1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x12_acc2(size_t elements,const float * input,float * output,float * sum,float max)20 void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x12_acc2(
21     size_t elements,
22     const float* input,
23     float* output,
24     float* sum,
25     float max) XNN_DISABLE_TSAN
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30   // The smallest x for which expf(x) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32   const float32x4_t vlog2e_x64  = vmovq_n_f32(0x1.715476p6f);
33   // Last 13 bits are zeroes
34   const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35   const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36 
37   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38 
39   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
46     // Load 12 (3x4) inputs at a time.
47     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55 
56     // Compute reduced argument n := round(x * 64 / log(2)).
57     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
60     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
61     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
62     // algorithm.
63     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e_x64);
64     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e_x64);
65     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
66 
67     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
68     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
69     // e := int(n / 64). We create s in two steps:
70     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
74     //    and thus the adjusted exponent is not lower than -126.
75     //
76     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80 
81     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
84     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
85     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
86     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
87     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
88     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
89     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
90     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
91 
92     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
93     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
94     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
95     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
96     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98 
99     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108 
109     // Adjust exponent of the value l fetched from the table to get the final s value.
110     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113 
114     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
115     vn0123 = vsubq_f32(vn0123, vmagic_bias);
116     vn4567 = vsubq_f32(vn4567, vmagic_bias);
117     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118 
119     // Compute reduced argument t := x - n * log(2) / 64.
120     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
121     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
122     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
123     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
124 
125     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
126     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
127     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
128 
129     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
130     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
131     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
132     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
133 
134     vp0123 = vmlaq_f32(vt0123, vt0123, vp0123);
135     vp4567 = vmlaq_f32(vt4567, vt4567, vp4567);
136     vp89AB = vmlaq_f32(vt89AB, vt89AB, vp89AB);
137 
138     // Reconstruct the final f value:
139     //   f = s * (1 + t * (1 + t * c2))
140     //     = s * (1 + t + t * (t * c2))
141     //     = s + s * (t + t * (t * c2))
142     //     = s + s * p
143     float32x4_t vf0123 = vmlaq_f32(vs0123, vs0123, vp0123);
144     float32x4_t vf4567 = vmlaq_f32(vs4567, vs4567, vp4567);
145     float32x4_t vf89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
146 
147     // For inputs below denormal cutoff, replace output with +0.0f.
148     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
150     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
151     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
152 
153     // Store 12 (3x4) outputs at a time.
154     vst1q_f32(output, vf0123); output += 4;
155     vst1q_f32(output, vf4567); output += 4;
156     vst1q_f32(output, vf89AB); output += 4;
157 
158     // Accumulate computed exponents.
159     vacc0 = vaddq_f32(vacc0, vf0123);
160     vacc0 = vaddq_f32(vacc0, vf4567);
161     vacc0 = vaddq_f32(vacc0, vf89AB);
162   }
163   // Add up all accumulators to vacc0
164   vacc0 = vaddq_f32(vacc0, vacc1);
165 
166   float32x4_t vacc = vacc0;
167   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
168     // Load 4 inputs at a time.
169     const float32x4_t vi = vld1q_f32(input); input += 4;
170 
171     // Subtract maximum input x := i - i_max. This implies x <= 0.
172     const float32x4_t vx = vsubq_f32(vi, vi_max);
173 
174     // Compute reduced argument n := round(x * 64 / log(2)).
175     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
176     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
177     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
178     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
179     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
180     // algorithm.
181     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
182 
183     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
184     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
185     // e := int(n / 64). We create s in two steps:
186     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
187     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
188     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
189     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
190     //    and thus the adjusted exponent is not lower than -126.
191     //
192     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
193     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
194 
195     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
196     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
197     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
198     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
199     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
200     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
201     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
202     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
203     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
204     // Adjust exponent of the value l fetched from the table to get the final s value.
