1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc2(size_t elements,const float * input,float * output,float * sum,float max)20 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc2(
21     size_t elements,
22     const float* input,
23     float* output,
24     float* sum,
25     float max) XNN_DISABLE_TSAN
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30   // The smallest x for which expf(x) is normalized.
31   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32   const float32x4_t vlog2e_x64  = vmovq_n_f32(0x1.715476p6f);
33   const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
34   const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
35 
36   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37 
38   const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc0 = vmovq_n_f32(0.0f);
43   float32x4_t vacc1 = vmovq_n_f32(0.0f);
44   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45     // Load 12 (3x4) inputs at a time.
46     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
54 
55     // Compute reduced argument n := round(x * 64 / log(2)).
56     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
57     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
58     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
59     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
60     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
61     // algorithm.
62     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e_x64);
63     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e_x64);
64     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
65 
66     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
67     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
68     // e := int(n / 64). We create s in two steps:
69     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
70     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
71     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
72     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
73     //    and thus the adjusted exponent is not lower than -126.
74     //
75     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
76     const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
77     const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
78     const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
79 
80     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
81     const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
82     const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
83     const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
84     const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
85     const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
86     const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
87     const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
88     const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
89     const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
90 
91     float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
92     float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
93     float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
94     float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
95     float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
96     float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
97 
98     vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
99     vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
100     const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
101     vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
102     vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
103     const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
104     vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
105     vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
106     const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
107 
108     // Adjust exponent of the value l fetched from the table to get the final s value.
109     const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
110     const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
111     const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
112 
113     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
114     vn0123 = vsubq_f32(vn0123, vmagic_bias);
115     vn4567 = vsubq_f32(vn4567, vmagic_bias);
116     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
117 
118     // Compute reduced argument t := x - n * log(2) / 64.
119     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
120     float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
121     float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
122     float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
123 
124     vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
125     vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
126     vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
127 
128     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
129     float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
130     float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
131     float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
132 
133     vp0123 = vfmaq_f32(vt0123, vt0123, vp0123);
134     vp4567 = vfmaq_f32(vt4567, vt4567, vp4567);
135     vp89AB = vfmaq_f32(vt89AB, vt89AB, vp89AB);
136 
137     // Reconstruct the final f value:
138     //   f = s * (1 + t * (1 + t * c2))
139     //     = s * (1 + t + t * (t * c2))
140     //     = s + s * (t + t * (t * c2))
141     //     = s + s * p
142     float32x4_t vf0123 = vfmaq_f32(vs0123, vs0123, vp0123);
143     float32x4_t vf4567 = vfmaq_f32(vs4567, vs4567, vp4567);
144     float32x4_t vf89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
145 
146     // For inputs below denormal cutoff, replace output with +0.0f.
147     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
148     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
149     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
150     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
151 
152     // Store 12 (3x4) outputs at a time.
153     vst1q_f32(output, vf0123); output += 4;
154     vst1q_f32(output, vf4567); output += 4;
155     vst1q_f32(output, vf89AB); output += 4;
156 
157     // Accumulate computed exponents.
158     vacc0 = vaddq_f32(vacc0, vf0123);
159     vacc0 = vaddq_f32(vacc0, vf4567);
160     vacc0 = vaddq_f32(vacc0, vf89AB);
161   }
162   // Add up all accumulators to vacc0
163   vacc0 = vaddq_f32(vacc0, vacc1);
164 
165   float32x4_t vacc = vacc0;
166   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
167     // Load 4 inputs at a time.
168     const float32x4_t vi = vld1q_f32(input); input += 4;
169 
170     // Subtract maximum input x := i - i_max. This implies x <= 0.
171     const float32x4_t vx = vsubq_f32(vi, vi_max);
172 
173     // Compute reduced argument n := round(x * 64 / log(2)).
174     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
175     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
176     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
177     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
178     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
179     // algorithm.
180     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
181 
182     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
183     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
184     // e := int(n / 64). We create s in two steps:
185     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
186     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
187     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
188     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
189     //    and thus the adjusted exponent is not lower than -126.
