1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 
9 #include <immintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_exp__avx2_rr2_p5(size_t n,const float * input,float * output)14 void xnn_math_f32_exp__avx2_rr2_p5(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (8 * sizeof(float)) == 0);
20 
21   const __m256 vmagic_bias = _mm256_set1_ps(0x1.800000p+23f);
22   // The smallest x for which expf(x) is non-zero.
23   const __m256 vzero_cutoff = _mm256_set1_ps(-0x1.9FE368p+6f);
24   // The largest x for which expf(x) is finite.
25   const __m256 vinf_cutoff = _mm256_set1_ps(0x1.62E42Ep+6f);
26   const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
27   const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
28   const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
29   const __m256 vplus_inf = _mm256_set1_ps(INFINITY);
30 
31   const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
32   const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
33   const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
34   const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
35   const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
36 
37   const __m256i vmin_exponent = _mm256_set1_epi32(0xC1000000);
38   const __m256i vmax_exponent = _mm256_set1_epi32(0x3F800000);
39   const __m256i vdefault_exponent = vmax_exponent;
40 
41   for (; n != 0; n -= 8 * sizeof(float)) {
42     const __m256 vx = _mm256_loadu_ps(input);
43 
44     // Compute reduced argument n := round(x / log(2)).
45     // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
46     // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
47     // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
48     // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
49     // inputs at the very end of the algorithm.
50     __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
51 
52     // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
53     // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
54     // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
55     // range, which is insufficient to cover [-150, 128] range of n.
56     // - When n is within [-127, 126], sn == 2**n and so == 1.0.
57     // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
58     // - When n > 126, sn == 2**126 and so == 2**(n - 126).
59     __m256i veo = _mm256_slli_epi32(_mm256_castps_si256(vn), 23);
60     __m256i ven = _mm256_max_epi32(veo, vmin_exponent);
61     ven = _mm256_min_epi32(ven, vmax_exponent);
62     veo = _mm256_sub_epi32(veo, ven);
63     const __m256 vsn = _mm256_castsi256_ps(_mm256_add_epi32(ven, vdefault_exponent));
64     const __m256 vso = _mm256_castsi256_ps(_mm256_add_epi32(veo, vdefault_exponent));
65 
66     // Subtract the large number back to get final n := round(x / log(2)).
67     vn = _mm256_sub_ps(vn, vmagic_bias);
68 
69     // Compute reduced argument t := x - n * log(2).
70     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
71     __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
72     vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
73 
74     // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
75     __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
76     vp = _mm256_fmadd_ps(vp, vt, vc3);
77     vp = _mm256_fmadd_ps(vp, vt, vc2);
78     vp = _mm256_fmadd_ps(vp, vt, vc1);
79 
80     // Reconstruct the final f value:
81     //   f = so * sn * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
82     //     = sn * (so + (t * so) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))))
83     //     = sn * (so + (t * so) * p)
84     vt = _mm256_mul_ps(vt, vso);
85     __m256 vf = _mm256_mul_ps(vsn, _mm256_fmadd_ps(vt, vp, vso));
86 
87     // For inputs below zero cutoff, replace output with +0.0f.
88     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
89     vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vzero_cutoff, _CMP_LT_OS), vf);
90     // For inputs above inf cutoff, replace output with +inf.
91     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
92     vf = _mm256_blendv_ps(vf, vplus_inf, _mm256_cmp_ps(vx, vinf_cutoff, _CMP_GT_OS));
93     _mm256_storeu_ps(output, vf);
94 
95     input += 8;
96     output += 8;
97   }
98 }
99