1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2020 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <wasm_simd128.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x8_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x8_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max) XNN_DISABLE_TSAN
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30   const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33   const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34 
35   const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36   const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37   const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38   const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39   const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40 
41   const v128_t vi_max = wasm_f32x4_splat(max);
42 
43   v128_t vacc0 = wasm_f32x4_splat(0.0f);
44   v128_t vacc1 = vacc0;
45   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
46     // Load 8 (2x4) inputs at a time.
47     const v128_t vi0123 = wasm_v128_load(input);
48     const v128_t vi4567 = wasm_v128_load(input + 4);
49     input += 8;
50 
51     // Subtract maximum input x := i - i_max. This implies x <= 0.
52     const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
53     const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
54 
55     // Compute reduced argument elements := round(x / log(2)).
56     v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
57     v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
58 
59     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61     const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
62     const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
63 
64     // Subtract the large number back to get final elements := round(x / log(2)).
65     vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
66     vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
67 
68     // Compute reduced argument t := x - elements * log(2).
69     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70     v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
71     v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
72 
73     vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
74     vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
75 
76     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77     v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
78     v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
79 
80     vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
81     vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
82 
83     vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
84     vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
85 
86     vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
87     vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
88 
89     // Reconstruct the final f value:
90     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92     //     = s + (t * s) * p
93     vt0123 = wasm_f32x4_mul(vt0123, vs0123);
94     vt4567 = wasm_f32x4_mul(vt4567, vs4567);
95 
96     v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
97     v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
98 
99     // For inputs below zero cutoff, replace output with +0.0f.
100     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101     vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
102     vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
103 
104     // Store 8 (2x4) outputs at a time.
105     wasm_v128_store(output, vf0123);
106     wasm_v128_store(output + 4, vf4567);
107     output += 8;
108 
109     // Accumulate computed exponents.
110     vacc0 = wasm_f32x4_add(vacc0, vf0123);
111     vacc0 = wasm_f32x4_add(vacc0, vf4567);
112   }
113   // Add up all accumulators to vacc0
114   vacc0 = wasm_f32x4_add(vacc0, vacc1);
115 
116   v128_t vacc = vacc0;
117   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
118     // Load 4 inputs at a time.
119     const v128_t vi = wasm_v128_load(input);
120     input += 4;
121 
122     // Subtract maximum input x := i - i_max. This implies x <= 0.
123     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
124 
125     // Compute reduced argument elements := round(x / log(2)).
126     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
127 
128     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
129     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
130     const v128_t vs = wasm_i32x4_shl(vn, 23);
131 
132     // Subtract the large number back to get final elements := round(x / log(2)).
133     vn = wasm_f32x4_sub(vn, vmagic_bias);
134 
135     // Compute reduced argument t := x - elements * log(2).
136     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
137     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
138     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
139 
140     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
141     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
142     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
143     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
144     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
145 
146     // Reconstruct the final f value:
147     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
148     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
149     //     = s + (t * s) * p
150     vt = wasm_f32x4_mul(vt, vs);
151     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
152 
153     // For inputs below zero cutoff, replace output with +0.0f.
154     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
156 
157     // Store 4 outputs at a time.
158     wasm_v128_store(output, vf);
159     output += 4;
160 
161     // Accumulate computed exponents.
162     vacc = wasm_f32x4_add(vacc, vf);
163   }
164   vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
165   float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
166   if (elements != 0) {
167     assert(elements >= 1 * sizeof(float));
168     assert(elements <= 3 * sizeof(float));
169     // Load 4 inputs at a time.
170     const v128_t vi = wasm_v128_load(input);
171 
172     // Subtract maximum input x := i - i_max. This implies x <= 0.
173     const v128_t vx = wasm_f32x4_sub(vi, vi_max);
174 
175     // Compute reduced argument elements := round(x / log(2)).
176     v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
177 
178     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
179     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
180     const v128_t vs = wasm_i32x4_shl(vn, 23);
181 
182     // Subtract the large number back to get final elements := round(x / log(2)).
183     vn = wasm_f32x4_sub(vn, vmagic_bias);
184 
185     // Compute reduced argument t := x - elements * log(2).
186     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
187     v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
188     vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
189 
190     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
191     v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
192     vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
193     vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
194     vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
195 
196     // Reconstruct the final f value:
197     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
198     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
199     //     = s + (t * s) * p
200     vt = wasm_f32x4_mul(vt, vs);
201     v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
202 
203     // For inputs below zero cutoff, replace output with +0.0f.
204     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
205     vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
206 
207     if (elements & (2 * sizeof(float))) {
208       // Store and accumulate 2 outputs at a time.
209       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
210       output[0] = vf0;
211       vsum += vf0;
212 
213       const float vf1 = wasm_f32x4_extract_lane(vf, 1);
214       output[1] = vf1;
215       vsum += vf1;
216 
217       vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
218       output += 2;
219     }
220     if (elements & (1 * sizeof(float))) {
221       // Store 1 output at a time.
222       const float vf0 = wasm_f32x4_extract_lane(vf, 0);
223       *output = vf0;
224       vsum += vf0;
225     }
226   }
227   // Reduce 4 elements in the SIMD register
228   *sum = vsum;
229 }
230