1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 #include "harness/compat.h"
17 
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/types.h>
22 #include <sys/stat.h>
23 #include "harness/rounding_mode.h"
24 
25 
26 #include "procs.h"
27 
28 const char *fpadd2_kernel_code =
29 "__kernel void test_fpadd2(__global float2 *srcA, __global float2 *srcB, __global float2 *dst)\n"
30 "{\n"
31 "    int  tid = get_global_id(0);\n"
32 "\n"
33 "    dst[tid] = srcA[tid] + srcB[tid];\n"
34 "}\n";
35 
36 const char *fpsub2_kernel_code =
37 "__kernel void test_fpsub2(__global float2 *srcA, __global float2 *srcB, __global float2 *dst)\n"
38 "{\n"
39 "    int  tid = get_global_id(0);\n"
40 "\n"
41 "    dst[tid] = srcA[tid] - srcB[tid];\n"
42 "}\n";
43 
44 const char *fpmul2_kernel_code =
45 "__kernel void test_fpmul2(__global float2 *srcA, __global float2 *srcB, __global float2 *dst)\n"
46 "{\n"
47 "    int  tid = get_global_id(0);\n"
48 "\n"
49 "    dst[tid] = srcA[tid] * srcB[tid];\n"
50 "}\n";
51 
52 
53 int
verify_fpadd2(float * inptrA,float * inptrB,float * outptr,int n)54 verify_fpadd2(float *inptrA, float *inptrB, float *outptr, int n)
55 {
56     float       r;
57     int         i;
58 
59     for (i=0; i<n; i++)
60     {
61         r = inptrA[i] + inptrB[i];
62         if (r != outptr[i])
63         {
64             log_error("FP_ADD float2 test failed\n");
65             return -1;
66         }
67     }
68 
69     log_info("FP_ADD float2 test passed\n");
70     return 0;
71 }
72 
73 int
verify_fpsub2(float * inptrA,float * inptrB,float * outptr,int n)74 verify_fpsub2(float *inptrA, float *inptrB, float *outptr, int n)
75 {
76     float       r;
77     int         i;
78 
79     for (i=0; i<n; i++)
80     {
81         r = inptrA[i] - inptrB[i];
82         if (r != outptr[i])
83         {
84             log_error("FP_SUB float2 test failed\n");
85             return -1;
86         }
87     }
88 
89     log_info("FP_SUB float2 test passed\n");
90     return 0;
91 }
92 
93 int
verify_fpmul2(float * inptrA,float * inptrB,float * outptr,int n)94 verify_fpmul2(float *inptrA, float *inptrB, float *outptr, int n)
95 {
96     float       r;
97     int         i;
98 
99     for (i=0; i<n; i++)
100     {
101         r = inptrA[i] * inptrB[i];
102         if (r != outptr[i])
103         {
104             log_error("FP_MUL float2 test failed\n");
105             return -1;
106         }
107     }
108 
109     log_info("FP_MUL float2 test passed\n");
110     return 0;
111 }
112 
113 
114 int
test_fpmath_float2(cl_device_id device,cl_context context,cl_command_queue queue,int num_elements)115 test_fpmath_float2(cl_device_id device, cl_context context, cl_command_queue queue, int num_elements)
116 {
117     cl_mem streams[4];
118     cl_program program[3];
119     cl_kernel kernel[3];
120 
121     cl_float *input_ptr[3], *output_ptr, *p;
122     size_t threads[1];
123     int err, i;
124     MTdata d = init_genrand( gRandomSeed );
125 
126     size_t length = sizeof(cl_float) * 2 * num_elements;
127     int isRTZ = 0;
128     RoundingMode oldMode = kDefaultRoundingMode;
129 
130     // check for floating point capabilities
131     cl_device_fp_config single_config = 0;
132     err = clGetDeviceInfo( device, CL_DEVICE_SINGLE_FP_CONFIG, sizeof( single_config ), &single_config, NULL );
133     if (err) {
134       log_error("clGetDeviceInfo for CL_DEVICE_SINGLE_FP_CONFIG failed: %d", err);
135       return -1;
136     }
137     //If we only support rtz mode
138     if( CL_FP_ROUND_TO_ZERO == ( single_config & (CL_FP_ROUND_TO_ZERO|CL_FP_ROUND_TO_NEAREST) ) )
139     {
140         //Check to make sure we are an embedded device
141         char profile[32];
142         err = clGetDeviceInfo( device, CL_DEVICE_PROFILE, sizeof(profile), profile, NULL);
143         if( err )
144         {
145             log_error("clGetDeviceInfo for CL_DEVICE_PROFILE failed: %d", err);
146               return -1;
147         }
148         if( 0 != strcmp( profile, "EMBEDDED_PROFILE"))
149         {
150             log_error( "FAILURE:  Device doesn't support CL_FP_ROUND_TO_NEAREST and isn't EMBEDDED_PROFILE\n" );
151             return -1;
152         }
153 
154         isRTZ = 1;
155         oldMode = get_round();
156     }
157 
158     input_ptr[0] = (cl_float*)malloc(length);
159     input_ptr[1] = (cl_float*)malloc(length);
160     input_ptr[2] = (cl_float*)malloc(length);
161     output_ptr   = (cl_float*)malloc(length);
162 
163     streams[0] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
