1// Copyright 2020 Google LLC 2// 3// This source code is licensed under the BSD-style license found in the 4// LICENSE file in the root directory of this source tree. 5 6$assert VARIANT in ["LD128", "EXTENDED"] 7$assert MR <= 4 8#include <assert.h> 9 10#include <immintrin.h> 11 12#include <xnnpack/gemm.h> 13#include <xnnpack/intrinsics-polyfill.h> 14#include <xnnpack/math.h> 15 16 17$GEMM_SUFFIX = "_xw" if VARIANT == "EXTENDED" else "" 18void xnn_qs8_gemm${GEMM_SUFFIX}_minmax_ukernel_${MR}x8c8__avx2( 19 size_t mr, 20 size_t nc, 21 size_t kc, 22 const int8_t* restrict a, 23 size_t a_stride, 24 const void* restrict w, 25 int8_t* restrict c, 26 size_t cm_stride, 27 size_t cn_stride, 28 const union xnn_qs8_gemm${GEMM_SUFFIX}_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN 29{ 30 assert(mr != 0); 31 assert(mr <= ${MR}); 32 assert(nc != 0); 33 assert(kc != 0); 34 assert(kc % sizeof(int8_t) == 0); 35 assert(a != NULL); 36 assert(w != NULL); 37 assert(c != NULL); 38 39 kc = round_up_po2(kc, 8); 40 const int8_t* a0 = a; 41 int8_t* c0 = c; 42 $for M in range(1, MR): 43 const int8_t* a${M} = (const int8_t*) ((uintptr_t) a${M-1} + a_stride); 44 int8_t* c${M} = (int8_t*) ((uintptr_t) c${M-1} + cm_stride); 45 $if M % 2 == 0: 46 if XNN_UNPREDICTABLE(mr <= ${M}) { 47 a${M} = a${M-1}; 48 c${M} = c${M-1}; 49 } 50 $elif M + 1 == MR: 51 if XNN_UNPREDICTABLE(mr != ${M+1}) { 52 a${M} = a${M-1}; 53 c${M} = c${M-1}; 54 } 55 $else: 56 if XNN_UNPREDICTABLE(mr < ${M+1}) { 57 a${M} = a${M-1}; 58 c${M} = c${M-1}; 59 } 60 61 do { 62 const __m128i vbias0x0 = _mm_loadu_si32(w); 63 const __m128i vbias0x1 = _mm_loadu_si32((const void*) ((uintptr_t) w + sizeof(int32_t))); 64 __m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1); 65 $for N in range(2, 8, 2): 66 const __m128i vbias0x${N} = _mm_loadu_si32((const void*) ((uintptr_t) w + ${N} * sizeof(int32_t))); 67 const __m128i vbias0x${N+1} = _mm_loadu_si32((const void*) ((uintptr_t) w + ${N+1} * sizeof(int32_t))); 68 __m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1); 69 $for M in range(1, MR): 70 $for N in range(0, 8, 2): 71 __m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1}; 72 w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t)); 73 74 size_t k = 0; 75 while (k < kc) { 76 $for M in range(MR): 77 const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M})); 78 const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M}); 79 a${M} += 8; 80 81 $for N in range(0, 8, 2): 82 $if VARIANT == "EXTENDED": 83 $if N == 0: 84 const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) w); 85 $else: 86 const __m256i vxb${N}${N+1} = _mm256_load_si256((const __m256i*) ((uintptr_t) w + ${N * 8} * sizeof(int16_t))); 87 $else: 88 $if N == 0: 89 const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w); 90 $else: 91 const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((uintptr_t) w + ${N * 8} * sizeof(int8_t))); 92 const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1}); 93 94 $for M in range(MR): 95 vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1})); 96 97 $if VARIANT == "EXTENDED": 98 w = (const void*) ((uintptr_t) w + 64 * sizeof(int16_t)); 99 $else: 100 w = (const void*) ((uintptr_t) w + 64 * sizeof(int8_t)); 101 k += 8 * sizeof(int8_t); 102 } 103 104 $for M in range(MR): 105 const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23); 106 const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67); 107 108 $for M in range(MR): 109 const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657); 110 111 const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0); 112 $for M in range(MR): 113 __m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask); 114 115 const __m256i vmultiplier = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.multiplier)); 116 const __m256i vrounding = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.rounding)); 117 118 $for M in range(MR): 119 const __m256i vacc${M}x11335577 = _mm256_shuffle_epi32(vacc${M}x01234567, _MM_SHUFFLE(3, 