1 // Copyright 2020 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 #include <stdint.h>
10 #include <stdlib.h>
11 
12 #include <xnnpack.h>
13 #include <xnnpack/allocator.h>
14 #include <xnnpack/log.h>
15 #include <xnnpack/operator.h>
16 #include <xnnpack/params-init.h>
17 #include <xnnpack/params.h>
18 
19 
create_constant_pad_nd(uint32_t padding_value,uint32_t flags,enum xnn_operator_type operator_type,xnn_operator_t * constant_pad_op_out)20 static enum xnn_status create_constant_pad_nd(
21     uint32_t padding_value,
22     uint32_t flags,
23     enum xnn_operator_type operator_type,
24     xnn_operator_t* constant_pad_op_out)
25 {
26   xnn_operator_t constant_pad_op = NULL;
27   enum xnn_status status = xnn_status_uninitialized;
28 
29   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
30     xnn_log_error(
31       "failed to create %s operator: XNNPACK is not initialized",
32       xnn_operator_type_to_string(xnn_operator_type_constant_pad_nd_x32));
33     goto error;
34   }
35 
36   status = xnn_status_out_of_memory;
37 
38   constant_pad_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
39   if (constant_pad_op == NULL) {
40     xnn_log_error(
41       "failed to allocate %zu bytes for %s operator descriptor",
42       sizeof(struct xnn_operator), xnn_operator_type_to_string(xnn_operator_type_constant_pad_nd_x32));
43     goto error;
44   }
45 
46   constant_pad_op->pad_value = padding_value;
47 
48   constant_pad_op->type = operator_type;
49 
50   constant_pad_op->state = xnn_run_state_invalid;
51 
52   *constant_pad_op_out = constant_pad_op;
53   return xnn_status_success;
54 
55 error:
56   xnn_delete_operator(constant_pad_op);
57   return status;
58 }
59 
xnn_create_constant_pad_nd_x32(const void * padding_value,uint32_t flags,xnn_operator_t * constant_pad_op_out)60 enum xnn_status xnn_create_constant_pad_nd_x32(
61   const void* padding_value,
62   uint32_t flags,
63   xnn_operator_t* constant_pad_op_out)
64 {
65   return create_constant_pad_nd(
66     *((uint32_t*) padding_value), flags, xnn_operator_type_constant_pad_nd_x32, constant_pad_op_out);
67 }
68 
setup_constant_pad_nd(xnn_operator_t constant_pad_op,enum xnn_operator_type expected_operator_type,size_t num_dims,const size_t * input_shape,const size_t * pre_paddings,const size_t * post_paddings,const void * input,void * output,size_t num_threads)69 static enum xnn_status setup_constant_pad_nd(
70     xnn_operator_t constant_pad_op,
71     enum xnn_operator_type expected_operator_type,
72     size_t num_dims,
73     const size_t* input_shape,
74     const size_t* pre_paddings,
75     const size_t* post_paddings,
76     const void* input,
77     void* output,
78     size_t num_threads)
79 {
80   if (constant_pad_op->type != expected_operator_type) {
81     xnn_log_error("failed to setup operator: operator type mismatch (expected %s, got %s)",
82       xnn_operator_type_to_string(expected_operator_type),
83       xnn_operator_type_to_string(constant_pad_op->type));
84     return xnn_status_invalid_parameter;
85   }
86   constant_pad_op->state = xnn_run_state_invalid;
87 
88   if ((xnn_params.init_flags & XNN_INIT_FLAG_XNNPACK) == 0) {
89     xnn_log_error("failed to setup %s operator: XNNPACK is not initialized",
90       xnn_operator_type_to_string(constant_pad_op->type));
91     return xnn_status_uninitialized;
92   }
93 
94   if (num_dims > XNN_MAX_TENSOR_DIMS) {
95     xnn_log_error(
96       "failed to setup %s operator with %zu dimensions in input shape: "
97       "the number of input dimensions must not exceed %d",
98       xnn_operator_type_to_string(constant_pad_op->type), num_dims, XNN_MAX_TENSOR_DIMS);
99     return xnn_status_unsupported_parameter;
100   }
101 
102   for (size_t i = 0; i < num_dims; i++) {
103     if (input_shape[i] == 0) {
104       xnn_log_error(
105         "failed to setup %s operator: input shape dimension #%zu is zero",
106         xnn_operator_type_to_string(constant_pad_op->type), i);
107       return xnn_status_invalid_parameter;
108     }
109   }
110 
111   size_t num_squeezed_dims = 0;
112   size_t normalized_pre_paddings[XNN_MAX_TENSOR_DIMS];
113   size_t normalized_input_shape[XNN_MAX_TENSOR_DIMS];
114   size_t normalized_output_shape[XNN_MAX_TENSOR_DIMS];
115   for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
116     normalized_pre_paddings[i] = 0;
117     normalized_input_shape[i] = 1;
118     normalized_output_shape[i] = 1;
