1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(size_t n,const float * input,float * output)14 void xnn_math_f32_exp__avx2_rr2_lut8_p3_perm(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (16 * sizeof(float)) == 0);
20 
21   const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p23f);
22   // The smallest x for which expf(x) is non-zero.
23   const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p6f);
24   // The largest x for which expf(x) is finite.
25   const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep6f);
26   const __m256 vlog2e_x8  = _mm256_set1_ps(0x1.715476p3f);
27   const __m256 vminus_ln2_o8_hi = _mm256_set1_ps(-0x1.62E43p-4f);
28   const __m256 vminus_ln2_o8_lo = _mm256_set1_ps(0x1.05C61p-32f);
29   const __m256 vplus_inf = _mm256_set1_ps(INFINITY);
30 
31   const __m256 vc2 = _mm256_set1_ps(0x1.00021Ep-1f);
32   const __m256 vc3 = _mm256_set1_ps(0x1.55559Ap-3f);
33   const __m256 vtable = _mm256_set_ps(
34     0x1.D5818Ep+0f, 0x1.AE89FAp+0f, 0x1.8ACE54p+0f, 0x1.6A09E6p+0f,
35     0x1.4BFDAEp+0f, 0x1.306FE0p+0f, 0x1.172B84p+0f, 0x1.000000p+0f);
36 
37   const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000);
38   const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000);
39   const __m256i vdefault_exponent = vmax_exponent;
40   const __m256i vmantissa_mask = _mm256_set1_epi32(0x007FFFF8);
41 
42   for (; n != 0; n -= 8 * sizeof(float)) {
43     const __m256 vx = _mm256_loadu_ps(input);
44 
45     // Compute reduced argument n := round(x * 8 / log(2)).
46     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
47     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
48     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
49     // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
50     // inputs at the very end of the algorithm.
51     __m256 vn = _mm256_fmadd_ps(vx, vlog2e_x8, vmagic_bias);
52 
53     // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
54     // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
55     // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
56     // range, which is insufficient to cover [-150, 128] range of n.
57     // - When n is within [-127, 126], sn == 2**n and so == 1.0.
58     // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
59     // - When n > 126, sn == 2**126 and so == 2**(n - 126).
60     __m256i veo = _mm256_slli_epi32(_mm256_and_si256(_mm256_castps_si256(vn), vmantissa_mask), 20);
61     __m256i ven = _mm256_max_epi32(veo, vmin_exponent);
62     ven = _mm256_min_epi32(ven, vmax_exponent);
63     veo = _mm256_sub_epi32(veo, ven);
64     const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent));
65     const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent));
66 
67     // Use the low 3 bits of n (as integer) for table lookup.
68     __m256 vl = _mm256_permutevar8x32_ps(vtable, _mm256_castps_si256(vn));
69 
70     // Subtract the large number back to get final n := round(x * 8 / log(2)).
71     vn = _mm256_sub_ps(vn, vmagic_bias);
72 
73     // Compute reduced argument t := x - n * log(2) / 8.
74     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 8) to improve accuracy.
75     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_hi, vx);
76     vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_lo, vt);
77 
78     // Compute degree-3 polynomial approximation for exp(t) on [-log(2)/16, log(2)/16].
79     __m256 vp = _mm256_fmadd_ps(vt, vc3, vc2);
80 
81     // Reconstruct the final f value:
82     //   f = so * sn * l * (1 + t * (1 + t * (c2 + t * c3)))
83     //     = so * sn * (l + l * (t + t * (t * (c2 + t * c3))))
84     //     = sn * ((l * so) + (l * so) * p)
85     vl = _mm256_mul_ps(vl, vso);
86     vp = _mm256_mul_ps(vp, vt);
87     vp = _mm256_fmadd_ps(vt, vp, vt);
88     __m256 vf = _mm256_fmadd_ps(vl, vp, vl);
89     vf = _mm256_mul_ps(vf, vsn);
90 
91     // For inputs below zero cutoff, replace output with +0.0f.
92     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
93     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf);
94     // For inputs above inf cutoff, replace output with +inf.
95     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
96     vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS));
97     _mm256_storeu_ps(output, vf);
98 
99     input += 8;
100     output += 8;
101   }
102 }
103