1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5
6 #include <assert.h>
7 #include <math.h>
8
9 #include <immintrin.h>
10
11 #include <xnnpack/math-stubs.h>
12
13
xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(size_t n,const float * input,float * output)14 void xnn_math_f32_exp__avx512f_rr2_lut16_p3_perm(
15 size_t n,
16 const float* input,
17 float* output)
18 {
19 assert(n % (16 * sizeof(float)) == 0);
20
21 const __m512 vmagic_bias = _mm512_set1_ps(0x1.800000p23f);
22 const __m512 vlog2e_x16 = _mm512_set1_ps(0x1.715476p4f);
23 // The smallest x for which expf(x) is non-zero.
24 const __m512 vzero_cutoff = _mm512_set1_ps(-0x1.9FE368p6f);
25 // The largest x for which expf(x) is finite.
26 const __m512 vinf_cutoff = _mm512_set1_ps(0x1.62E42Ep6f);
27 const __m512 vminus_ln2_o16_hi = _mm512_set1_ps(-0x1.62e43p-5f);
28 const __m512 vminus_ln2_o16_lo = _mm512_set1_ps(0x1.05c61p-33f);
29 const __m512 vplus_inf = _mm512_set1_ps(INFINITY);
30
31 const __m512 vc2 = _mm512_set1_ps(0x1.00021Ep-1f);
32 const __m512 vc3 = _mm512_set1_ps(0x1.55559Ap-3f);
33 const __m512 vtable = _mm512_set_ps(
34 0x1.EA4AFAp+0f, 0x1.D5818Ep+0f, 0x1.C199BEp+0f, 0x1.AE89FAp+0f,
35 0x1.9C4918p+0f, 0x1.8ACE54p+0f, 0x1.7A1148p+0f, 0x1.6A09E6p+0f,
36 0x1.5AB07Ep+0f, 0x1.4BFDAEp+0f, 0x1.3DEA64p+0f, 0x1.306FE0p+0f,
37 0x1.2387A6p+0f, 0x1.172B84p+0f, 0x1.0B5586p+0f, 0x1.000000p+0f);
38
39 const __m512i vmin_exponent = _mm512_set1_epi32(0xC1000000);
40 const __m512i vmax_exponent = _mm512_set1_epi32(0x3F800000);
41 const __m512i vdefault_exponent = vmax_exponent;
42 const __m512i vmantissa_mask = _mm512_set1_epi32(0x007FFFF0);
43
44 for (; n != 0; n -= 16 * sizeof(float)) {
45 const __m512 vx = _mm512_loadu_ps(input);
46
47 // Compute reduced argument n := round(x * 16 / log(2)).
48 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
49 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
50 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
51 // inputs outside of [-103.97207, 88.72283] underflow or overflow expf(x) anyway. We fixup the result for such
52 // inputs at the very end of the algorithm.
53 __m512 vn = _mm512_fmadd_ps(vx, vlog2e_x16, vmagic_bias);
54
55 // Detect underflow and overflow of expf(x) for further special handling.
56 const __mmask16 vinvof = _mm512_cmp_ps_mask(vx, vinf_cutoff, _CMP_NGT_UQ);
57 const __mmask16 vinvuf = _mm512_cmp_ps_mask(vx, vzero_cutoff, _CMP_NLT_UQ);
58
59 // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
60 // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
61 // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
62 // range, which is insufficient to cover [-150, 128] range of n.
63 // - When n is within [-127, 126], sn == 2**n and so == 1.0.
64 // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
65 // - When n > 126, sn == 2**126 and so == 2**(n - 126).
66 __m512i veo = _mm512_slli_epi32(_mm512_and_si512(_mm512_castps_si512(vn), vmantissa_mask), 19);
67 __m512i ven = _mm512_max_epi32(veo, vmin_exponent);
68 ven = _mm512_min_epi32(ven, vmax_exponent);
69 veo = _mm512_sub_epi32(veo, ven);
70 const __m512 vsn = _mm512_castsi512_ps(_mm512_add_epi32(ven, vdefault_exponent));
71 const __m512 vso = _mm512_castsi512_ps(_mm512_maskz_add_epi32(vinvuf, veo, vdefault_exponent));
72
73 // Use the low 4 bits of n (as integer) for table lookup.
74 const __m512 vl = _mm512_permutexvar_ps(_mm512_castps_si512(vn), vtable);
75
76 // Subtract the large number back to get final n := round(x * 16 / log(2)).
77 vn = _mm512_sub_ps(vn, vmagic_bias);
78
79 // Compute reduced argument t := x - n * log(2) / 16.
80 // Use Cody-Waite range reduction method (note two constants to represent log(2) / 16) to improve accuracy.
81 __m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_o16_hi, vx);
82 vt = _mm512_fmadd_ps(vn, vminus_ln2_o16_lo, vt);
83
84 // Compute degree-3 polynomial approximation for exp(t) on [-log(2)/32, log(2)/32].
85 __m512 vp = _mm512_fmadd_ps(vt, vc3, vc2);
86 vp = _mm512_mul_ps(vp, vt);
87 vp = _mm512_fmadd_ps(vt, vp, vt);
88
89 // Reconstruct the final f value:
90 // f = so * sn * l * (1 + t * (1 + t * (c2 + t * c3)))
91 // = so * sn * (l + l * (t + t * (t * (c2 + t * c3))))
92 // = so * sn * (l + l * p)
93 __m512 vf = _mm512_fmadd_ps(vl, vp, vl);
94
95 // For inputs below zero cutoff, replace output with +0.0f.
96 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
97 vf = _mm512_maskz_mul_ps(vinvuf, vf, vsn);
98 // For inputs above inf cutoff, replace output with +inf.
99 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
100 vf = _mm512_mask_mul_ps(vplus_inf, vinvof, vso, vf);
101 _mm512_storeu_ps(output, vf);
102
103 input += 16;
104 output += 16;
105 }
106 }
107