205     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
206 
207     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
208     vn = vsubq_f32(vn, vmagic_bias);
209 
210     // Compute reduced argument t := x - n * log(2) / 64.
211     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
212     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
213     vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
214 
215     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
216     float32x4_t vp = vmulq_f32(vt, vc2);
217     vp = vmlaq_f32(vt, vt, vp);
218 
219     // Reconstruct the final f value:
220     //   f = s * (1 + t * (1 + t * c2))
221     //     = s * (1 + t + t * (t * c2))
222     //     = s + s * (t + t * (t * c2))
223     //     = s + s * p
224     float32x4_t vf = vmlaq_f32(vs, vs, vp);
225 
226     // For inputs below denormal cutoff, replace output with +0.0f.
227     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
228     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
229 
230     // Store 4 outputs at a time.
231     vst1q_f32(output, vf); output += 4;
232 
233     // Accumulate computed exponents.
234     vacc = vaddq_f32(vacc, vf);
235   }
236 #if XNN_ARCH_ARM64
237   float vacc_lo = vaddvq_f32(vacc);
238 #else
239   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
240 #endif
241   if (elements != 0) {
242     assert(elements >= 1 * sizeof(float));
243     assert(elements <= 3 * sizeof(float));
244     // Load 4 inputs at a time.
245     const float32x4_t vi = vld1q_f32(input); input += 4;
246 
247     // Subtract maximum input x := i - i_max. This implies x <= 0.
248     const float32x4_t vx = vsubq_f32(vi, vi_max);
249 
250     // Compute reduced argument n := round(x * 64 / log(2)).
251     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
252     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
253     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
254     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
255     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
256     // algorithm.
257     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
258 
259     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
260     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
261     // e := int(n / 64). We create s in two steps:
262     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
263     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
264     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
265     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
266     //    and thus the adjusted exponent is not lower than -126.
267     //
268     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
269     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
270 
271     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
272     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
273     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
274     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
275     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
276     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
277     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
278     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
279     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
280     // Adjust exponent of the value l fetched from the table to get the final s value.
281     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
282 
283     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
284     vn = vsubq_f32(vn, vmagic_bias);
285 
286     // Compute reduced argument t := x - n * log(2) / 64.
287     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
288     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
289     vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
290 
291     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
292     float32x4_t vp = vmulq_f32(vt, vc2);
293     vp = vmlaq_f32(vt, vt, vp);
294 
295     // Reconstruct the final f value:
296     //   f = s * (1 + t * (1 + t * c2))
297     //     = s * (1 + t + t * (t * c2))
298     //     = s + s * (t + t * (t * c2))
299     //     = s + s * p
300     float32x4_t vf = vmlaq_f32(vs, vs, vp);
301 
302     // For inputs below denormal cutoff, replace output with +0.0f.
303     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
304     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
305 
306     float32x2_t vf_lo = vget_low_f32(vf);
307     if (elements & (2 * sizeof(float))) {
308       // Store 2 outputs at a time.
309       vst1_f32(output, vf_lo); output += 2;
310 
311       // Accumulate 2 computed exponents.
312       #if XNN_ARCH_ARM64
313         vacc_lo += vaddv_f32(vf_lo);
314       #else
315         vacc_lo = vadd_f32(vacc_lo, vf_lo);
316       #endif
317 
318       vf_lo = vget_high_f32(vf);
319     }
320     if (elements & (1 * sizeof(float))) {
321       // Store 1 output at a time.
322       vst1_lane_f32(output, vf_lo, 0);
323 
324       // Accumulate 1 computed exponent.
325       #if XNN_ARCH_ARM64
326         vacc_lo += vget_lane_f32(vf_lo, 0);
327       #else
328         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
329       #endif
330     }
331   }
332   // Reduce 4 elements in the SIMD register
333 #if XNN_ARCH_ARM64
334   *sum = vacc_lo;
335 #else
336   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
337 #endif
338 }
339