1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/raddstoreexpminusmax.h>
15 
16 
17 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
18 
xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x96_acc2(size_t elements,const float * input,float * output,float * sum,float max)19 void xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x96_acc2(
20     size_t elements,
21     const float* input,
22     float* output,
23     float* sum,
24     float max)
25 {
26   assert(elements % sizeof(float) == 0);
27 
28   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29   // The smallest x for which expf(x) is normalized.
30   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
31   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
32   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
33   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
34 
35   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
36   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
37   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
38   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
39   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
40 
41   const __m256 vi_max = _mm256_set1_ps(max);
42 
43   __m256 vacc0 = _mm256_setzero_ps();
44   __m256 vacc1 = _mm256_setzero_ps();
45   for (; elements >= 96 * sizeof(float); elements -= 96 * sizeof(float)) {
46     // Load 96 (12x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     const __m256 vi8 = _mm256_loadu_ps(input + 64);
56     const __m256 vi9 = _mm256_loadu_ps(input + 72);
57     const __m256 vi10 = _mm256_loadu_ps(input + 80);
58     const __m256 vi11 = _mm256_loadu_ps(input + 88);
59     input += 96;
60 
61     // Subtract maximum input x := i - i_max. This implies x <= 0.
62     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
63     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
64     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
65     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
66     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
67     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
68     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
69     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
70     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
71     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
72     const __m256 vx10 = _mm256_sub_ps(vi10, vi_max);
73     const __m256 vx11 = _mm256_sub_ps(vi11, vi_max);
74 
75     // Compute reduced argument elements := round(x / log(2)).
76     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
77     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
78     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
79     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
80     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
81     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
82     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
83     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
84     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
85     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
86     __m256 vn10 = _mm256_fmadd_ps(vx10, vlog2e, vmagic_bias);
87     __m256 vn11 = _mm256_fmadd_ps(vx11, vlog2e, vmagic_bias);
88 
89     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
90     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
91     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
92     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
93     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
94     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
95     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
96     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
97     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
98     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
99     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
100     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
101     const __m256 vs10 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn10), 23));
102     const __m256 vs11 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn11), 23));
103 
104     // Subtract the large number back to get final elements := round(x / log(2)).
105     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
106     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
107     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
108     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
109     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
110     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
111     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
112     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
113     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
114     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
115     vn10 = _mm256_sub_ps(vn10, vmagic_bias);
116     vn11 = _mm256_sub_ps(vn11, vmagic_bias);
117 
118     // Compute reduced argument t := x - elements * log(2).
119     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
120     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
121     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
122     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
123     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
124     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
125     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
126     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
127     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
128     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
129     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
130     __m256 vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_hi, vx10);
131     __m256 vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_hi, vx11);
132 
133     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
134     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
135     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
136     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
137     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
138     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
139     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
140     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
141     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
142     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
143     vt10 = _mm256_fmadd_ps(vn10, vminus_ln2_lo, vt10);
144     vt11 = _mm256_fmadd_ps(vn11, vminus_ln2_lo, vt11);
145 
146     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
147     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
148     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
149     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
150     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
151     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
152     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
153     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
154     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
155     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
156     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
157     __m256 vp10 = _mm256_fmadd_ps(vc5, vt10, vc4);
158     __m256 vp11 = _mm256_fmadd_ps(vc5, vt11, vc4);
159 
160     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
161     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
162     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
163     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
164     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
165     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
166     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
167     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
168     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
169     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
170     vp10 = _mm256_fmadd_ps(vp10, vt10, vc3);
171     vp11 = _mm256_fmadd_ps(vp11, vt11, vc3);
172 
173     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
174     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
175     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
176     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
177     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
178     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
179     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
180     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
181     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
182     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
183     vp10 = _mm256_fmadd_ps(vp10, vt10, vc2);
184     vp11 = _mm256_fmadd_ps(vp11, vt11, vc2);
185 
186     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
187     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
188     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
189     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
190     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
191     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
192     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
193     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
194     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
195     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
196     vp10 = _mm256_fmadd_ps(vp10, vt10, vc1);
197     vp11 = _mm256_fmadd_ps(vp11, vt11, vc1);
198 
199     // Reconstruct the final f value:
200     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
201     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
202     //     = s + (t * s) * p
203     vt0 = _mm256_mul_ps(vt0, vs0);
204     vt1 = _mm256_mul_ps(vt1, vs1);
205     vt2 = _mm256_mul_ps(vt2, vs2);
206     vt3 = _mm256_mul_ps(vt3, vs3);
207     vt4 = _mm256_mul_ps(vt4, vs4);
208     vt5 = _mm256_mul_ps(vt5, vs5);
209     vt6 = _mm256_mul_ps(vt6, vs6);
210     vt7 = _mm256_mul_ps(vt7, vs7);
211     vt8 = _mm256_mul_ps(vt8, vs8);
212     vt9 = _mm256_mul_ps(vt9, vs9);
213     vt10 = _mm256_mul_ps(vt10, vs10);
214     vt11 = _mm256_mul_ps(vt11, vs11);
215 
216     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
217     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
218     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
219     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
220     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
221     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
222     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
223     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
224     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
225     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
226     __m256 vf10 = _mm256_fmadd_ps(vt10, vp10, vs10);
227     __m256 vf11 = _mm256_fmadd_ps(vt11, vp11, vs11);
228 
229     // For inputs below zero cutoff, replace output with +0.0f.
