1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-vscaleexpminusmax/avx2-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <immintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vscaleexpminusmax.h>
16 
17 
18 static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
19 
xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x80(size_t elements,const float * input,float * output,float scale,float max)20 void xnn_f32_vscaleexpminusmax_ukernel__avx2_p5_x80(
21     size_t elements,
22     const float* input,
23     float* output,
24     float scale,
25     float max)
26 {
27   assert(elements % sizeof(float) == 0);
28 
29   const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
30   // The smallest x for which expf(x) is normalized.
31   const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
32   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
33   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
34   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
35 
36   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
37   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
38   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
39   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
40   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
41 
42   const __m256 vscale = _mm256_set1_ps(scale);
43   const __m256 vi_max = _mm256_set1_ps(max);
44 
45   for (; elements >= 80 * sizeof(float); elements -= 80 * sizeof(float)) {
46     // Load 80 (10x8) inputs at a time.
47     const __m256 vi0 = _mm256_loadu_ps(input);
48     const __m256 vi1 = _mm256_loadu_ps(input + 8);
49     const __m256 vi2 = _mm256_loadu_ps(input + 16);
50     const __m256 vi3 = _mm256_loadu_ps(input + 24);
51     const __m256 vi4 = _mm256_loadu_ps(input + 32);
52     const __m256 vi5 = _mm256_loadu_ps(input + 40);
53     const __m256 vi6 = _mm256_loadu_ps(input + 48);
54     const __m256 vi7 = _mm256_loadu_ps(input + 56);
55     const __m256 vi8 = _mm256_loadu_ps(input + 64);
56     const __m256 vi9 = _mm256_loadu_ps(input + 72);
57     input += 80;
58 
59     // Subtract maximum input x := i - i_max. This implies x <= 0.
60     const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
61     const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
62     const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
63     const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
64     const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
65     const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
66     const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
67     const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
68     const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
69     const __m256 vx9 = _mm256_sub_ps(vi9, vi_max);
70 
71     // Compute reduced argument elements := round(x / log(2)).
72     __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
73     __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
74     __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
75     __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
76     __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
77     __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
78     __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
79     __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
80     __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
81     __m256 vn9 = _mm256_fmadd_ps(vx9, vlog2e, vmagic_bias);
82 
83     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
84     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
85     const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
86     const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
87     const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
88     const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
89     const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
90     const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
91     const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
92     const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
93     const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
94     const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
95 
96     // Subtract the large number back to get final elements := round(x / log(2)).
97     vn0 = _mm256_sub_ps(vn0, vmagic_bias);
98     vn1 = _mm256_sub_ps(vn1, vmagic_bias);
99     vn2 = _mm256_sub_ps(vn2, vmagic_bias);
100     vn3 = _mm256_sub_ps(vn3, vmagic_bias);
101     vn4 = _mm256_sub_ps(vn4, vmagic_bias);
102     vn5 = _mm256_sub_ps(vn5, vmagic_bias);
103     vn6 = _mm256_sub_ps(vn6, vmagic_bias);
104     vn7 = _mm256_sub_ps(vn7, vmagic_bias);
105     vn8 = _mm256_sub_ps(vn8, vmagic_bias);
106     vn9 = _mm256_sub_ps(vn9, vmagic_bias);
107 
108     // Compute reduced argument t := x - elements * log(2).
109     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
110     __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
111     __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
112     __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
113     __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
114     __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
115     __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
116     __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
117     __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
118     __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
119     __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_hi, vx9);
120 
121     vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
122     vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
123     vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
124     vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
125     vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
126     vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
127     vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
128     vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
129     vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
130     vt9 = _mm256_fmadd_ps(vn9, vminus_ln2_lo, vt9);
131 
132     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
133     __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
134     __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
135     __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
136     __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
137     __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
138     __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
139     __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
140     __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
141     __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
142     __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
143 
144     vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
145     vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
146     vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
147     vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
148     vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
149     vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
150     vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
151     vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
152     vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
153     vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
154 
155     vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
156     vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
157     vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
158     vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
159     vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
160     vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
161     vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
162     vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
163     vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
164     vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
165 
166     vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
167     vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
168     vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
169     vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
170     vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
171     vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
172     vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
173     vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
174     vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
175     vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
176 
177     // Reconstruct the final f value:
178     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
179     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
180     //     = s + (t * s) * p
181     vt0 = _mm256_mul_ps(vt0, vs0);
182     vt1 = _mm256_mul_ps(vt1, vs1);
183     vt2 = _mm256_mul_ps(vt2, vs2);
184     vt3 = _mm256_mul_ps(vt3, vs3);
185     vt4 = _mm256_mul_ps(vt4, vs4);
186     vt5 = _mm256_mul_ps(vt5, vs5);
187     vt6 = _mm256_mul_ps(vt6, vs6);
188     vt7 = _mm256_mul_ps(vt7, vs7);
189     vt8 = _mm256_mul_ps(vt8, vs8);
190     vt9 = _mm256_mul_ps(vt9, vs9);
191 
192     __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
193     __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
194     __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
195     __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
196     __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
197     __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
198     __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
199     __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
200     __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
201     __m256 vf9 = _mm256_fmadd_ps(vt9, vp9, vs9);
202 
203     // For inputs below zero cutoff, replace output with +0.0f.