3, 1, 1)); 120 121 $for M in range(MR): 122 const __m256i vprod${M}x0246 = _mm256_add_epi64(_mm256_mul_epi32(vacc${M}x01234567, vmultiplier), vrounding); 123 124 $for M in range(MR): 125 const __m256i vprod${M}x1357 = _mm256_add_epi64(_mm256_mul_epi32(vacc${M}x11335577, vmultiplier), vrounding); 126 127 $for M in range(MR): 128 const __m256i vq31prod${M}x0246 = _mm256_srli_epi64(vprod${M}x0246, 31); 129 const __m256i vq31prod${M}x1357 = _mm256_add_epi64(vprod${M}x1357, vprod${M}x1357); 130 131 $for M in range(MR): 132 const __m256i vq31prod${M}x01234567 = _mm256_blend_epi16(vq31prod${M}x0246, vq31prod${M}x1357, 0xCC); 133 134 const __m256i vremainder_mask = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_mask)); 135 $for M in range(MR): 136 const __m256i vrem${M}x01234567 = 137 _mm256_add_epi32(_mm256_and_si256(vq31prod${M}x01234567, vremainder_mask), _mm256_cmpgt_epi32(_mm256_setzero_si256(), vq31prod${M}x01234567)); 138 139 const __m256i vremainder_threshold = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_threshold)); 140 const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift); 141 $for M in range(MR): 142 vacc${M}x01234567 = 143 _mm256_sub_epi32(_mm256_sra_epi32(vq31prod${M}x01234567, vshift), _mm256_cmpgt_epi32(vrem${M}x01234567, vremainder_threshold)); 144 145 const __m256i voutput_zero_point = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_zero_point)); 146 $for M in range(0, MR, 2): 147 __m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point); 148 149 $for M in range(0, MR, 2): 150 vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0)); 151 152 const __m256i voutput_min = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_min)); 153 const __m256i voutput_max = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_max)); 154 $for M in range(0, MR, 2): 155 vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_min_epi16(_mm256_max_epi16(vacc${M}${min(M+1, MR-1)}x01234567, voutput_min), voutput_max); 156 157 $if MR > 2: 158 __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567); 159 $else: 160 __m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567); 161 __m128i vout_lo = _mm256_castsi256_si128(vout); 162 __m128i vout_hi = _mm256_extracti128_si256(vout, 1); 163 164 if (nc >= 8) { 165 _mm_storel_epi64((__m128i*) c0, vout_lo); 166 $if MR > 1: 167 _mm_storel_epi64((__m128i*) c1, vout_hi); 168 $if MR > 2: 169 _mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo)); 170 $if MR > 3: 171 _mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi)); 172 173 $for M in range(MR): 174 c${M} = (int8_t*) ((uintptr_t) c${M} + cn_stride); 175 176 $for M in range(MR): 177 a${M} = (const int8_t*) ((uintptr_t) a${M} - kc); 178 179 nc -= 8; 180 } else { 181 if (nc & 4) { 182 _mm_storeu_si32(c0, vout_lo); 183 $if MR > 1: 184 _mm_storeu_si32(c1, vout_hi); 185 $if MR > 2: 186 *((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout_lo, 2); 187 $if MR > 3: 188 *((uint32_t*) c3) = (uint32_t) _mm_extract_epi32(vout_hi, 2); 189 190 $for M in range(MR): 191 c${M} += 4; 192 193 vout_lo = _mm_srli_epi64(vout_lo, 32); 194 vout_hi = _mm_srli_epi64(vout_hi, 32); 195 } 196 if (nc & 2) { 197 *((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0); 198 $if MR > 1: 199 *((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout_hi, 0); 200 $if MR > 2: 201 *((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout_lo, 4); 202 $if MR > 3: 203 *((uint16_t*) c3) = (uint16_t) _mm_extract_epi16(vout_hi, 4); 204 205 $for M in range(MR): 206 c${M} += 2; 207 208 vout_lo = _mm_srli_epi32(vout_lo, 16); 209 vout_hi = _mm_srli_epi32(vout_hi, 16); 210 } 211 if (nc & 1) { 212 *c0 = (int8_t) _mm_extract_epi8(vout_lo, 0); 213 $if MR > 1: 214 *c1 = (uint8_t) _mm_extract_epi8(vout_hi, 0); 215 $if MR > 2: 216 *c2 = (uint8_t) _mm_extract_epi8(vout_lo, 8); 217 $if MR > 3: 218 *c3 = (uint8_t) _mm_extract_epi8(vout_hi, 8); 219 } 220 221 nc = 0; 222 } 223 } while (nc != 0); 224} 225