164     test_error( err, "clCreateBuffer failed.");
165     streams[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
166     test_error( err, "clCreateBuffer failed.");
167     streams[2] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
168     test_error( err, "clCreateBuffer failed.");
169     streams[3] = clCreateBuffer(context, CL_MEM_READ_WRITE, length, NULL, &err);
170     test_error( err, "clCreateBuffer failed.");
171 
172     p = input_ptr[0];
173     for (i=0; i<num_elements*2; i++)
174         p[i] = get_random_float(-MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), d);
175     p = input_ptr[1];
176     for (i=0; i<num_elements*2; i++)
177         p[i] = get_random_float(-MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), d);
178     p = input_ptr[2];
179     for (i=0; i<num_elements*2; i++)
180         p[i] = get_random_float(-MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), MAKE_HEX_FLOAT( 0x1.0p31f, 0x1, 31), d);
181 
182     err = clEnqueueWriteBuffer(queue, streams[0], CL_TRUE, 0, length, input_ptr[0], 0, NULL, NULL);
183     test_error(err, "clEnqueueWriteBuffer failed");
184     err = clEnqueueWriteBuffer(queue, streams[1], CL_TRUE, 0, length, input_ptr[1], 0, NULL, NULL);
185     test_error(err, "clEnqueueWriteBuffer failed");
186     err = clEnqueueWriteBuffer(queue, streams[2], CL_TRUE, 0, length, input_ptr[2], 0, NULL, NULL);
187     test_error(err, "clEnqueueWriteBuffer failed");
188 
189     err = create_single_kernel_helper(context, &program[0], &kernel[0], 1, &fpadd2_kernel_code, "test_fpadd2");
190     test_error( err, "create_single_kernel_helper failed");
191 
192     err = create_single_kernel_helper(context, &program[1], &kernel[1], 1, &fpsub2_kernel_code, "test_fpsub2");
193     test_error( err, "create_single_kernel_helper failed");
194 
195     err = create_single_kernel_helper(context, &program[2], &kernel[2], 1, &fpmul2_kernel_code, "test_fpmul2");
196     test_error( err, "create_single_kernel_helper failed");
197 
198 
199     err  = clSetKernelArg(kernel[0], 0, sizeof streams[0], &streams[0]);
200     err |= clSetKernelArg(kernel[0], 1, sizeof streams[1], &streams[1]);
201     err |= clSetKernelArg(kernel[0], 2, sizeof streams[3], &streams[3]);
202     test_error( err, "clSetKernelArgs failed.");
203 
204     err  = clSetKernelArg(kernel[1], 0, sizeof streams[0], &streams[0]);
205     err |= clSetKernelArg(kernel[1], 1, sizeof streams[1], &streams[1]);
206     err |= clSetKernelArg(kernel[1], 2, sizeof streams[3], &streams[3]);
207     test_error( err, "clSetKernelArgs failed.");
208 
209     err  = clSetKernelArg(kernel[2], 0, sizeof streams[0], &streams[0]);
210     err |= clSetKernelArg(kernel[2], 1, sizeof streams[1], &streams[1]);
211     err |= clSetKernelArg(kernel[2], 2, sizeof streams[3], &streams[3]);
212     test_error( err, "clSetKernelArgs failed.");
213     free_mtdata(d);
214     d = NULL;
215 
216     threads[0] = (unsigned int)num_elements;
217     for (i=0; i<3; i++)
218     {
219         err = clEnqueueNDRangeKernel(queue, kernel[i], 1, NULL, threads, NULL, 0, NULL, NULL);
220       test_error( err, "clEnqueueNDRangeKernel failed.");
221 
222         err = clEnqueueReadBuffer(queue, streams[3], CL_TRUE, 0, length, output_ptr, 0, NULL, NULL);
223       test_error( err, "clEnqueueReadBuffer failed.");
224 
225         if( isRTZ )
226             set_round( kRoundTowardZero, kfloat );
227 
228         switch (i)
229         {
230             case 0:
231                 err = verify_fpadd2(input_ptr[0], input_ptr[1], output_ptr, num_elements*2);
232                 break;
233             case 1:
234                 err = verify_fpsub2(input_ptr[0], input_ptr[1], output_ptr, num_elements*2);
235                 break;
236             case 2:
237                 err = verify_fpmul2(input_ptr[0], input_ptr[1], output_ptr, num_elements*2);
238                 break;
239         }
240 
241         if( isRTZ )
242             set_round( oldMode, kfloat );
243 
244         if (err)
245             break;
246     }
247 
248 
249     // cleanup
250     clReleaseMemObject(streams[0]);
251     clReleaseMemObject(streams[1]);
252     clReleaseMemObject(streams[2]);
253     clReleaseMemObject(streams[3]);
254     for (i=0; i<3; i++)
255     {
256         clReleaseKernel(kernel[i]);
257         clReleaseProgram(program[i]);
258     }
259     free(input_ptr[0]);
260     free(input_ptr[1]);
261     free(input_ptr[2]);
262     free(output_ptr);
263     return err;
264 }
265 
266 
267