1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc2(size_t elements,const float * input,float * output,float * sum,float max)20 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc2(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
25 float max) XNN_DISABLE_TSAN
26 {
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
34 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45 // Load 12 (3x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
54
55 // Compute reduced argument n := round(x * 64 / log(2)).
56 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
57 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
58 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
59 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
60 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
61 // algorithm.
62 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e_x64);
63 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e_x64);
64 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
65
66 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
67 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
68 // e := int(n / 64). We create s in two steps:
69 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
70 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
71 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
72 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
73 // and thus the adjusted exponent is not lower than -126.
74 //
75 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
76 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
77 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
78 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
79
80 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
81 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
82 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
83 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
84 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
85 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
86 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
87 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
88 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
89 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
90
91 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
92 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
93 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
94 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
95 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
96 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
97
98 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
99 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
100 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
101 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
102 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
103 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
104 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
105 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
106 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
107
108 // Adjust exponent of the value l fetched from the table to get the final s value.
109 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
110 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
111 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
112
113 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
114 vn0123 = vsubq_f32(vn0123, vmagic_bias);
115 vn4567 = vsubq_f32(vn4567, vmagic_bias);
116 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
117
118 // Compute reduced argument t := x - n * log(2) / 64.
119 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
120 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
121 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
122 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
123
124 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
125 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
126 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
127
128 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
129 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
130 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
131 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
132
133 vp0123 = vfmaq_f32(vt0123, vt0123, vp0123);
134 vp4567 = vfmaq_f32(vt4567, vt4567, vp4567);
135 vp89AB = vfmaq_f32(vt89AB, vt89AB, vp89AB);
136
137 // Reconstruct the final f value:
138 // f = s * (1 + t * (1 + t * c2))
139 // = s * (1 + t + t * (t * c2))
140 // = s + s * (t + t * (t * c2))
141 // = s + s * p
142 float32x4_t vf0123 = vfmaq_f32(vs0123, vs0123, vp0123);
143 float32x4_t vf4567 = vfmaq_f32(vs4567, vs4567, vp4567);
144 float32x4_t vf89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
145
146 // For inputs below denormal cutoff, replace output with +0.0f.
147 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
148 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
149 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
150 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
151
152 // Store 12 (3x4) outputs at a time.
153 vst1q_f32(output, vf0123); output += 4;
154 vst1q_f32(output, vf4567); output += 4;
155 vst1q_f32(output, vf89AB); output += 4;
156
157 // Accumulate computed exponents.
158 vacc0 = vaddq_f32(vacc0, vf0123);
159 vacc0 = vaddq_f32(vacc0, vf4567);
160 vacc0 = vaddq_f32(vacc0, vf89AB);
161 }
162 // Add up all accumulators to vacc0
163 vacc0 = vaddq_f32(vacc0, vacc1);
164
165 float32x4_t vacc = vacc0;
166 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
167 // Load 4 inputs at a time.
168 const float32x4_t vi = vld1q_f32(input); input += 4;
169
170 // Subtract maximum input x := i - i_max. This implies x <= 0.
171 const float32x4_t vx = vsubq_f32(vi, vi_max);
172
173 // Compute reduced argument n := round(x * 64 / log(2)).
174 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
175 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
176 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
177 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
178 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
179 // algorithm.
180 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
181
182 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
183 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
184 // e := int(n / 64). We create s in two steps:
185 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
186 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
187 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
188 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
189 // and thus the adjusted exponent is not lower than -126.
190 //
191 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
192 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
193
194 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
195 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
196 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
197 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
198 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
199 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
200 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
201 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
202 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
203 // Adjust exponent of the value l fetched from the table to get the final s value.
204 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
205
206 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
207 vn = vsubq_f32(vn, vmagic_bias);
208
209 // Compute reduced argument t := x - n * log(2) / 64.
210 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
211 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
212 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
213
214 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
215 float32x4_t vp = vmulq_f32(vt, vc2);
216 vp = vfmaq_f32(vt, vt, vp);
217
218 // Reconstruct the final f value:
219 // f = s * (1 + t * (1 + t * c2))
220 // = s * (1 + t + t * (t * c2))
221 // = s + s * (t + t * (t * c2))
222 // = s + s * p
223 float32x4_t vf = vfmaq_f32(vs, vs, vp);
224
225 // For inputs below denormal cutoff, replace output with +0.0f.
226 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
227 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
228
229 // Store 4 outputs at a time.
230 vst1q_f32(output, vf); output += 4;
231
232 // Accumulate computed exponents.
233 vacc = vaddq_f32(vacc, vf);
234 }
235 #if XNN_ARCH_ARM64
236 float vacc_lo = vaddvq_f32(vacc);
237 #else
238 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
239 #endif
240 if (elements != 0) {
241 assert(elements >= 1 * sizeof(float));
242 assert(elements <= 3 * sizeof(float));
243 // Load 4 inputs at a time.
244 const float32x4_t vi = vld1q_f32(input); input += 4;
245
246 // Subtract maximum input x := i - i_max. This implies x <= 0.
247 const float32x4_t vx = vsubq_f32(vi, vi_max);
248
249 // Compute reduced argument n := round(x * 64 / log(2)).
250 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
251 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
252 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
253 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
254 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
255 // algorithm.
256 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
257
258 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
259 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
260 // e := int(n / 64). We create s in two steps:
261 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
262 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
263 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
264 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
265 // and thus the adjusted exponent is not lower than -126.
266 //
267 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
268 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
269
270 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
271 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
272 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
273 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
274 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
275 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
276 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
277 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
278 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
279 // Adjust exponent of the value l fetched from the table to get the final s value.
280 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
281
282 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
283 vn = vsubq_f32(vn, vmagic_bias);
284
285 // Compute reduced argument t := x - n * log(2) / 64.
286 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
287 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
288 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
289
290 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
291 float32x4_t vp = vmulq_f32(vt, vc2);
292 vp = vfmaq_f32(vt, vt, vp);
293
294 // Reconstruct the final f value:
295 // f = s * (1 + t * (1 + t * c2))
296 // = s * (1 + t + t * (t * c2))
297 // = s + s * (t + t * (t * c2))
298 // = s + s * p
299 float32x4_t vf = vfmaq_f32(vs, vs, vp);
300
301 // For inputs below denormal cutoff, replace output with +0.0f.
302 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
303 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
304
305 float32x2_t vf_lo = vget_low_f32(vf);
306 if (elements & (2 * sizeof(float))) {
307 // Store 2 outputs at a time.
308 vst1_f32(output, vf_lo); output += 2;
309
310 // Accumulate 2 computed exponents.
311 #if XNN_ARCH_ARM64
312 vacc_lo += vaddv_f32(vf_lo);
313 #else
314 vacc_lo = vadd_f32(vacc_lo, vf_lo);
315 #endif
316
317 vf_lo = vget_high_f32(vf);
318 }
319 if (elements & (1 * sizeof(float))) {
320 // Store 1 output at a time.
321 vst1_lane_f32(output, vf_lo, 0);
322
323 // Accumulate 1 computed exponent.
324 #if XNN_ARCH_ARM64
325 vacc_lo += vget_lane_f32(vf_lo, 0);
326 #else
327 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
328 #endif
329 }
330 }
331 // Reduce 4 elements in the SIMD register
332 #if XNN_ARCH_ARM64
333 *sum = vacc_lo;
334 #else
335 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
336 #endif
337 }
338