1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8 
9 #include <algorithm>
10 #include <cfloat>
11 #include <cmath>
12 #include <functional>
13 #include <limits>
14 #include <random>
15 #include <vector>
16 
17 #include <xnnpack.h>
18 
19 #include <benchmark/benchmark.h>
20 #include "bench/utils.h"
21 
22 
max_pooling_u8(benchmark::State & state,const char * net)23 void max_pooling_u8(benchmark::State& state, const char* net) {
24   const size_t batch_size = state.range(0);
25   const size_t input_height = state.range(1);
26   const size_t input_width = state.range(2);
27   const size_t pooling_size = state.range(3);
28   const size_t padding_size = state.range(4);
29   const size_t stride = state.range(5);
30   const size_t channels = state.range(6);
31 
32   std::random_device random_device;
33   auto rng = std::mt19937(random_device());
34   auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
35 
36   const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1;
37   const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1;
38 
39   std::vector<uint8_t> input(batch_size * input_height * input_width * channels);
40   std::generate(input.begin(), input.end(), std::ref(u8rng));
41   std::vector<uint8_t> output(batch_size * output_height * output_width * channels);
42   std::fill(output.begin(), output.end(), 0xA5);
43 
44   xnn_status status = xnn_initialize(nullptr /* allocator */);
45   if (status != xnn_status_success) {
46     state.SkipWithError("failed to initialize XNNPACK");
47     return;
48   }
49 
50   xnn_operator_t pooling_op = nullptr;
51   status = xnn_create_max_pooling2d_nhwc_u8(
52     padding_size, padding_size, padding_size, padding_size,
53     pooling_size, pooling_size,
54     stride, stride,
55     1 /* dilation height */, 1 /* dilation width */,
56     channels, channels /* input pixel stride */, channels /* output pixel stride */,
57     0, 255,
58     0 /* flags */, &pooling_op);
59   if (status != xnn_status_success) {
60     state.SkipWithError("failed to create Max Pooling operator");
61     return;
62   }
63 
64   status = xnn_setup_max_pooling2d_nhwc_u8(
65     pooling_op,
66     batch_size, input_height, input_width,
67     input.data(), output.data(),
68     nullptr /* thread pool */);
69   if (status != xnn_status_success) {
70     state.SkipWithError("failed to setup Max Pooling operator");
71     return;
72   }
73 
74   for (auto _ : state) {
75     status = xnn_run_operator(pooling_op, nullptr /* thread pool */);
76     if (status != xnn_status_success) {
77       state.SkipWithError("failed to run Max Pooling operator");
78       return;
79     }
80   }
81 
82   status = xnn_delete_operator(pooling_op);
83   if (status != xnn_status_success) {
84     state.SkipWithError("failed to delete Max Pooling operator");
85     return;
86   }
87   pooling_op = nullptr;
88 
89   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
90   if (cpu_frequency != 0) {
91     state.counters["cpufreq"] = cpu_frequency;
92   }
93 
94   state.counters["bytes"] = benchmark::Counter(
95     uint64_t(state.iterations()) *
96       batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(uint8_t),
97     benchmark::Counter::kIsRate);
98 }
99 
max_pooling_f32(benchmark::State & state,const char * net)100 void max_pooling_f32(benchmark::State& state, const char* net) {
101   const size_t batch_size = state.range(0);
102   const size_t input_height = state.range(1);
103   const size_t input_width = state.range(2);
104   const size_t pooling_size = state.range(3);
105   const size_t padding_size = state.range(4);
106   const size_t stride = state.range(5);
107   const size_t channels = state.range(6);
108 
109   std::random_device random_device;
110   auto rng = std::mt19937(random_device());
111   auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng));
112 
113   const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1;
114   const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1;
115 
116   std::vector<float> input(batch_size * input_height * input_width * channels);
117   std::generate(input.begin(), input.end(), std::ref(f32rng));
118   std::vector<float> output(batch_size * output_height * output_width * channels);
119   std::fill(output.begin(), output.end(), nanf(""));
120 
121   xnn_status status = xnn_initialize(nullptr /* allocator */);
122   if (status != xnn_status_success) {
123     state.SkipWithError("failed to initialize XNNPACK");
124     return;
125   }
126 
127   xnn_operator_t pooling_op = nullptr;
128   status = xnn_create_max_pooling2d_nhwc_f32(
129     padding_size, padding_size, padding_size, padding_size,
130     pooling_size, pooling_size,
131     stride, stride,
132     1 /* dilation height */, 1 /* dilation width */,
133     channels, channels /* input pixel stride */, channels /* output pixel stride */,
134     -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(),
135     0 /* flags */, &pooling_op);
136   if (status != xnn_status_success) {
137     state.SkipWithError("failed to create Max Pooling operator");
138     return;
139   }
140 
141   status = xnn_setup_max_pooling2d_nhwc_f32(
142     pooling_op,
143     batch_size, input_height, input_width,
144     input.data(), output.data(),
145     nullptr /* thread pool */);
146   if (status != xnn_status_success) {
147     state.SkipWithError("failed to setup Max Pooling operator");
148     return;
149   }
150 
151   for (auto _ : state) {
152     status = xnn_run_operator(pooling_op, nullptr /* thread pool */);
153     if (status != xnn_status_success) {
154       state.SkipWithError("failed to run Max Pooling operator");
155       return;
156     }
157   }
158 
159   status = xnn_delete_operator(pooling_op);
160   if (status != xnn_status_success) {
161     state.SkipWithError("failed to delete Max Pooling operator");
162     return;
163   }
164   pooling_op = nullptr;
165 
166   const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency();
167   if (cpu_frequency != 0) {
168     state.counters["cpufreq"] = cpu_frequency;
169   }
170 
171   state.counters["bytes"] = benchmark::Counter(
172     uint64_t(state.iterations()) *
173       batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float),
174     benchmark::Counter::kIsRate);
175 }
176 
177 // ShuffleNet v1/v2.
