ix <= 0x33000000) {		/* |x| <= 0x1p-25 */
119 		return (1.0f + x);
120 	}
121 
122 	/* Reduce x, computing z, i0, and k. */
123 	STRICT_ASSIGN(float, t, x + redux);
124 	GET_FLOAT_WORD(i0, t);
125 	i0 += TBLSIZE / 2;
126 	k = (i0 >> TBLBITS) << 20;
127 	i0 &= TBLSIZE - 1;
128 	t -= redux;
129 	z = x - t;
130 	INSERT_WORDS(twopk, 0x3ff00000 + k, 0);
131 
132 	/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
133 	tv = exp2ft[i0];
134 	u = tv * z;
135 	tv = tv + u * (P1 + z * P2) + u * (z * z) * (P3 + z * P4);
136 
137 	/* Scale by 2**(k>>20). */
138 	return (tv * twopk);
139 }
140