1 // Auto-generated file. Do not edit!
2 // Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <arm_neon.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16
17
18 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc3(size_t elements,const float * input,float * output,float * sum,float max)20 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x12_acc3(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
25 float max) XNN_DISABLE_TSAN
26 {
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
34 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 float32x4_t vacc2 = vmovq_n_f32(0.0f);
45 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
46 // Load 12 (3x4) inputs at a time.
47 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55
56 // Compute reduced argument n := round(x * 64 / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
58 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
60 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
61 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
62 // algorithm.
63 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e_x64);
64 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e_x64);
65 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
66
67 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
68 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
69 // e := int(n / 64). We create s in two steps:
70 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
71 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
72 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
73 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
74 // and thus the adjusted exponent is not lower than -126.
75 //
76 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
77 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
78 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
79 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
80
81 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
82 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
83 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
84 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
85 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
86 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
87 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
88 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
89 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
90 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
91
92 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
93 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
94 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
95 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
96 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
97 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
98
99 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
100 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
101 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
102 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
103 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
104 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
105 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
106 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
107 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
108
109 // Adjust exponent of the value l fetched from the table to get the final s value.
110 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
111 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
112 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
113
114 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
115 vn0123 = vsubq_f32(vn0123, vmagic_bias);
116 vn4567 = vsubq_f32(vn4567, vmagic_bias);
117 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
118
119 // Compute reduced argument t := x - n * log(2) / 64.
120 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
121 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
122 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
123 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
124
125 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
126 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
127 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
128
129 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
130 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
131 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
132 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
133
134 vp0123 = vfmaq_f32(vt0123, vt0123, vp0123);
135 vp4567 = vfmaq_f32(vt4567, vt4567, vp4567);
136 vp89AB = vfmaq_f32(vt89AB, vt89AB, vp89AB);
137
138 // Reconstruct the final f value:
139 // f = s * (1 + t * (1 + t * c2))
140 // = s * (1 + t + t * (t * c2))
141 // = s + s * (t + t * (t * c2))
142 // = s + s * p
143 float32x4_t vf0123 = vfmaq_f32(vs0123, vs0123, vp0123);
144 float32x4_t vf4567 = vfmaq_f32(vs4567, vs4567, vp4567);
145 float32x4_t vf89AB = vfmaq_f32(vs89AB, vs89AB, vp89AB);
146
147 // For inputs below denormal cutoff, replace output with +0.0f.
148 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
149 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
150 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
151 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
152
153 // Store 12 (3x4) outputs at a time.
154 vst1q_f32(output, vf0123); output += 4;
155 vst1q_f32(output, vf4567); output += 4;
156 vst1q_f32(output, vf89AB); output += 4;
157
158 // Accumulate computed exponents.
159 vacc0 = vaddq_f32(vacc0, vf0123);
160 vacc1 = vaddq_f32(vacc1, vf4567);
161 vacc2 = vaddq_f32(vacc2, vf89AB);
162 }
163 // Add up all accumulators to vacc0
164 vacc0 = vaddq_f32(vacc0, vacc1);
165 vacc0 = vaddq_f32(vacc0, vacc2);
166
167 float32x4_t vacc = vacc0;
168 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
169 // Load 4 inputs at a time.
170 const float32x4_t vi = vld1q_f32(input); input += 4;
171
172 // Subtract maximum input x := i - i_max. This implies x <= 0.
173 const float32x4_t vx = vsubq_f32(vi, vi_max);
174
175 // Compute reduced argument n := round(x * 64 / log(2)).
176 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
177 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
178 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
179 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
180 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
181 // algorithm.
182 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
183
184 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
185 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
186 // e := int(n / 64). We create s in two steps:
187 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
188 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
189 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
190 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
191 // and thus the adjusted exponent is not lower than -126.
192 //
193 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
194 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
195
196 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
197 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
198 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
199 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
200 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
201 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
202 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
203 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
204 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
205 // Adjust exponent of the value l fetched from the table to get the final s value.