204     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
205     vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
206     vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
207     vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
208     vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
209     vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
210     vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
211     vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
212     vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
213     vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
214     vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vx9, vdenorm_cutoff, _CMP_LT_OS), vf9);
215 
216     // Multiply by scale.
217     vf0 = _mm256_mul_ps(vf0, vscale);
218     vf1 = _mm256_mul_ps(vf1, vscale);
219     vf2 = _mm256_mul_ps(vf2, vscale);
220     vf3 = _mm256_mul_ps(vf3, vscale);
221     vf4 = _mm256_mul_ps(vf4, vscale);
222     vf5 = _mm256_mul_ps(vf5, vscale);
223     vf6 = _mm256_mul_ps(vf6, vscale);
224     vf7 = _mm256_mul_ps(vf7, vscale);
225     vf8 = _mm256_mul_ps(vf8, vscale);
226     vf9 = _mm256_mul_ps(vf9, vscale);
227 
228     // Store 80 (10x8) outputs at a time.
229     _mm256_storeu_ps(output, vf0);
230     _mm256_storeu_ps(output + 8, vf1);
231     _mm256_storeu_ps(output + 16, vf2);
232     _mm256_storeu_ps(output + 24, vf3);
233     _mm256_storeu_ps(output + 32, vf4);
234     _mm256_storeu_ps(output + 40, vf5);
235     _mm256_storeu_ps(output + 48, vf6);
236     _mm256_storeu_ps(output + 56, vf7);
237     _mm256_storeu_ps(output + 64, vf8);
238     _mm256_storeu_ps(output + 72, vf9);
239     output += 80;
240   }
241   for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
242     // Load 8 inputs at a time.
243     const __m256 vi = _mm256_loadu_ps(input);
244     input += 8;
245 
246     // Subtract maximum input x := i - i_max. This implies x <= 0.
247     const __m256 vx = _mm256_sub_ps(vi, vi_max);
248 
249     // Compute reduced argument elements := round(x / log(2)).
250     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
251 
252     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
253     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
254     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
255 
256     // Subtract the large number back to get final elements := round(x / log(2)).
257     vn = _mm256_sub_ps(vn, vmagic_bias);
258 
259     // Compute reduced argument t := x - elements * log(2).
260     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
261     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
262     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
263 
264     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
265     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
266     vp = _mm256_fmadd_ps(vp, vt, vc3);
267     vp = _mm256_fmadd_ps(vp, vt, vc2);
268     vp = _mm256_fmadd_ps(vp, vt, vc1);
269 
270     // Reconstruct the final f value:
271     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
272     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
273     //     = s + (t * s) * p
274     vt = _mm256_mul_ps(vt, vs);
275     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
276 
277     // For inputs below zero cutoff, replace output with +0.0f.
278     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
279     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
280 
281     // Multiply by scale.
282     vf = _mm256_mul_ps(vf, vscale);
283 
284     // Store 64 (8x8) outputs at a time.
285     _mm256_storeu_ps(output, vf);
286     output += 8;
287   }
288   if (elements != 0) {
289     assert(elements >= 1 * sizeof(float));
290     assert(elements <= 7 * sizeof(float));
291     const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
292 
293     // Load up to 7 inputs at a time.
294     const __m256 vi = _mm256_maskload_ps(input, vmask);
295 
296     // Subtract maximum input x := i - i_max. This implies x <= 0.
297     const __m256 vx = _mm256_sub_ps(vi, vi_max);
298 
299     // Compute reduced argument elements := round(x / log(2)).
300     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
301 
302     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
303     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
304     const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
305 
306     // Subtract the large number back to get final elements := round(x / log(2)).
307     vn = _mm256_sub_ps(vn, vmagic_bias);
308 
309     // Compute reduced argument t := x - elements * log(2).
310     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
311     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
312     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
313 
314     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
315     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
316     vp = _mm256_fmadd_ps(vp, vt, vc3);
317     vp = _mm256_fmadd_ps(vp, vt, vc2);
318     vp = _mm256_fmadd_ps(vp, vt, vc1);
319 
320     // Reconstruct the final f value:
321     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
322     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
323     //     = s + (t * s) * p
324     vt = _mm256_mul_ps(vt, vs);
325     __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
326 
327     // For inputs below zero cutoff, replace output with +0.0f.
328     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
329     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
330 
331     // Multiply by scale.
332     vf = _mm256_mul_ps(vf, vscale);
333 
334     // Store up to 7 outputs at a time.
335     _mm256_maskstore_ps(output, vmask, vf);
336   }
337 }
338