190     //
191     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
192     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
193 
194     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
195     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
196     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
197     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
198     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
199     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
200     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
201     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
202     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
203     // Adjust exponent of the value l fetched from the table to get the final s value.
204     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
205 
206     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
207     vn = vsubq_f32(vn, vmagic_bias);
208 
209     // Compute reduced argument t := x - n * log(2) / 64.
210     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
211     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
212     vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
213 
214     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
215     float32x4_t vp = vmulq_f32(vt, vc2);
216     vp = vfmaq_f32(vt, vt, vp);
217 
218     // Reconstruct the final f value:
219     //   f = s * (1 + t * (1 + t * c2))
220     //     = s * (1 + t + t * (t * c2))
221     //     = s + s * (t + t * (t * c2))
222     //     = s + s * p
223     float32x4_t vf = vfmaq_f32(vs, vs, vp);
224 
225     // For inputs below denormal cutoff, replace output with +0.0f.
226     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
227     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
228 
229     // Store 4 outputs at a time.
230     vst1q_f32(output, vf); output += 4;
231 
232     // Accumulate computed exponents.
233     vacc = vaddq_f32(vacc, vf);
234   }
235 #if XNN_ARCH_ARM64
236   float vacc_lo = vaddvq_f32(vacc);
237 #else
238   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
239 #endif
240   if (elements != 0) {
241     assert(elements >= 1 * sizeof(float));
242     assert(elements <= 3 * sizeof(float));
243     // Load 4 inputs at a time.
244     const float32x4_t vi = vld1q_f32(input); input += 4;
245 
246     // Subtract maximum input x := i - i_max. This implies x <= 0.
247     const float32x4_t vx = vsubq_f32(vi, vi_max);
248 
249     // Compute reduced argument n := round(x * 64 / log(2)).
250     // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
251     // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
252     // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
253     // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
254     // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
255     // algorithm.
256     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
257 
258     // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
259     // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
260     // e := int(n / 64). We create s in two steps:
261     // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
262     //    fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
263     // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
264     //    number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
265     //    and thus the adjusted exponent is not lower than -126.
266     //
267     // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
268     const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
269 
270     // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
271     const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
272     const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
273     const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
274     float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
275     float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
276     vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
277     vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
278     const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
279     // Adjust exponent of the value l fetched from the table to get the final s value.
280     const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
281 
282     // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
283     vn = vsubq_f32(vn, vmagic_bias);
284 
285     // Compute reduced argument t := x - n * log(2) / 64.
286     // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
287     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
288     vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
289 
290     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
291     float32x4_t vp = vmulq_f32(vt, vc2);
292     vp = vfmaq_f32(vt, vt, vp);
293 
294     // Reconstruct the final f value:
295     //   f = s * (1 + t * (1 + t * c2))
296     //     = s * (1 + t + t * (t * c2))
297     //     = s + s * (t + t * (t * c2))
298     //     = s + s * p
299     float32x4_t vf = vfmaq_f32(vs, vs, vp);
300 
301     // For inputs below denormal cutoff, replace output with +0.0f.
302     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
303     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
304 
305     float32x2_t vf_lo = vget_low_f32(vf);
306     if (elements & (2 * sizeof(float))) {
307       // Store 2 outputs at a time.
308       vst1_f32(output, vf_lo); output += 2;
309 
310       // Accumulate 2 computed exponents.
311       #if XNN_ARCH_ARM64
312         vacc_lo += vaddv_f32(vf_lo);
313       #else
314         vacc_lo = vadd_f32(vacc_lo, vf_lo);
315       #endif
316 
317       vf_lo = vget_high_f32(vf);
318     }
319     if (elements & (1 * sizeof(float))) {
320       // Store 1 output at a time.
321       vst1_lane_f32(output, vf_lo, 0);
322 
323       // Accumulate 1 computed exponent.
324       #if XNN_ARCH_ARM64
325         vacc_lo += vget_lane_f32(vf_lo, 0);
326       #else
327         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
328       #endif
329     }
330   }
331   // Reduce 4 elements in the SIMD register
332 #if XNN_ARCH_ARM64
333   *sum = vacc_lo;
334 #else
335   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
336 #endif
337 }
338