1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12_acc3(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12_acc3(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33   const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34 
35   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40 
41   const float32x4_t vi_max = vdupq_n_f32(max);
42 
43   float32x4_t vacc0 = vmovq_n_f32(0.0f);
44   float32x4_t vacc1 = vmovq_n_f32(0.0f);
45   float32x4_t vacc2 = vmovq_n_f32(0.0f);
46   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
47     // Load 12 (3x4) inputs at a time.
48     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
49     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
50     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
51 
52     // Subtract maximum input x := i - i_max. This implies x <= 0.
53     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56 
57     // Compute reduced argument n := round(x / log(2)).
58     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
59     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
60     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
61     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
62     // of the algorithm.
63     float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
64     float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
65     float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
66 
67     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
69     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
70     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
71     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
72 
73     // Subtract the large number back to get final n := round(x / log(2)).
74     vn0123 = vsubq_f32(vn0123, vmagic_bias);
75     vn4567 = vsubq_f32(vn4567, vmagic_bias);
76     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
77 
78     // Compute reduced argument t := z - n * log(2).
79     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80     float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
81     float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
82     float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
83 
84     vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
85     vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
86     vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
87 
88     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
89     float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
90     float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
91     float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
92 
93     vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
94     vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
95     vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
96 
97     vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
98     vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
99     vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
100 
101     vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
102     vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
103     vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
104 
105     // Reconstruct the final f value:
106     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
107     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
108     //     = s + (t * s) * p
109     vt0123 = vmulq_f32(vt0123, vs0123);
110     vt4567 = vmulq_f32(vt4567, vs4567);
111     vt89AB = vmulq_f32(vt89AB, vs89AB);
112 
113     float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
114     float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
115     float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
116 
117     // For inputs below denormal cutoff, replace output with +0.0f.
118     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
119     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
120     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
121     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
122 
123     // Store 12 (3x4) outputs at a time.
124     vst1q_f32(output, vf0123); output += 4;
125     vst1q_f32(output, vf4567); output += 4;
126     vst1q_f32(output, vf89AB); output += 4;
127 
128     // Accumulate computed exponents.
129     vacc0 = vaddq_f32(vacc0, vf0123);
130     vacc1 = vaddq_f32(vacc1, vf4567);
131     vacc2 = vaddq_f32(vacc2, vf89AB);
132   }
133   // Add up all accumulators to vacc0
134   vacc0 = vaddq_f32(vacc0, vacc1);
135   vacc0 = vaddq_f32(vacc0, vacc2);
136 
137   float32x4_t vacc = vacc0;
138   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
139     // Load 4 inputs at a time.
140     const float32x4_t vi = vld1q_f32(input); input += 4;
141 
142     // Subtract maximum input x := i - i_max. This implies x <= 0.
143     const float32x4_t vx = vsubq_f32(vi, vi_max);
144 
145     // Compute reduced argument n := round(x / log(2)).
146     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
147     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
148     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
149     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
150     // of the algorithm.
151     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
152 
153     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
154     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
155     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
156 
157     // Subtract the large number back to get final n := round(x / log(2)).
158     vn = vsubq_f32(vn, vmagic_bias);
159 
160     // Compute reduced argument t := z - n * log(2).
161     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
162     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
163     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
164 
165     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
166     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
167     vp = vmlaq_f32(vc3, vp, vt);
168     vp = vmlaq_f32(vc2, vp, vt);
169     vp = vmlaq_f32(vc1, vp, vt);
170 
171     // Reconstruct the final f value:
172     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
173     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
174     //     = s + (t * s) * p
175     vt = vmulq_f32(vt, vs);
176     float32x4_t vf = vmlaq_f32(vs, vp, vt);
177 
178     // For inputs below denormal cutoff, replace output with +0.0f.
179     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
180     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
181 
182     // Store 4 outputs at a time.
183     vst1q_f32(output, vf); output += 4;
184 
185     // Accumulate computed exponents.
186     vacc = vaddq_f32(vacc, vf);
187   }
188 #if XNN_ARCH_ARM64
189   float vacc_lo = vaddvq_f32(vacc);
190 #else
191   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
192 #endif
193   if (elements != 0) {
194     assert(elements >= 1 * sizeof(float));
195     assert(elements <= 3 * sizeof(float));
196     // Load 4 inputs at a time.
197     const float32x4_t vi = vld1q_f32(input); input += 4;
198 
199     // Subtract maximum input x := i - i_max. This implies x <= 0.
200     const float32x4_t vx = vsubq_f32(vi, vi_max);
201 
202     // Compute reduced argument n := round(x / log(2)).
203     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
204     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
205     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
206     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
207     // of the algorithm.
208     float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
209 
210     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
211     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
212     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
213 
214     // Subtract the large number back to get final n := round(x / log(2)).
215     vn = vsubq_f32(vn, vmagic_bias);
216 
217     // Compute reduced argument t := z - n * log(2).
218     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
219     float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
220     vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
221 
222     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
223     float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
224     vp = vmlaq_f32(vc3, vp, vt);
225     vp = vmlaq_f32(vc2, vp, vt);
226     vp = vmlaq_f32(vc1, vp, vt);
227 
228     // Reconstruct the final f value:
229     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
230     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
231     //     = s + (t * s) * p
232     vt = vmulq_f32(vt, vs);
233     float32x4_t vf = vmlaq_f32(vs, vp, vt);
234 
235     // For inputs below denormal cutoff, replace output with +0.0f.
236     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
237     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
238 
239     float32x2_t vf_lo = vget_low_f32(vf);
240     if (elements & (2 * sizeof(float))) {
241       // Store 2 outputs at a time.
242       vst1_f32(output, vf_lo); output += 2;
243 
244       // Accumulate 2 computed exponents.
245       #if XNN_ARCH_ARM64
246         vacc_lo += vaddv_f32(vf_lo);
247       #else
248         vacc_lo = vadd_f32(vacc_lo, vf_lo);
249       #endif
250 
251       vf_lo = vget_high_f32(vf);
252     }
253     if (elements & (1 * sizeof(float))) {
254       // Store 1 output at a time.
255       vst1_lane_f32(output, vf_lo, 0);
256 
257       // Accumulate 1 computed exponent.
258       #if XNN_ARCH_ARM64
259         vacc_lo += vget_lane_f32(vf_lo, 0);
260       #else
261         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
262       #endif
263     }
264   }
265   // Reduce 4 elements in the SIMD register
266 #if XNN_ARCH_ARM64
267   *sum = vacc_lo;
268 #else
269   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
270 #endif
271 }
272