230     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
231     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
232     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
233     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
234     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
235     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
236     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
237     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
238     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
239     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
240     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
241     vf10 = _mm256_andnot_ps(_mm256_cmp_ps(vx10, vdenorm_cutoff, _CMP_LT_OS), vf10);
242     vf11 = _mm256_andnot_ps(_mm256_cmp_ps(vx11, vdenorm_cutoff, _CMP_LT_OS), vf11);
243 
244     // Store 96 (12x8) outputs at a time.
245     _mm256_storeu_ps(output, vf0);
246     _mm256_storeu_ps(output + 8, vf1);
247     _mm256_storeu_ps(output + 16, vf2);
248     _mm256_storeu_ps(output + 24, vf3);
249     _mm256_storeu_ps(output + 32, vf4);
250     _mm256_storeu_ps(output + 40, vf5);
251     _mm256_storeu_ps(output + 48, vf6);
252     _mm256_storeu_ps(output + 56, vf7);
253     _mm256_storeu_ps(output + 64, vf8);
254     _mm256_storeu_ps(output + 72, vf9);
255     _mm256_storeu_ps(output + 80, vf10);
256     _mm256_storeu_ps(output + 88, vf11);
257     output += 96;
258 
259     // Accumulate computed exponents.
260     vacc0 = _mm256_add_ps(vacc0, vf0);
261     vacc1 = _mm256_add_ps(vacc1, vf1);
262     vacc0 = _mm256_add_ps(vacc0, vf2);
263     vacc1 = _mm256_add_ps(vacc1, vf3);
264     vacc0 = _mm256_add_ps(vacc0, vf4);
265     vacc1 = _mm256_add_ps(vacc1, vf5);
266     vacc0 = _mm256_add_ps(vacc0, vf6);
267     vacc1 = _mm256_add_ps(vacc1, vf7);
268     vacc0 = _mm256_add_ps(vacc0, vf8);
269     vacc1 = _mm256_add_ps(vacc1, vf9);
270     vacc0 = _mm256_add_ps(vacc0, vf10);
271     vacc1 = _mm256_add_ps(vacc1, vf11);
272   }
273   // Add up all accumulators to vacc0
274   vacc0 = _mm256_add_ps(vacc0, vacc1);
275 
276   __m256 vacc = vacc0;
277   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
278     // Load 8 inputs at a time.
279     const __m256 vi = _mm256_loadu_ps(input);
280     input += 8;
281 
282     // Subtract maximum input x := i - i_max. This implies x <= 0.
283     const __m256 vx = _mm256_sub_ps(vi, vi_max);
284 
285     // Compute reduced argument elements := round(x / log(2)).
286     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
287 
288     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
289     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
290     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
291 
292     // Subtract the large number back to get final elements := round(x / log(2)).
293     vn = _mm256_sub_ps(vn, vmagic_bias);
294 
295     // Compute reduced argument t := x - elements * log(2).
296     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
297     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
298     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
299 
300     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
301     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
302     vp = _mm256_fmadd_ps(vp, vt, vc3);
303     vp = _mm256_fmadd_ps(vp, vt, vc2);
304     vp = _mm256_fmadd_ps(vp, vt, vc1);
305 
306     // Reconstruct the final f value:
307     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
308     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
309     //     = s + (t * s) * p
310     vt = _mm256_mul_ps(vt, vs);
311     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
312 
313     // For inputs below zero cutoff, replace output with +0.0f.
314     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
315     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
316 
317     // Store 8 outputs at a time.
318     _mm256_storeu_ps(output, vf);
319     output += 8;
320 
321     // Accumulate computed exponents.
322     vacc = _mm256_add_ps(vacc, vf);
323   }
324   if (elements != 0) {
325     assert(elements >= 1 * sizeof(float));
326     assert(elements <= 7 * sizeof(float));
327     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
328 
329     // Load up to 7 inputs at a time.
330     const __m256 vi = _mm256_maskload_ps(input, vmask);
331 
332     // Subtract maximum input x := i - i_max. This implies x <= 0.
333     const __m256 vx = _mm256_sub_ps(vi, vi_max);
334 
335     // Compute reduced argument elements := round(x / log(2)).
336     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
337 
338     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
339     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
340     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
341 
342     // Subtract the large number back to get final elements := round(x / log(2)).
343     vn = _mm256_sub_ps(vn, vmagic_bias);
344 
345     // Compute reduced argument t := x - elements * log(2).
346     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
347     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
348     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
349 
350     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
351     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
352     vp = _mm256_fmadd_ps(vp, vt, vc3);
353     vp = _mm256_fmadd_ps(vp, vt, vc2);
354     vp = _mm256_fmadd_ps(vp, vt, vc1);
355 
356     // Reconstruct the final f value:
357     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
358     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
359     //     = s + (t * s) * p
360     vt = _mm256_mul_ps(vt, vs);
361     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
362 
363     // For inputs below zero cutoff, replace output with +0.0f.
364     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
365     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
366 
367     // Store up to 7 outputs at a time.
368     _mm256_maskstore_ps(output, vmask, vf);
369 
370     // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
371     vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
372   }
373   // Reduce 8 elements in the SIMD register
374   __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
375   vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
376   vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
377   _mm_store_ss(sum, vacc_lo);
378   _mm256_zeroupper();
379 }
380