1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <arm_neon.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x12_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x12_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30   const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31   const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32   const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33 
34   const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35   const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36   const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37   const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38   const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39 
40   const float32x4_t vi_max = vdupq_n_f32(max);
41 
42   float32x4_t vacc0 = vmovq_n_f32(0.0f);
43   float32x4_t vacc1 = vmovq_n_f32(0.0f);
44   for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
45     // Load 12 (3x4) inputs at a time.
46     const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47     const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48     const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49 
50     // Subtract maximum input x := i - i_max. This implies x <= 0.
51     const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52     const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53     const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
54 
55     // Compute reduced argument n := round(x / log(2)).
56     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
57     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
58     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
59     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
60     // of the algorithm.
61     float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
62     float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
63     float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
64 
65     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
66     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
67     const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
68     const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
69     const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
70 
71     // Subtract the large number back to get final n := round(x / log(2)).
72     vn0123 = vsubq_f32(vn0123, vmagic_bias);
73     vn4567 = vsubq_f32(vn4567, vmagic_bias);
74     vn89AB = vsubq_f32(vn89AB, vmagic_bias);
75 
76     // Compute reduced argument t := z - n * log(2).
77     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
78     float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
79     float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
80     float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
81 
82     vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
83     vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
84     vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
85 
86     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
87     float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
88     float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
89     float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
90 
91     vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
92     vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
93     vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
94 
95     vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
96     vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
97     vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
98 
99     vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
100     vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
101     vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
102 
103     // Reconstruct the final f value:
104     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
105     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
106     //     = s + (t * s) * p
107     vt0123 = vmulq_f32(vt0123, vs0123);
108     vt4567 = vmulq_f32(vt4567, vs4567);
109     vt89AB = vmulq_f32(vt89AB, vs89AB);
110 
111     float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
112     float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
113     float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
114 
115     // For inputs below denormal cutoff, replace output with +0.0f.
116     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
117     vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
118     vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
119     vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
120 
121     // Store 12 (3x4) outputs at a time.
122     vst1q_f32(output, vf0123); output += 4;
123     vst1q_f32(output, vf4567); output += 4;
124     vst1q_f32(output, vf89AB); output += 4;
125 
126     // Accumulate computed exponents.
127     vacc0 = vaddq_f32(vacc0, vf0123);
128     vacc0 = vaddq_f32(vacc0, vf4567);
129     vacc0 = vaddq_f32(vacc0, vf89AB);
130   }
131   // Add up all accumulators to vacc0
132   vacc0 = vaddq_f32(vacc0, vacc1);
133 
134   float32x4_t vacc = vacc0;
135   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
136     // Load 4 inputs at a time.
137     const float32x4_t vi = vld1q_f32(input); input += 4;
138 
139     // Subtract maximum input x := i - i_max. This implies x <= 0.
140     const float32x4_t vx = vsubq_f32(vi, vi_max);
141 
142     // Compute reduced argument n := round(x / log(2)).
143     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
144     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
145     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
146     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
147     // of the algorithm.
148     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
149 
150     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
151     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
152     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
153 
154     // Subtract the large number back to get final n := round(x / log(2)).
155     vn = vsubq_f32(vn, vmagic_bias);
156 
157     // Compute reduced argument t := z - n * log(2).
158     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
159     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
160     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
161 
162     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
163     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
164     vp = vfmaq_f32(vc3, vp, vt);
165     vp = vfmaq_f32(vc2, vp, vt);
166     vp = vfmaq_f32(vc1, vp, vt);
167 
168     // Reconstruct the final f value:
169     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
170     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
171     //     = s + (t * s) * p
172     vt = vmulq_f32(vt, vs);
173     float32x4_t vf = vfmaq_f32(vs, vp, vt);
174 
175     // For inputs below denormal cutoff, replace output with +0.0f.
176     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
177     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
178 
179     // Store 4 outputs at a time.
180     vst1q_f32(output, vf); output += 4;
181 
182     // Accumulate computed exponents.
183     vacc = vaddq_f32(vacc, vf);
184   }
185 #if XNN_ARCH_ARM64
186   float vacc_lo = vaddvq_f32(vacc);
187 #else
188   float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
189 #endif
190   if (elements != 0) {
191     assert(elements >= 1 * sizeof(float));
192     assert(elements <= 3 * sizeof(float));
193     // Load 4 inputs at a time.
194     const float32x4_t vi = vld1q_f32(input); input += 4;
195 
196     // Subtract maximum input x := i - i_max. This implies x <= 0.
197     const float32x4_t vx = vsubq_f32(vi, vi_max);
198 
199     // Compute reduced argument n := round(x / log(2)).
200     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
201     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
202     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
203     // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
204     // of the algorithm.
205     float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
206 
207     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
208     // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
209     const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
210 
211     // Subtract the large number back to get final n := round(x / log(2)).
212     vn = vsubq_f32(vn, vmagic_bias);
213 
214     // Compute reduced argument t := z - n * log(2).
215     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
216     float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
217     vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
218 
219     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
220     float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
221     vp = vfmaq_f32(vc3, vp, vt);
222     vp = vfmaq_f32(vc2, vp, vt);
223     vp = vfmaq_f32(vc1, vp, vt);
224 
225     // Reconstruct the final f value:
226     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
227     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
228     //     = s + (t * s) * p
229     vt = vmulq_f32(vt, vs);
230     float32x4_t vf = vfmaq_f32(vs, vp, vt);
231 
232     // For inputs below denormal cutoff, replace output with +0.0f.
233     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
234     vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
235 
236     float32x2_t vf_lo = vget_low_f32(vf);
237     if (elements & (2 * sizeof(float))) {
238       // Store 2 outputs at a time.
239       vst1_f32(output, vf_lo); output += 2;
240 
241       // Accumulate 2 computed exponents.
242       #if XNN_ARCH_ARM64
243         vacc_lo += vaddv_f32(vf_lo);
244       #else
245         vacc_lo = vadd_f32(vacc_lo, vf_lo);
246       #endif
247 
248       vf_lo = vget_high_f32(vf);
249     }
250     if (elements & (1 * sizeof(float))) {
251       // Store 1 output at a time.
252       vst1_lane_f32(output, vf_lo, 0);
253 
254       // Accumulate 1 computed exponent.
255       #if XNN_ARCH_ARM64
256         vacc_lo += vget_lane_f32(vf_lo, 0);
257       #else
258         vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
259       #endif
260     }
261   }
262   // Reduce 4 elements in the SIMD register
263 #if XNN_ARCH_ARM64
264   *sum = vacc_lo;
265 #else
266   vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
267 #endif
268 }
269