1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 
10 #include <immintrin.h>
11 
12 #include <xnnpack/math-stubs.h>
13 
14 
xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(size_t n,const float * input,float * output)15 void xnn_math_f32_exp__avx2_rr2_lut8_p4_perm(
16     size_t n,
17     const float* input,
18     float* output)
19 {
20   assert(n % (16 * sizeof(float)) == 0);
21 
22   const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p23f);
23   // The smallest x for which expf(x) is non-zero.
24   const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p6f);
25   // The largest x for which expf(x) is finite.
26   const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep6f);
27   const __m256 vlog2e_x8  = _mm256_set1_ps(0x1.715476p3f);
28   const __m256 vminus_ln2_o8_hi = _mm256_set1_ps(-0x1.62E43p-4f);
29   const __m256 vminus_ln2_o8_lo = _mm256_set1_ps(0x1.05C61p-32f);
30   const __m256 vplus_inf = _mm256_set1_ps(INFINITY);
31 
32   const __m256 vc2 = _mm256_set1_ps(0x1.000000p-1f);
33   const __m256 vc3 = _mm256_set1_ps(0x1.555C82p-3f);
34   const __m256 vc4 = _mm256_set1_ps(0x1.5558A8p-5f);
35 
36   const __m256 vtable = _mm256_set_ps(
37     0x1.D5818Ep+0f, 0x1.AE89FAp+0f, 0x1.8ACE54p+0f, 0x1.6A09E6p+0f,
38     0x1.4BFDAEp+0f, 0x1.306FE0p+0f, 0x1.172B84p+0f, 0x1.000000p+0f);
39 
40   const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000);
41   const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000);
42   const __m256i vdefault_exponent = vmax_exponent;
43   const __m256i vmantissa_mask = _mm256_set1_epi32(0x007FFFF8);
44 
45   for (; n != 0; n -= 8 * sizeof(float)) {
46     const __m256 vx = _mm256_loadu_ps(input);
47 
48     // Compute reduced argument n := round(x * 8 / log(2)).
49     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
50     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
51     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
52     // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
53     // inputs at the very end of the algorithm.
54     __m256 vn = _mm256_fmadd_ps(vx, vlog2e_x8, vmagic_bias);
55 
56     // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
57     // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
58     // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
59     // range, which is insufficient to cover [-150, 128] range of n.
60     // - When n is within [-127, 126], sn == 2**n and so == 1.0.
61     // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
62     // - When n > 126, sn == 2**126 and so == 2**(n - 126).
63     __m256i veo = _mm256_slli_epi32(_mm256_and_si256(_mm256_castps_si256(vn), vmantissa_mask), 20);
64     __m256i ven = _mm256_max_epi32(veo, vmin_exponent);
65     ven = _mm256_min_epi32(ven, vmax_exponent);
66     veo = _mm256_sub_epi32(veo, ven);
67     const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent));
68     const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent));
69 
70     // Use the low 3 bits of n (as integer) for table lookup.
71     __m256 vl = _mm256_permutevar8x32_ps(vtable, _mm256_castps_si256(vn));
72 
73     // Subtract the large number back to get final n := round(x * 8 / log(2)).
74     vn = _mm256_sub_ps(vn, vmagic_bias);
75 
76     // Compute reduced argument t := x - n * log(2) / 8.
77     // Use Cody-Waite range reduction method (note two constants to represent log(2) / 8) to improve accuracy.
78     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_hi, vx);
79     vt = _mm256_fmadd_ps(vn, vminus_ln2_o8_lo, vt);
80 
81     // Compute degree-3 polynomial approximation for exp(t) on [-log(2)/16, log(2)/16].
82     __m256 vp = _mm256_fmadd_ps(vt, vc4, vc3);
83     vp = _mm256_fmadd_ps(vp, vt, vc2);
84 
85     // Reconstruct the final f value:
86     //   f = so * sn * l * (1 + t * (1 + t * (c2 + t * (c3 + t * c4))))
87     //     = so * sn * (l + l * (t + t * (t * (c2 + t * (c3 + t * c4)))))
88     //     = so * sn * (l + l * p)
89     vl = _mm256_mul_ps(vl, vso);
90     vp = _mm256_mul_ps(vp, vt);
91     vp = _mm256_fmadd_ps(vt, vp, vt);
92     __m256 vf = _mm256_fmadd_ps(vl, vp, vl);
93     vf = _mm256_mul_ps(vf, vsn);
94 
95     // For inputs below zero cutoff, replace output with +0.0f.
96     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf);
98     // For inputs above inf cutoff, replace output with +inf.
99     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100     vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS));
101     _mm256_storeu_ps(output, vf);
102 
103     input += 8;
104     output += 8;
105   }
106 }
107