1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 
10 #include <emmintrin.h>
11 
12 #include <xnnpack/common.h>
13 #include <xnnpack/math-stubs.h>
14 
15 
16 // Table of exp2(k / 64) values, k = 0..63
17 extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
18 
xnn_math_f32_exp__sse2_rr2_lut64_p2(size_t n,const float * input,float * output)19 void xnn_math_f32_exp__sse2_rr2_lut64_p2(
20     size_t n,
21     const float* input,
22     float* output)
23 {
24   assert(n % (4 * sizeof(float)) == 0);
25 
26   const __m128 vmagic_bias = _mm_set1_ps(0x1.800000p+23f);
27   // The smallest x for which expf(x) is non-zero.
28   const __m128 vzero_cutoff = _mm_set1_ps(-0x1.9FE368p+6f);
29   // The largest x for which expf(x) is finite.
30   const __m128 vinf_cutoff = _mm_set1_ps(0x1.62E42Ep+6f);
31   const __m128 vlog2e_x64  = _mm_set1_ps(0x1.715476p+6f);
32   // Last 13 bits are zeroes
33   const __m128 vminus_ln2_o64_hi = _mm_set1_ps(-0x1.630000p-7f);
34   const __m128 vminus_ln2_o64_lo = _mm_set1_ps(0x1.BD0106p-19f);
35   const __m128 vplus_inf = _mm_set1_ps(INFINITY);
36 
37   const __m128 vc2 = _mm_set1_ps(0x1.FFFF0Ap-2f);
38 
39   const __m128i vmin_exponent = _mm_set1_epi32(0xC1000000);
40   const __m128i vmax_exponent = _mm_set1_epi32(0x3F800000);
41   const __m128i vdefault_exponent = vmax_exponent;
42   const __m128i vindex_mask = _mm_set1_epi32(0x3F);
43 
44   for (; n != 0; n -= 4 * sizeof(float)) {
45     const __m128 vx = _mm_loadu_ps(input);
46 
47     // Compute reduced argument n := round(x * 64 / log(2)).
48     // We do it by adding a large number (magic bias) to the product x * (64/log(2)), which cause rounding of the
49     // result to an integer, then subtracing the large number back. The trick with adding large number is valid only
50     // within certain bounds (|x| <= 2**22), but thats ok, because inputs outside of [-103.97207, 88.72283] underflow
51     // or overflow expf(x) anyway. We fixup the result for such inputs at the very end of the algorithm.
52     __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e_x64), vmagic_bias);
53 
54     // Create two floating-point numbers, sn (scale, normal) and so (scale, overflow) such that sn * so == 2**n
55     // for inputs which don't cause overflow, i.e. -103.97207 <= x <= 88.72283, and -150 <= n <= 128 accordingly.
56     // We need to use two numbers rather than one because a normalized single-precision exponent must be in [-127, 126]
57     // range, which is insufficient to cover [-150, 128] range of n.
58     // - When n is within [-127, 126], sn == 2**n and so == 1.0.
59     // - When n < -127, sn == 2**(-127) and so == 2**(n + 127).
60     // - When n > 126, sn == 2**126 and so == 2**(n - 126).
61     // While we explicitly compute sn, the so is fused into the value l fetched from a table by adjusting its exponential.
62     __m128i veo = _mm_slli_epi32(_mm_andnot_si128(vindex_mask, _mm_castps_si128(vn)), 17);
63     __m128i ven = _mm_max_epi16(veo, vmin_exponent);
64     ven = _mm_min_epi16(ven, vmax_exponent);
65     veo = _mm_sub_epi32(veo, ven);
66     const __m128 vsn = _mm_castsi128_ps(_mm_add_epi32(ven, vdefault_exponent));
67 
68     // Use the low 6 bits of n (as integer) for table lookup.
69     const __m128i vidx = _mm_slli_epi32(_mm_and_si128(_mm_castps_si128(vn), vindex_mask), 2);
70 #if XNN_ARCH_X86_64
71     const uint64_t vidx01 = (uint64_t) _mm_cvtsi128_si64(vidx);
72     const uint64_t vidx23 = (uint64_t) _mm_cvtsi128_si64(_mm_unpackhi_epi64(vidx, vidx));
73     const __m128i vl0 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) &xnn_table_exp2_k_over_64 + (uint32_t) vidx01)));
74     const __m128i vl2 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + (uint32_t) vidx23)));
75     const __m128i vl1 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + (uint32_t) (vidx01 >> 32))));
76     const __m128i vl3 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + (uint32_t) (vidx23 >> 32))));
77 #else
78     const uint32_t vidx0 = (uint32_t) _mm_cvtsi128_si32(vidx);
79     const uint32_t vidx1 = (uint32_t) _mm_extract_epi16(vidx, 2);
80     const uint32_t vidx2 = (uint32_t) _mm_extract_epi16(vidx, 4);
81     const uint32_t vidx3 = (uint32_t) _mm_extract_epi16(vidx, 6);
82     const __m128i vl0 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + vidx0)));
83     const __m128i vl2 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + vidx2)));
84     const __m128i vl1 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + vidx1)));
85     const __m128i vl3 = _mm_cvtsi32_si128(*((const int*) ((uintptr_t) xnn_table_exp2_k_over_64 + vidx3)));
86 #endif
87     // Fuse so into the value l fetched from a table by adjusting its exponential.
88     const __m128 vl = _mm_castsi128_ps(_mm_add_epi32(_mm_unpacklo_epi64(_mm_unpacklo_epi32(vl0, vl1), _mm_unpacklo_epi32(vl2, vl3)), veo));
89 
90     // Subtract the large number back to get final n := round(x * 64 / log(2)).
91     vn = _mm_sub_ps(vn, vmagic_bias);
92 
93     // Compute reduced argument t := x - n * log(2).
94     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
95     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_o64_hi), vx);
96     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_o64_lo), vt);
97 
98     // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
99     __m128 vp = _mm_mul_ps(vt, vc2);
100     vp = _mm_add_ps(vt, _mm_mul_ps(vt, vp));
101 
102     // Reconstruct the final f value:
103     //   f = sn * (so * l) * (1 + t * (1 + t * c2))
104     //     = sn * (so * l) * (1 + t + t * (t * c2))
105     //     = sn * ((so * l) + (so * l) * (t + t * (t * c2)))
106     __m128 vf = _mm_add_ps(vl, _mm_mul_ps(vl, vp));
107     vf = _mm_mul_ps(vf, vsn);
108 
109     // For inputs below zero cutoff, replace output with +0.0f.
110     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
111     vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vzero_cutoff), vf);
112     // For inputs above inf cutoff, replace output with +inf.
113     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114     const __m128 vm = _mm_cmpgt_ps(vx, vinf_cutoff);
115     vf = _mm_or_ps(_mm_and_ps(vplus_inf, vm), _mm_andnot_ps(vm, vf));
116     _mm_storeu_ps(output, vf);
117 
118     input += 4;
119     output += 4;
120   }
121 }
122