1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <stddef.h>
8 
9 #include <emmintrin.h>
10 
11 #include <xnnpack/math-stubs.h>
12 
13 
xnn_math_f32_roundu__sse2_cvt(size_t n,const float * input,float * output)14 void xnn_math_f32_roundu__sse2_cvt(
15     size_t n,
16     const float* input,
17     float* output)
18 {
19   assert(n % (4 * sizeof(float)) == 0);
20 
21   // This magic number serves two purposes:
22   // 1. Set the bit corresponding to the sign of a floating-point number in a bitmask.
23   // 2. Check if the input to CVTTPS2DQ (_mm_cvttps_epi32) is out-of-range, which results in 0x80000000 output.
24   const __m128i vmagic = _mm_set1_epi32(0x80000000);
25   // Unit constant to increment results rounded "wrong way" (i.e. down) in the round-towards-zero operation.
26   const __m128 vone = _mm_set1_ps(1.0f);
27 
28   for (; n != 0; n -= 4 * sizeof(float)) {
29     const __m128 vx = _mm_load_ps(input);
30     input += 4;
31 
32     // Convert floating-point value x to integer, with rounding towards zero.
33     // If x is beyond [-2**31, 2**31-1] range or x is NaN, the result is -2**31 (0x80000000).
34     const __m128i vintx = _mm_cvttps_epi32(vx);
35 
36     // Compute bitmask for the bits we want to copy from the rounded x. Other bits will be copied from x.
37     // If x is out-of-range for CVTTPS2DQ, we want all bits from x.
38     // If x is in-range for CVTTPS2DQ, we want all but the sign bit from the rounded x and the sign bit from x.
39     const __m128 vrndmask = _mm_castsi128_ps(_mm_or_si128(vmagic, _mm_cmpeq_epi32(vintx, vmagic)));
40 
41     // Convert integer back to floating-point.
42     // We binary OR the result with the sign of x to restore the sign of negative zero.
43     const __m128 vprerndx = _mm_cvtepi32_ps(vintx);
44 
45     // Combine x rounded via conversion to integer and the initial x value.
46     // For -2**31 < x < 2**31, the result is x rounded via conversion to integer.
47     // Otherwise (including NaN inputs), the result is x itself.
48     const __m128 vrndx = _mm_or_ps(_mm_and_ps(vx, vrndmask), _mm_andnot_ps(vrndmask, vprerndx));
49 
50     // Compute bitmask for the bits to copy from the rounded x. Other bits will be copied from the adjusted rounded x.
51     // If rounded x >= x, we want all bits from rounded x.
52     // If rounded x < x or rounded x is NaN (implies x is NaN), we want all but the sign bit from the adjusted rounded
53     // x and the sign bit from rounded x (same as the sign bit of x).
54     const __m128 vadjmask = _mm_or_ps(_mm_cmpge_ps(vrndx, vx), _mm_castsi128_ps(vmagic));
55     // Adjust the rounded x value.
56     // The adjusted value is a unit above the rounded-towards-zero x value, but is used only if the rounded value is
57     // below x. In these cases, the adjusted value is x rounded up.
58     // Note: addition implicitly converts SNaN inputs to QNaNs.
59     const __m128 vadjrndx = _mm_add_ps(vrndx, vone);
60 
61     // Combine the adjusted rounded x and the original rounded towards zero x.
62     // For rounded x < x, the result is the absolute value of adjusted rounded-towards-zero x with the sign of
63     // rounded-towards x (same as sign of x). Propagating the sign of x is important to produce negative zero
64     // for -1.0 < x < -0.5 inputs, where otherwise we would get -1.0 (rounded x) + 1.0 (adjustment) = +0.0.
65     // For rounded x >= x, the result is the rounded-towards-zero x.
66     // For NaN inputs, the result is rounded x (same as x converted to QNaN as a side-effect of adjustment).
67     const __m128 vy = _mm_or_ps(_mm_and_ps(vrndx, vadjmask), _mm_andnot_ps(vadjmask, vadjrndx));
68 
69     _mm_store_ps(output, vy);
70     output += 4;
71   }
72 }
73