206 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
207
208 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
209 vn = vsubq_f32(vn, vmagic_bias);
210
211 // Compute reduced argument t := x - n * log(2) / 64.
212 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
213 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
214 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
215
216 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
217 float32x4_t vp = vmulq_f32(vt, vc2);
218 vp = vfmaq_f32(vt, vt, vp);
219
220 // Reconstruct the final f value:
221 // f = s * (1 + t * (1 + t * c2))
222 // = s * (1 + t + t * (t * c2))
223 // = s + s * (t + t * (t * c2))
224 // = s + s * p
225 float32x4_t vf = vfmaq_f32(vs, vs, vp);
226
227 // For inputs below denormal cutoff, replace output with +0.0f.
228 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
229 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
230
231 // Store 4 outputs at a time.
232 vst1q_f32(output, vf); output += 4;
233
234 // Accumulate computed exponents.
235 vacc = vaddq_f32(vacc, vf);
236 }
237 #if XNN_ARCH_ARM64
238 float vacc_lo = vaddvq_f32(vacc);
239 #else
240 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
241 #endif
242 if (elements != 0) {
243 assert(elements >= 1 * sizeof(float));
244 assert(elements <= 3 * sizeof(float));
245 // Load 4 inputs at a time.
246 const float32x4_t vi = vld1q_f32(input); input += 4;
247
248 // Subtract maximum input x := i - i_max. This implies x <= 0.
249 const float32x4_t vx = vsubq_f32(vi, vi_max);
250
251 // Compute reduced argument n := round(x * 64 / log(2)).
252 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
253 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
254 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
255 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
256 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
257 // algorithm.
258 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
259
260 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
261 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
262 // e := int(n / 64). We create s in two steps:
263 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
264 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
265 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
266 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
267 // and thus the adjusted exponent is not lower than -126.
268 //
269 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
270 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
271
272 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
273 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
274 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
275 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
276 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
277 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
278 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
279 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
280 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
281 // Adjust exponent of the value l fetched from the table to get the final s value.
282 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
283
284 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
285 vn = vsubq_f32(vn, vmagic_bias);
286
287 // Compute reduced argument t := x - n * log(2) / 64.
288 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
289 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
290 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
291
292 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
293 float32x4_t vp = vmulq_f32(vt, vc2);
294 vp = vfmaq_f32(vt, vt, vp);
295
296 // Reconstruct the final f value:
297 // f = s * (1 + t * (1 + t * c2))
298 // = s * (1 + t + t * (t * c2))
299 // = s + s * (t + t * (t * c2))
300 // = s + s * p
301 float32x4_t vf = vfmaq_f32(vs, vs, vp);
302
303 // For inputs below denormal cutoff, replace output with +0.0f.
304 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
305 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
306
307 float32x2_t vf_lo = vget_low_f32(vf);
308 if (elements & (2 * sizeof(float))) {
309 // Store 2 outputs at a time.
310 vst1_f32(output, vf_lo); output += 2;
311
312 // Accumulate 2 computed exponents.
313 #if XNN_ARCH_ARM64
314 vacc_lo += vaddv_f32(vf_lo);
315 #else
316 vacc_lo = vadd_f32(vacc_lo, vf_lo);
317 #endif
318
319 vf_lo = vget_high_f32(vf);
320 }
321 if (elements & (1 * sizeof(float))) {
322 // Store 1 output at a time.
323 vst1_lane_f32(output, vf_lo, 0);
324
325 // Accumulate 1 computed exponent.
326 #if XNN_ARCH_ARM64
327 vacc_lo += vget_lane_f32(vf_lo, 0);
328 #else
329 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
330 #endif
331 }
332 }
333 // Reduce 4 elements in the SIMD register
334 #if XNN_ARCH_ARM64
335 *sum = vacc_lo;
336 #else
337 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
338 #endif
339 }
340