ShuffleNet(benchmark::internal::Benchmark * b)178 static void ShuffleNet(benchmark::internal::Benchmark* b) {
179   b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
180 
181   /*       N   H   W    K  P  S   C */
182   b->Args({1, 112, 112, 3, 1, 2, 24});
183 }
184 
185 // SqueezeNet 1.0
SqueezeNetV10(benchmark::internal::Benchmark * b)186 static void SqueezeNetV10(benchmark::internal::Benchmark* b) {
187   b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
188 
189   /*********** MaxPool 1 ************/
190   /*       N   H    W   K  P  S   C */
191   b->Args({1, 111, 111, 3, 0, 2,  96});
192   /*********** MaxPool 4 ************/
193   /*       N   H    W   K  P  S   C */
194   b->Args({1,  27,  27, 3, 0, 2, 256});
195   /*********** MaxPool 8 ************/
196   /*       N   H    W   K  P  S   C */
197   b->Args({1,  13,  13, 3, 0, 2, 512});
198 }
199 
200 // SqueezeNet 1.1
SqueezeNetV11(benchmark::internal::Benchmark * b)201 static void SqueezeNetV11(benchmark::internal::Benchmark* b) {
202   b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
203 
204   /*********** MaxPool 1 ***********/
205   /*       N   H    W   K  P  S   C */
206   b->Args({1, 111, 111, 3, 0, 2,  64});
207   /*********** MaxPool 3 ************/
208   /*       N   H    W   K  P  S   C */
209   b->Args({1,  55,  55, 3, 0, 2, 128});
210   /*********** MaxPool 5 ************/
211   /*       N   H    W   K  P  S   C */
212   b->Args({1,  13,  13, 3, 0, 2, 256});
213 }
214 
VGG(benchmark::internal::Benchmark * b)215 static void VGG(benchmark::internal::Benchmark* b) {
216   b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
217 
218   /*       N   H    W   K  P  S   C */
219   b->Args({1, 224, 224, 2, 1, 2,  64});
220   b->Args({1, 112, 112, 2, 1, 2, 128});
221   b->Args({1,  56,  56, 2, 1, 2, 256});
222   b->Args({1,  28,  28, 2, 1, 2, 512});
223   b->Args({1,  14,  14, 2, 1, 2, 512});
224 }
225 
226 BENCHMARK_CAPTURE(max_pooling_f32, shufflenet, "ShuffleNet v1/v2")->Apply(ShuffleNet)->UseRealTime();
227 BENCHMARK_CAPTURE(max_pooling_f32, squeezenet_v10, "SqueezeNet v1.0")->Apply(SqueezeNetV10)->UseRealTime();
228 BENCHMARK_CAPTURE(max_pooling_f32, squeezenet_v11, "SqueezeNet v1.1")->Apply(SqueezeNetV11)->UseRealTime();
229 BENCHMARK_CAPTURE(max_pooling_f32, vgg, "VGG")->Apply(VGG);
230 
231 BENCHMARK_CAPTURE(max_pooling_u8, shufflenet, "ShuffleNet v1/v2")->Apply(ShuffleNet)->UseRealTime();
232 BENCHMARK_CAPTURE(max_pooling_u8, squeezenet_v10, "SqueezeNet v1.0")->Apply(SqueezeNetV10)->UseRealTime();
233 BENCHMARK_CAPTURE(max_pooling_u8, squeezenet_v11, "SqueezeNet v1.1")->Apply(SqueezeNetV11)->UseRealTime();
234 BENCHMARK_CAPTURE(max_pooling_u8, vgg, "VGG")->Apply(VGG);
235 
236 #ifndef XNNPACK_BENCHMARK_NO_MAIN
237 BENCHMARK_MAIN();
238 #endif
239