119   }
120 
121   bool is_previous_dim_padded = true;
122   for (size_t i = 0; i < num_dims; i++) {
123     const size_t pre_padding = pre_paddings[num_dims - 1 - i];
124     const size_t post_padding = post_paddings[num_dims - 1 - i];
125     const size_t input_dim = input_shape[num_dims - 1 - i];
126 
127     const bool is_current_dim_padded = (pre_padding | post_padding) != 0;
128     if (is_current_dim_padded || is_previous_dim_padded) {
129       normalized_pre_paddings[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = pre_padding;
130       normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = input_dim;
131       normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1 - num_squeezed_dims] = pre_padding + input_dim + post_padding;
132 
133       num_squeezed_dims += 1;
134       is_previous_dim_padded = is_current_dim_padded;
135     } else {
136       assert(!is_previous_dim_padded);
137       assert(pre_padding == 0);
138       assert(post_padding == 0);
139       assert(i != 0);
140 
141       normalized_input_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim;
142       normalized_output_shape[XNN_MAX_TENSOR_DIMS - num_squeezed_dims] *= input_dim;
143     }
144   }
145 
146   constant_pad_op->context.pad = (struct pad_context) {
147     .input = input,
148     .output = output,
149     .padding_value = constant_pad_op->pad_value,
150     .fill_ukernel = xnn_params.x32.fill.ukernel,
151     .pad_ukernel = xnn_params.x32.pad.ukernel,
152   };
153 
154   for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
155     constant_pad_op->context.pad.pre_paddings[i] = normalized_pre_paddings[XNN_MAX_TENSOR_DIMS - 1 - i];
156     constant_pad_op->context.pad.input_size[i] = normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
157   }
158   size_t input_stride = normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1];
159   size_t output_stride = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1];
160   for (size_t i = 1; i < XNN_MAX_TENSOR_DIMS; i++) {
161     constant_pad_op->context.pad.input = (const void*)
162       ((uintptr_t) constant_pad_op->context.pad.input - constant_pad_op->context.pad.pre_paddings[i] * input_stride * sizeof(float));
163     constant_pad_op->context.pad.input_stride[i - 1] = input_stride * sizeof(float);
164     constant_pad_op->context.pad.output_stride[i - 1] = output_stride * sizeof(float);
165     input_stride *= normalized_input_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
166     output_stride *= normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1 - i];
167   }
168   constant_pad_op->context.pad.input_size[0] *= sizeof(float);
169   constant_pad_op->context.pad.output_size[0] = normalized_output_shape[XNN_MAX_TENSOR_DIMS - 1] * sizeof(float);
170   constant_pad_op->context.pad.pre_paddings[0] *= sizeof(float);
171   constant_pad_op->context.pad.post_paddings[0] =
172     constant_pad_op->context.pad.output_size[0] - constant_pad_op->context.pad.pre_paddings[0] - constant_pad_op->context.pad.input_size[0];
173 
174   constant_pad_op->compute.type = xnn_parallelization_type_5d;
175   constant_pad_op->compute.task_5d = (pthreadpool_task_5d_t) xnn_compute_pad_5d;
176   constant_pad_op->compute.range[0] = normalized_output_shape[0];
177   constant_pad_op->compute.range[1] = normalized_output_shape[1];
178   constant_pad_op->compute.range[2] = normalized_output_shape[2];
179   constant_pad_op->compute.range[3] = normalized_output_shape[3];
180   constant_pad_op->compute.range[4] = normalized_output_shape[4];
181   constant_pad_op->state = xnn_run_state_ready;
182 
183   return xnn_status_success;
184 }
185 
xnn_setup_constant_pad_nd_x32(xnn_operator_t constant_pad_op,size_t num_dims,const size_t * input_shape,const size_t * pre_padding,const size_t * post_padding,const void * input,void * output,pthreadpool_t threadpool)186 enum xnn_status xnn_setup_constant_pad_nd_x32(
187     xnn_operator_t constant_pad_op,
188     size_t num_dims,
189     const size_t* input_shape,
190     const size_t* pre_padding,
191     const size_t* post_padding,
192     const void* input,
193     void* output,
194     pthreadpool_t threadpool)
195 {
196   return setup_constant_pad_nd(
197     constant_pad_op, xnn_operator_type_constant_pad_nd_x32,
198     num_dims, input_shape, pre_padding, post_padding,
199     input, output,
200     pthreadpool_get_threads_count(threadpool));
201 }
202