1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <xnnpack/common.h>
10 #include <xnnpack/math-stubs.h>
11 
12 #include <fp16/bitcasts.h>
13 
14 
15 // Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15
16 extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_16[16];
17 
xnn_math_f32_expm1minus__scalar_rr2_lut16_p4(size_t n,const float * input,float * output)18 void xnn_math_f32_expm1minus__scalar_rr2_lut16_p4(
19     size_t n,
20     const float* input,
21     float* output)
22 {
23   assert(n % (4 * sizeof(float)) == 0);
24 
25   // Large number such that ulp(magic bias) == exp2(-4)
26   const float vmagic_bias = 0x1.800000p19f;
27   const float vlog2e = 0x1.715476p+0f;
28   // Mask for the lowest 4 bits
29   const uint32_t vindex_mask = UINT32_C(0xF);
30   // The largest x for which expm1f(x) is saturated at -1.0f.
31   const float vsat_cutoff = -0x1.154246p+4f;
32   // Last 9 bits are zeroes
33   const float vminus_ln2_hi = -0x1.62E400p-1f;
34   const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
35   // Coefficient of polynomial approximation
36   //   exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * c4)))
37   // on [-log(2)/32, log(2)/32]
38   const float vc4 = 0x1.55563Ap-5f;
39   const float vc3 = 0x1.555708p-3f;
40   const float vc2 = 0x1.000000p-1f;
41   const float vone = 1.0f;
42 
43   for (; n != 0; n -= sizeof(float)) {
44     float vx = *input++;
45 
46     // Compute reduced argument n := round(x / log(2), 4).
47     // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then
48     // subtracing the large number back. The trick with adding large number is valid only within certain bounds
49     // (|x / log(2)| <= 2**18, i.e. |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are
50     // restricted to [-17.328680, 0].
51     // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
52     float vn = vx * vlog2e + vmagic_bias;
53 
54     // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n
55     // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps:
56     // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in
57     //    the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
58     // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
59     //    number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not
60     //    lower than -25.
61     //
62     // Shift bits 4:12 into 23:31 (position of floating-point exponent).
63     const uint32_t ven = fp32_to_bits(vn) << 19;
64 
65     // Use bits 0:4 bits of n, as integer, as an index for table lookup of l := 2**frac(n).
66     const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
67     // Adjust exponent of the value l fetched from the table to get the final s value.
68     float vs = fp32_from_bits(xnn_table_exp2minus_k_over_16[vidx] + ven);
69 
70     // Subtract the large number back to get final n := round(x / log(2), 4).
71     vn -= vmagic_bias;
72 
73     // Compute reduced argument t := x - n * log(2).
74     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
75     float vt = vn * vminus_ln2_hi + vx;
76     vt = vn * vminus_ln2_lo + vt;
77 
78     // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
79     // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
80     if XNN_UNPREDICTABLE(vx <= vsat_cutoff) {
81       vs = 0.0f;
82       vt = 0.0f;
83     }
84 
85     // Compute degree-4 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32].
86     //   P(t) = t * (1 + t * (c2 + t * (c3 + t * c4))) = t + t * (t * (c2 + t * (c3 + t * c4))) = t + t * p
87     float vp = vc4 * vt + vc3;
88     vp = vp * vt + vc2;
89     vp *= vt;
90 
91     // Reconstruct the exp(x) - 1 value:
92     //   exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) - 1
93     //              = (s - 1) + s * (t + t * p)
94     //              = ((t * s) + (t * s) * p) + (s - 1)
95     vt *= vs;
96     const float vsm1 = vs - vone;
97     vp = vp * vt + vt;
98     const float vf = vp + vsm1;
99 
100     *output++ = vf;
101   }
102 }
103