1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <stddef.h>
12 
13 #include <fp16/bitcasts.h>
14 
15 #include <xnnpack/scalar-utils.h>
16 #include <xnnpack/requantization-stubs.h>
17 
18 
xnn_qu8_requantize_q31__scalar(size_t n,const int32_t * input,float scale,uint8_t zero_point,uint8_t qmin,uint8_t qmax,uint8_t * output)19 void xnn_qu8_requantize_q31__scalar(
20     size_t n,
21     const int32_t* input,
22     float scale,
23     uint8_t zero_point,
24     uint8_t qmin,
25     uint8_t qmax,
26     uint8_t* output)
27 {
28   assert(n % 4 == 0);
29   assert(scale < 1.0f);
30   assert(scale >= 0x1.0p-32f);
31 
32   // Compute requantization parameters.
33   const uint32_t scale_bits = fp32_to_bits(scale);
34 
35   // Multiplier is in [0x40000000, 0x7FFFFF80] range.
36   const int32_t multiplier = (int32_t)(((scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000)) << 7);
37   assert(multiplier >= INT32_C(0x40000000));
38   assert(multiplier <= INT32_C(0x7FFFFF80));
39 
40   // Shift is in [0, 31] range.
41   const int32_t shift = 127 + 31 - 32 - (fp32_to_bits(scale) >> 23);
42   assert(shift >= 0);
43   assert(shift < 32);
44 
45   const int64_t q31rounding = INT64_C(0x40000000);
46   const int32_t remainder_mask = (int32_t)((UINT32_C(1) << shift) - UINT32_C(1));
47   const int32_t threshold = (int32_t)((uint32_t) remainder_mask >> 1);
48   const int32_t smin = (int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point;
49   const int32_t smax = (int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point;
50   for (; n != 0; n -= 4) {
51     const int32_t x = input[0];
52     const int32_t y = input[1];
53     const int32_t z = input[2];
54     const int32_t w = input[3];
55     input += 4;
56 
57     // Compute full 64-bit product of signed 32-bit factors.
58     //
59     // Note: multiplier can be treated as either signed or unsigned.
60     const int64_t x_product = (int64_t) x * (int64_t) multiplier;
61     const int64_t y_product = (int64_t) y * (int64_t) multiplier;
62     const int64_t z_product = (int64_t) z * (int64_t) multiplier;
63     const int64_t w_product = (int64_t) w * (int64_t) multiplier;
64 
65     // Get the Q31 multiplication result by extracting bits 31-62 of the product, with rounding up.
66     // Add rounding value (0x40000000) and then shift right by 31 bits and extract the low 32-bit word.
67     // Note: casts to unsigned types are needed to avoid undefined behavior.
68     // Given the multiplier range, the result of Q31 multiplication is in [-2147483520, 2147483519] range.
69     const int32_t x_q31product = (int32_t)(uint32_t)((uint64_t)(x_product + q31rounding) >> 31);
70     const int32_t y_q31product = (int32_t)(uint32_t)((uint64_t)(y_product + q31rounding) >> 31);
71     const int32_t z_q31product = (int32_t)(uint32_t)((uint64_t)(z_product + q31rounding) >> 31);
72     const int32_t w_q31product = (int32_t)(uint32_t)((uint64_t)(w_product + q31rounding) >> 31);
73 
74     // Arithmetically shift the adjusted product right with rounding.
75     // Rounding is performed towards closest integer, with midpoints rounded away from zero.
76     //
77     // Shift with correct rounding could be efficiently implemented by pre-adding rounding constant, but with input in
78     // [-2147483520, 2147483519] range and rounding constant up to 2**30 we can't rule out overflow. This limitation
79     // leaves us with 3 options:
80     // 1. Extend input to 64-bit signed integer, perform addition and shift on 64-bit integers, then truncate result
81     //    to 32 bits.
82     // 2. Detect overflow and handle this situation separately. Note that overflow is possible only when input is
83     //    positive, and even when addition of a rounding constant overflows 32-bit signed integer, it still doesn't
84     //    overflow 32-bit unsigned integer. Thus, in case of signed overflow, we can compute the result using unsigned
85     //    arithmetics, specifically using logical shift right instead of arithmetic shift right.
86     // 3. Performs arithmetic shift as is, which will produce division result rounded down. Then compute remainder of
87     //    this division by a power of 2, and adjust the result. Result needs adjustment (increment by 1) when
88     //     - input is positive, shift is non-zero, and remainder >= 2**(shift - 1), e.g. 10 >> 2 needs adjustment
89     //     - input is negative, shift is non-zero, and remainder > 2**(shift - 1), e.g. -10 >> 2 doesn't need adjustment
90     //    These conditions can be generalized as
91     //        remainder + (input <= 0) > 2**(shift - 1)
92     //    or equivalently
93     //        remainder - (input < 0) > ((2**shift - 1) >> 1)
94     //    When shift is 0, remainder is 0 as well, the last condition is always false, and no adjustment is done.
95     //
96     // Among these options, option 3 is the most performant across the board, although option 1 is promising for 64-bit
97     // instruction sets.
98     const int32_t x_remainder = (x_q31product & remainder_mask) - (int32_t)(x_q31product < 0);
99     const int32_t y_remainder = (y_q31product & remainder_mask) - (int32_t)(y_q31product < 0);
100     const int32_t z_remainder = (z_q31product & remainder_mask) - (int32_t)(z_q31product < 0);
101     const int32_t w_remainder = (w_q31product & remainder_mask) - (int32_t)(w_q31product < 0);
102 
103     const int32_t x_scaled = asr_s32(x_q31product, shift) + (int32_t)(x_remainder > threshold);
104     const int32_t y_scaled = asr_s32(y_q31product, shift) + (int32_t)(y_remainder > threshold);
105     const int32_t z_scaled = asr_s32(z_q31product, shift) + (int32_t)(z_remainder > threshold);
106     const int32_t w_scaled = asr_s32(w_q31product, shift) + (int32_t)(w_remainder > threshold);
107 
108     // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
109     const int32_t x_clamped = x_scaled < smin ? smin : x_scaled > smax ? smax : x_scaled;
110     const int32_t y_clamped = y_scaled < smin ? smin : y_scaled > smax ? smax : y_scaled;
111     const int32_t z_clamped = z_scaled < smin ? smin : z_scaled > smax ? smax : z_scaled;
112     const int32_t w_clamped = w_scaled < smin ? smin : w_scaled > smax ? smax : w_scaled;
113 
114     // Add zero point to clamped value.
115     // The result is guaranteed to be in [qmin, qmax] range.
116     //
117     // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
118     // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer.
119     const int32_t x_biased = x_clamped + zero_point;
120     const int32_t y_biased = y_clamped + zero_point;
121     const int32_t z_biased = z_clamped + zero_point;
122     const int32_t w_biased = w_clamped + zero_point;
123 
124     output[0] = (uint8_t) x_biased;
125     output[1] = (uint8_t) y_biased;
126     output[2] = (uint8_t) z_biased;
127     output[3] = (uint8_t) w_biased;
128     output += 4;
129   }
130 }
131